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Abstract
Subgraph isomorphism counting is an important problem on
graphs, as many graph-based tasks exploit recurring sub-
graph patterns. Classical methods usually boil down to a
backtracking framework that needs to navigate a huge search
space with prohibitive computational costs. Some recent stud-
ies resort to graph neural networks (GNNs) to learn a low-
dimensional representation for both the query and input
graphs, in order to predict the number of subgraph isomor-
phisms on the input graph. However, typical GNNs employ
a node-centric message passing scheme that receives and ag-
gregates messages on nodes, which is inadequate in complex
structure matching for isomorphism counting. Moreover, on
an input graph, the space of possible query graphs is enor-
mous, and different parts of the input graph will be trig-
gered to match different queries. Thus, expecting a fixed rep-
resentation of the input graph to match diversely structured
query graphs is unrealistic. In this paper, we propose a novel
GNN called Count-GNN for subgraph isomorphism count-
ing, to deal with the above challenges. At the edge level, given
that an edge is an atomic unit of encoding graph structures,
we propose an edge-centric message passing scheme, where
messages on edges are propagated and aggregated based on
the edge adjacency to preserve fine-grained structural infor-
mation. At the graph level, we modulate the input graph rep-
resentation conditioned on the query, so that the input graph
can be adapted to each query individually to improve their
matching. Finally, we conduct extensive experiments on a
number of benchmark datasets to demonstrate the superior
performance of Count-GNN.

1 Introduction
Research in network science and graph mining often finds
and exploits recurring subgraph patterns on an input graph.
For example, on a protein network, we could query for the
hydroxy groups which consist of one oxygen atom cova-
lently bonded to one hydrogen atom; on a social network,
we could query for potential families in which several users
form a clique and two of them are working and the rest are
studying. These queries essentially describe a subgraph pat-
tern that repeatedly occurs on different parts of an input
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graph, which expresses certain semantics such as the hy-
droxy groups or families. These subgraph patterns are also
known as network motifs on homogeneous graphs (Milo
et al. 2002) or meta-structures on heterogeneous graphs (Sun
et al. 2011; Fang et al. 2016). To leverage their expressive-
ness, more sophisticated graph models (Monti, Otness, and
Bronstein 2018; Liu et al. 2018; Sankar, Zhang, and Chang
2019; Wang et al. 2019) have also been designed to incorpo-
rate motifs or meta-structures.

The need for subgraph patterns in graph-based tasks and
models leads to a high demand of subgraph isomorphism
counting (Liu et al. 2020). Classical methods usually em-
ploy search-based algorithms such as backtracking (Ull-
mann 1976; Cordella et al. 2004; He and Singh 2008) to
exhaustively detect the isomorphisms and return an exact
count. However, their computational costs are often exces-
sive given that the detection problem is NP-complete and the
counting form is #P-complete (Cordella et al. 2004). With
the rise of graph neural networks (GNNs) (Wu et al. 2020),
some recent approaches for subgraph isomorphism counting
also leverage on the powerful graph representations from
GNNs (Liu et al. 2020; Chen et al. 2020; Xia, Li, and Li
2022). They generally employ GNNs to embed the queries
and input graphs into low-dimensional vectors, which are
further fed into a counter module to predict the approximate
number of isomorphisms on the input graph. Compared to
classical approaches, they can significantly save computa-
tional resources at the expense of approximation, providing
a useful trade-off between accuracy and cost since many ap-
plications do not necessarily need an exact count.

However, previous GNN-based isomorphism counting
models adopt a node-centric message-passing scheme,
which propagates and aggregates messages on nodes. While
this scheme is effective for node-oriented tasks, it falls short
of matching complex structures for isomorphism counting.
In particular, they rely on message aggregation to gener-
ate representations centering on nodes, failing to explicitly
and fundamentally capture the complex interactions among
nodes. Thus, as the first challenge, how do we capture fine-
grained structural information beyond node-centric GNNs?
Moreover, on an input graph, the space of possible query
graphs is enormous. Different queries are often character-
ized by distinct structures that match with different parts of
the input graph. A fixed graph representation to match with
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Figure 1: Illustration of Count-GNN.

all possible queries is likely to underperform. Thus, as the
second challenge, how do we adapt the input graph to each
query individually, in order to improve the matching of spe-
cific structures in every query?

In this paper, we propose a novel model called Count-
GNN for approximate subgraph isomorphism counting,
which copes with the above challenges from both the edge
and graph perspectives. To be more specific, at the edge
level, Count-GNN is built upon an edge-centric GNN that
propagates and aggregates messages on and for edges based
on the edge adjacency, as shown in Fig. 1(a). Given that
edges constitute the atomic unit of graph structures, any
subgraph is composed of one or more edge chains. Thus,
treating edges as first-class citizens can better capture fine-
grained structural information. Theoretically, our proposed
edge-centric GNN model can be regarded as a generalization
of node-centric GNNs, with provably stronger expressive
power than node-centric GNNs. At the graph level, Count-
GNN resorts to a modulation mechanism (Perez et al. 2018)
by adapting the input graph representation to each query
graph, as shown in Fig. 1(b). As a result, the input graph
can be tailored to each individual query with varying struc-
tures. Coupling the two perspectives, Count-GNN is able to
precisely match complex structures between the input graph
and structurally diverse queries.

To summarize, our contributions are three-fold. (1) We
propose a novel model Count-GNN that capitalizes on edge-
centric aggregation to encode fine-grained structural infor-
mation, which is more expressive than node-centric aggrega-
tion in theory. (2) Moreover, we design a query-conditioned
graph modulation in Count-GNN, to adapt structure match-
ing to different queries from the graph perspective. (3) Ex-
tensive experiments on several benchmark datasets demon-
strate that Count-GNN can significantly outperform state-
of-the-art GNN-based models for isomorphism counting.

2 Related Work
We present the most related studies here, while leaving the
rest to Appendix G due to the space limitation.

Graphs usually entail abundant local structures to depict
particular semantics, which gives rise to the importance of
subgraph isomorphism counting (Ullmann 1976). To solve
this problem, most traditional methods resort to backtrack-
ing (Ullmann 1976; Cordella et al. 2004; He and Singh
2008). Although they can obtain the exact counts, the search
space usually grows intractably as graph size increases.
In fact, subgraph isomorphism counting is a #P-complete
problem (Ullmann 1976). Subsequently, several approaches

(Han, Lee, and Lee 2013; Carletti et al. 2017) are proposed
to utilize some constraints to reduce the search space, and
others (Yan, Yu, and Han 2004) try to filter out infeasible
graphs to speed up the backtracking process. Another line of
approaches (Alon, Yuster, and Zwick 1995; Bressan, Leucci,
and Panconesi 2021) rely on the color coding for subgraph
isomorphism counting in polynomial time. They are usu-
ally fixed-parameter tractable and can only be employed for
some limited subcases. Other studies perform count estima-
tion (Teixeira et al. 2020; Pinar, Seshadhri, and Vishal 2017;
Teixeira et al. 2018; Wang et al. 2014), such as in the setting
where access to the entire network is prohibitively expensive
(Teixeira et al. 2020), or using the counts of smaller patterns
to estimate the counts for larger ones (Pinar, Seshadhri, and
Vishal 2017). However, these attempts still face high com-
putational costs.

Recently, a few studies (Liu et al. 2020; Chen et al. 2020)
propose to address subgraph isomorphism counting from
the perspective of machining learning. One study (Liu et al.
2020) proposes to incorporate several existing pattern ex-
traction mechanisms such as CNN (LeCun et al. 1998),
GRU (Chung et al. 2014) and GNNs (Wu et al. 2020) on
both query graphs and input graphs to exploit their struc-
tural match, which is then followed by a counter module to
predict the number of isomorphisms. Another work (Chen
et al. 2020) analyzes the ability of GNNs in detecting sub-
graph isomorphism, and proposes a Local Relational Pool-
ing model based on the permutations of walks according to
breadth-first search to count certain queries on graphs. How-
ever, they need to learn a new model for each query graph,
limiting their practical application. Compared to traditional
methods, these machine learning-based models can usually
approximate the counts reasonably well, and at the same
time significantly save computational resources and time,
providing a practical trade-off between accuracy and cost.
However, these approaches only adopt node-centric GNNs,
which limit their ability to capture finer-grained structural
information.

There also exist a few recent GNNs based on edge-centric
aggregation (Monti et al. 2018; Jiang et al. 2020), node-
centric aggregation with the assistance of edge features
(Gong and Cheng 2019; Yang and Li 2020; Isufi, Gama, and
Ribeiro 2021), or both node- and edge-centric aggregation
at the same time (Liu and Song 2022). Except DMPNN (Liu
and Song 2022), they are not specifically devised for sub-
graph isomorphism counting. In particular, they all lack the
key module of structural matching between query and input
graphs. Besides, the edge-centric approaches do not theoret-
ically justify their enhanced expressive power compared to
the node-centric counterparts.

3 Problem Formulation
A graph G = (VG , EG) is defined by a set of nodes VG , and a
set of edgesEG between the nodes. In our study, we consider
the general case of directed edges, where an undirected edge
can be treated as two directed edges in opposite directions.
We further consider labeled graphs (also known as hetero-
geneous graphs), in which there exists a node label function
ℓ : VG → L and an edge label function ℓ′ : EG → L′, where
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L and L′ denote the set of labels on nodes and edges, respec-
tively. A graph S = (VS , ES) is a subgraph of G, written as
S ⊆ G, if and only if VS ⊆ VG and ES ⊆ EG .

Next, we present the definition of subgraph isomorphism
on a labeled graph.
Definition 1 (Labeled Subgraph Isomorphism). Consider a
subgraph S of some input graph, and a query graph Q. S is
isomorphic to Q, written as S ≃ Q, if there exists a bijection
between their nodes, ψ : VS → VQ, such that
• ∀v ∈ VS , ℓ(v) = ℓ(ψ(v));
• ∀e = ⟨u, v⟩ ∈ ES , it must hold that e′ = ⟨ψ(u), ψ(v)⟩ ∈
EQ and ℓ′(e) = ℓ′(e′).

In the problem of subgraph isomorphism counting, we
are given a query graph Q and an input graph G. We aim
to predict n(Q,G), the number of subgraphs on G which
are isomorphic to Q, i.e., the cardinality of the set {S|S ⊆
G,S ≃ Q}. Note that this is a non-trivial #P-complete prob-
lem (Cordella et al. 2004). In practice, the query Q usu-
ally has a much smaller size than the input graph G, i.e.,
|VQ| ≪ |VG | and |EQ| ≪ |EG |, leading to a huge search
space and computational cost.

4 Proposed Model: Count-GNN
In this section, we present the overall framework of Count-
GNN first, followed by individual modules.

4.1 Overall Framework
We give an overview of the proposed Count-GNN in Fig. 2.
Consider some query graphs and an input graph in Fig. 2(a).
On both the query and input graphs, we first conduct edge-
centric aggregation in which messages on edges are prop-
agated to and aggregated for each edge based on the edge
adjacency, as shown in Fig. 2(b). This module targets at
the edge level, and enables us to learn edge-centric repre-
sentations for both input graphs and queries that capture
their fine-grained structural information for better structure
matching. Furthermore, to be able to match diverse queries
with distinct structures, the edge representations of the input
graph are modulated w.r.t. each query, as shown in Fig. 2(c).
The query-conditioned edge representations then undergo a
readout operation to fuse into a query-conditioned whole-
graph representation for the input graph. The module targets
at the graph level, and enables us to adapt the input graph to
each query individually to improve the matching of specific
structures in each query. Finally, as shown in Fig. 2(d), a
counter module is applied to predict the isomorphism count-
ing on the input graph for a particular query, forming the
overall objective.

4.2 Edge-Centric Aggregation
Typical GNNs (Kipf and Welling 2017; Veličković et al.
2018; Hamilton, Ying, and Leskovec 2017) and GNN-based
isomorphism counting models (Liu et al. 2020; Chen et al.
2020) resort to the key mechanism of node-centric message
passing, in which each node receives and aggregates mes-
sages from its neighboring nodes. For the problem of sub-
graph isomorphism counting, it is crucial to capture fine-
grained structural information for more precise structure

matching between the query and input graph. Consequently,
we exploit edge-centric message passing, in which each
edge receives and aggregates messages from adjacent edges.
The edge-centric GNN captures structural information in an
explicit and fundamental manner, given that edges represent
the atomic unit of graph structures.

More concretely, we learn a representation vector for each
edge by propagating messages on edges. A message can
be an input feature vector of the edge in the input layer
of the GNN, or an intermediate embedding vector of the
edge in subsequent layers. Specifically, given a directed edge
e = ⟨u, v⟩ on a graph (either an input or query graph), we
initialize its message as a d0-dimensional vector

h0
⟨u,v⟩ = xu ∥ x⟨u,v⟩ ∥ xv ∈ Rd0 , (1)

where x∗ encodes the input features of the corresponding
nodes or edges and ∥ is the concatenation operator. In gen-
eral, h0

⟨u,v⟩ ̸= h0
⟨v,u⟩ for directed edges. Note that, in the

absence of input features, we can employ one-hot encoding
as the feature vector; it is also possible to employ additional
embedding layers to further transform the input features into
initial messages.

Given the initial messages, we devise an edge-centric
GNN layer, in which each edge receives and aggregates mes-
sages along the directed edges. The edge-centric message
passing can be made recursive by stacking multiple layers.
Formally, in the l-th layer, the message on a directed edge
⟨u, v⟩, i.e., hl

⟨u,v⟩ ∈ Rdl , is updated as

hl
⟨u,v⟩ = σ(Wlhl−1

⟨u,v⟩ +Ulhl−1
⟨·,u⟩ + bl), (2)

where Wl, Ul ∈ Rdl×dl−1 are learnable weight matrices,
bl ∈ Rdl is a learnable bias vector, and σ is an activation
function (we use LeakyReLU in the implementation). In ad-
dition, hl−1

⟨·,u⟩ ∈ Rdl−1 is the intermediate message aggre-
gated from the preceding edges of ⟨u, v⟩, i.e., edges incident
on node u from other nodes, which can be materialized as

hl−1
⟨·,u⟩ = AGGR({hl−1

⟨i,u⟩|⟨i, u⟩ ∈ E}), (3)

where E denotes the set of directed edges in the graph,
and AGGR(·) is an aggregation operator to aggregate mes-
sages from the preceding edges. We implement the aggre-
gation operator as a simple mean, although more sophisti-
cated approaches such as self-attention (Hamilton, Ying, and
Leskovec 2017) and multi-layer perceptron (Xu et al. 2019)
can also be employed. To boost the message passing, more
advanced mechanisms can be imported into the layer-wise
edge-centric aggregation, e.g., a residual (He et al. 2016) can
be added to assist the message passing from previous layers
to the current layer.

The above multi-layer edge-centric aggregation is applied
to each query and input graph in a dataset. All query graphs
share one set of GNN parameters (i.e., Wl,Ul,bl), while all
input graphs share another set. On all graphs, the aggregated
message on an edge e = ⟨u, v⟩ in the last layer is taken as the
representation vector of this edge, denoted as h⟨u,v⟩ ∈ Rd.
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Figure 2: Overall framework of Count-GNN.

4.3 Query-Conditioned Graph Modulation
Beyond the edge level, Count-GNN fuses the edge represen-
tations into a whole-graph representation to facilitate struc-
ture matching between query and input graphs.

Query graph representation. We employ a typical readout
function (Xu et al. 2019; Lee, Lee, and Kang 2019; Yao et al.
2020) on a query graph, by aggregating all edge representa-
tions in the query. Given a query graph Q, its whole-graph
representation is computed as

hQ = σ(Q · AGGR({h⟨u,v⟩|⟨u, v⟩ ∈ EQ})), (4)

where Q ∈ Rd×d is a learnable weight matrix shared by
all query graphs, and we use sum for the aggregation. Intu-
itively, the query graph representation simply pools all edge
representations together uniformly.

Input graph representation. To generate a whole-graph
representation for the input graph, a straightforward way is
to follow Eq. (4) by regarding all edges uniformly. How-
ever, for an input graph, the space of possible query graphs
is enormous. In particular, different queries are often char-
acterized by distinct structures, which implies that different
parts of the input graph will be triggered to match different
queries. Therefore, aggregating all edges in the input graph
uniformly cannot retain sufficiently specific structural prop-
erties w.r.t. each query. In other words, using a fixed whole-
graph representation for the input graph cannot tailor to each
query well for effective structure matching. Thus, we pro-
pose to modulate the input graph conditioned on the query,
to adapt the whole-graph representation of the input graph
to each query. To this end, we leverage Feature-wise Lin-
ear Modulation (FiLM) (Perez et al. 2018; Liu et al. 2021;
Liu, Nguyen, and Fang 2021) on the edge representations
in the input graph, conditioned on the query, in order to re-
tain query-specific structures. The modulation is essentially
a scaling and shifting transformation to adapt the edge rep-
resentations of the input graph to the query. Given an input
graph G, for each edge e = ⟨u, v⟩ ∈ EG we modulate its
representation h⟨u,v⟩ into h̃⟨u,v⟩, as follows.

h̃⟨u,v⟩ = (γ⟨u,v⟩ + 1)⊙ h⟨u,v⟩ + β⟨u,v⟩, (5)

where γ⟨u,v⟩ and β⟨u,v⟩ ∈ Rd are FiLM factors for scaling
and shifting, respectively, ⊙ denotes the Hadamard product,

and 1 ∈ Rd is a vector filled with ones to center the scal-
ing factor around one. Note that the FiLM factors γ⟨u,v⟩ and
β⟨u,v⟩ are not directly learnable, but are instead generated by
a secondary network (Ha, Dai, and Le 2017) conditioned on
the original edge representation h⟨u,v⟩ and the query repre-
sentation hQ. More specifically,

γ⟨u,v⟩ = σ(Wγh⟨u,v⟩ +UγhQ + bγ), (6)

β⟨u,v⟩ = σ(Wβh⟨u,v⟩ +UβhQ + bβ), (7)

where Wγ ,Uγ ,Wβ ,Uβ ∈ Rd×d are learnable weight ma-
trices, and bγ ,bβ ∈ Rd are learnable bias vectors. The
modulated edge representations can be further fused via a
readout function, to generate a modulated whole-graph rep-
resentation for the input graph, which is tailored toward each
query to enable more precise matching between the input
graph and query. Concretely, consider a query graph Q and
an input graph G. We formulate the Q-conditioned repre-
sentation for G, denoted hQ

G ∈ Rd, by aggregating the mod-
ulated edge representations of G in the following.

hQ
G = σ(G · AGGR({h̃⟨u,v⟩|⟨u, v⟩ ∈ EG})), (8)

where G ∈ Rd×d is a learnable weight matrix shared by all
input graphs, and we use sum for the aggregation.

4.4 Counter Module and Overall Objective
With the whole-graph representations of the query and input
graphs, we design a counter module to estimate the count of
subgraph isomorphisms, and formulate the overall objective.

Counter module. We estimate the count of isomorphisms
based on the structure matchability between the query and
input graph. Given the query graph Q and input graph G, we
predict the number of subgraphs on G which are isomorphic
to Q by

n̂(Q,G) = RELU(w⊤MATCH(hQ,h
Q
G ) + b), (9)

where MATCH(·, ·) outputs a dm-dimensional vector to rep-
resent the matchability between its arguments, and w ∈
Rdm , b ∈ R are the learnable weight vector and bias, re-
spectively. Here a ReLU activation is used to ensure that the
prediction is non-negative. Note that MATCH(·, ·) can be any
function—we adopt a fully connected layer (FCL) such that
MATCH(x,y) = FCL(x ∥ y ∥ x− y ∥ x⊙ y).

4848



Overall objective. Based on the counter module, we for-
mulate the overall training loss. Assume a set of training
triples T = {(Qi,Gi, ni) | i = 1, 2, . . .}, where ni is the
ground truth count for query Qi and input graph Gi. The
ground truth can be evaluated by classical exact algorithms
(Cordella et al. 2004). Subsequently, we minimize the fol-
lowing loss:

1

|T |
∑

(Qi,Gi,ni)∈T

|n̂(Qi,Gi)−ni|+λLFiLM+µ∥Θ∥22, (10)

where LFiLM is a regularizer on the FiLM factors and ∥Θ∥22
is a L2 regularizer on the model parameters, and λ, µ are
hyperparameters to control the weight of the regularizers.
Specifically, the FiLM regularizer is designed to smooth the
modulations to reduce overfitting, by encouraging less scal-
ing and shifting as follows.

LFiLM =
∑

(Qi,Gi,ni)∈T

∑
⟨u,v⟩∈EGi

∥γ⟨u,v⟩∥22 + ∥β⟨u,v⟩∥22. (11)

We also present the training algorithm and a complexity
analysis in Appendix A.

4.5 Theoretical Analysis of Count-GNN

The proposed Count-GNN capitalizes on edge-centric mes-
sage passing, which is fundamentally more powerful than
conventional node-centric counterparts. This conclusion can
be theoretically shown by the below lemma and theorem.

Lemma 1 (Generalization). Count-GNN can be reduced to
a node-centric GNN, i.e., Count-GNN can be regarded as a
generalization of the latter.

In short, Count-GNN can be reduced to a node-centric
GNN by removing some input information and merging
some edge representations. This demonstrates that Count-
GNN is at least as powerful as the node-centric GNNs. We
present the proof of Lemma 1 in Appendix B.

Theorem 1 (Expressiveness). Count-GNN is more power-
ful than node-centric GNNs, which means (i) for any two
non-isomorphic graphs that can be distinguished by a node-
centric GNN, they can also be distinguished by Count-GNN;
and (ii) there exists two non-isomorphic graphs that can
be distinguished by Count-GNN but not by a node-centric
GNN.

Intuitively, edge-centric GNNs are capable of captur-
ing fine-grained structural information, as any node can be
viewed as a collapse of edges around the node. Therefore,
by treating edges as the first-class citizens, Count-GNN be-
comes more powerful. The proof of Theorem 1 can be found
in Appendix B.

5 Experiments
In this section, we empirically evaluate the proposed model
Count-GNN in comparison to the state of the art.

SMALL LARGE MUTAG OGB-PPA

# Queries 75 122 24 12
# Graphs 6,790 3,240 188 6,000
# Triples 448,140 395,280 4,512 57,940

Avg(|VQ|) 5.20 8.43 3.50 4.50
Avg(|EQ|) 6.80 12.23 2.50 4.75
Avg(|VG |) 32.62 239.94 17.93 152.75
Avg(|EG |) 76.34 559.68 39.58 1968.29

Avg(Counts) 14.83 34.42 17.76 13.83
Max(|L|) 16 64 7 8
Max(|L′|) 16 64 4 1

Table 1: Summary of datasets.

5.1 Experimental Setup

Datasets. We conduct the evaluation on four datasets shown
in Table 1. In particular, SMALL and LARGE are two syn-
thetic datasets, which are generated by the query and graph
generators presented by a previous study (Liu et al. 2020).
On the other hand, MUTAG (Zhang et al. 2018) and OGB-
PPA (Hu et al. 2020) are two real-world datasets. In par-
ticular, MUTAG consists of 188 nitro compound graphs,
and OGB-PPA consists of 6,000 protein association graphs.
While graphs in MUTAG and OGB-PPA are taken as our in-
put graphs, we use the query generator (Liu et al. 2020) to
generate the query graphs. As each dataset consists of mul-
tiple query and input graphs, we couple each query graph
Q with an input graph G to form a training triple (Q,G, n)
with n denoting the ground-truth count given by an exact
algorithm VF2 (Cordella et al. 2004). More details of the
datasets are given in Appendix C.

Baselines. We compare Count-GNN with the state-of-the-
art approaches in two main categories. We provide further
details and settings for the baselines in Appendix D.

(1) Conventional GNNs: GCN (Kipf and Welling 2017),
GAT (Veličković et al. 2018), GraphSAGE (Hamilton, Ying,
and Leskovec 2017), DPGCNN (Monti et al. 2018), GIN
(Xu et al. 2019), and DiffPool (Ying et al. 2018). They capi-
talize on node-centric message passing, followed by a read-
out function to obtain the whole-graph representation. Ex-
cept DiffPool which utilizes a specialized hierarchical read-
out, we employ a sum pooling over the node representations
for the readout in other GNNs.

(2) GNN-based isomorphism counting models, including
four variants proposed by (Liu et al. 2020), namely RGCN-
DN, RGCN-Sum, RGIN-DN, RGIN-Sum, as well as LRP
(Chen et al. 2020) and DMPNN-LRP (Liu and Song 2022),
a better variant of DMPNN. They are purposely designed
GNNs for subgraph isomorphism counting, relying on dif-
ferent GNNs such as RGCN (Schlichtkrull et al. 2018),
RGIN (Xu et al. 2019) and local relational pooling (Chen
et al. 2020) for node representation learning, followed by
a specialized readout suited for isomorphism matching. In
particular, the two variants RGCN-DN and RGIN-DN uti-
lize DiamNet (Liu et al. 2020), whereas RGCN-Sum and
RGIN-Sum utilize the simple sum-pooling.

Finally, we also include a classical approach VF2
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Methods SMALL LARGE MUTAG OGB-PPA
MAE↓ Q-error↓ Time/s↓ MAE↓ Q-error↓ Time/s↓ MAE↓ Q-error↓ Time/s↓ MAE↓ Q-error↓ Time/s↓

GCN 14.80.5 2.10.1 7.90.2 33.00.4 3.51.0 29.80.7 19.99.7 4.21.5 0.880.02 36.81.4 2.10.4 12.50.3
GraphSAGE 14.02.7 2.50.8 7.00.1 33.81.6 3.10.4 27.51.3 13.92.8 4.70.8 0.880.02 32.54.5 2.50.5 11.10.1

GAT 12.20.7 2.00.5 14.30.3 37.35.2 6.01.2 59.40.7 30.86.7 6.00.3 0.910.01 35.82.4 2.20.6 30.40.8
DPGCNN 16.80.7 2.90.2 21.70.4 39.83.7 5.41.6 64.80.9 27.52.5 4.90.6 1.540.01 38.41.2 2.30.3 19.40.7
DiffPool 14.82.6 2.10.4 7.00.1 34.91.4 3.80.7 32.50.7 6.40.3 2.50.2 0.860.00 35.94.7 2.70.3 15.42.2
GIN 12.60.5 2.10.1 7.10.0 35.90.6 4.80.2 33.50.6 21.31.0 5.60.7 0.410.01 34.61.4 2.50.5 12.30.4

RGCN-Sum 24.26.1 3.71.2 13.20.1 80.926 6.31.3 61.80.2 8.00.8 1.50.1 0.890.01 34.513.6 4.70.8 33.00.2
RGCN-DN 16.62.3 3.21.3 48.10.2 73.729 9.14.2 105.00.4 7.30.8 2.60.2 1.190.04 57.115.7 5.01.3 31.20.1
RGIN-Sum 10.70.3 2.00.2 12.20.0 33.22.2 4.21.3 61.41.0 10.80.9 1.90.1 0.450.02 29.11.7 2.20.6 21.01.2
RGIN-DN 11.60.2 2.40.0 49.71.8 32.51.9 4.32.0 104.01.5 8.61.9 3.30.8 0.730.03 35.86.4 4.41.1 28.80.3
DMPNN-LRP 9.10.2 1.50.1 32.41.4 28.11.3 3.41.5 184.21.8 5.41.8 1.81.0 0.130.05 25.64.9 1.11.3 63.00.6

Count-GNN 8.50.0 1.40.1 7.90.3 30.94.3 2.50.5 59.21.7 4.20.1 1.80.0 0.020.00 28.73.9 1.00.2 18.10.6

VF2 0 1 1049.22.7 0 1 9270.55.9 0 1 1.300.04 0 1 5836.34.8
Peregrine - - 72.42.0 - - 904.24.5 - - 0.200.03 - - 450.13.9

Table 2: Evaluation in the main setting. VF2 generates the exact counts, giving a perfect MAE (0) and Q-error (1). Time refers
to the total inference time on all test triples, in seconds. Except VF2, the best method is bolded and the runner-up is underlined.

(Cordella et al. 2004) and a state-of-the-art approach Pere-
grine (Jamshidi, Mahadasa, and Vora 2020), both of which
evaluate the exact counts. Note that there are many other
exact approaches, but they are not suitable baselines due to
their lack of generality. In particular, many approaches have
algorithmic limitations that can only process small queries,
e.g., up to 4 nodes in PGD (Ahmed et al. 2015), 5 nodes
in RAGE (Marcus and Shavitt 2012) and ORCA (Hočevar
and Demšar 2014), and 6 nodes in acc-Motif (Meira et al.
2014). More broadly speaking, since the counting task is
#P-complete, any exact algorithm is bound to suffer from
prohibitively high running time once the queries become
just moderately large. Besides, some approaches cannot han-
dle certain kinds of queries or input graphs. For example,
SCMD (Wang et al. 2012) and PATCOMP (Jain et al. 2017)
are not applicable to directed graphs, and PGD (Ahmed et al.
2015) and RAGE (Marcus and Shavitt 2012) do not handle
graphs with node or edge labels. Although Peregrine does
not support directed edges or edge labels either, we run it on
our datasets by ignoring edge directions/labels if any, and fo-
cus on its time cost only. In addition, there are also a number
of statistically approximate methods, but they have similar
shortcomings. For example, tMotivo and L8Motif (Bressan,
Leucci, and Panconesi 2021) can only handle query graphs
with no more than 8 or 16 nodes.

Data splits and settings. For the SMALL and LARGE
datasets, we randomly sample 5000 triples for training, 1000
for validation, and the rest for testing. For MUTAG, due to
its small size, we randomly sample 1000 triples for training,
100 for validation, and the rest for testing. For OGB-PPA,
we divide the triples into training, validation and testing sets
with a proportion of 4:1:5. We report the settings of Count-
GNN in Appendix E.

Evaluation. We employ mean absolute error (MAE) and
Q-error (Zhao et al. 2021) to evaluate the effectiveness of
Count-GNN. The widely used metric MAE measures the

magnitude of error in the prediction. In addition, Q-error
measures a relative error defined by max(nn̂ ,

n̂
n ), where n

denotes the ground-truth count and n̂ denotes the predicted
count.1 Both metrics are better when smaller: the best MAE
is 0 while the best Q-error is 1. We further report the infer-
ence time for all the approaches to evaluate their efficiency
on answering queries, as well as their training time. We re-
peat all experiments with five runs, and report their average
results and standard deviations.

5.2 Performance Evaluation
To comprehensively evaluate the performance, we compare
Count-GNN with the baselines in two settings: (1) a main
setting with triples generated by all the query graphs and in-
put graphs; (2) a secondary setting with triples generated by
all input graphs associated with only one query graph. Note
that the main setting represents a more general scenario, in
which we compare with all baselines except LRP. However,
due to the particular design of LRP that requires a number
of input graphs coupled with one query graph and the cor-
responding ground-truth count during training, we use the
secondary setting only for this baseline. Our model can flex-
ibly work in both settings.

Testing with main setting. As discussed, we compare
Count-GNN with all baselines except LRP in this more gen-
eral scenario, where the triples are generated by coupling
every pair of query and input graphs.

We report the results in Table 2, and compare the as-
pects of effectiveness and efficiency. In terms of effective-
ness measured by MAE and Q-error, Count-GNN can gen-
erally outperform other GNN-based models. In the several
cases where Count-GNN is not the best among the GNN-
based models, it still emerges as a competitive runner-up.
This demonstrates the two key modules of Count-GNN,

1If the ground-truth or predicted count is less than 1, we assume
a pseudocount of 1 for the calculation of q-error.
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Methods SMALL LARGE MUTAG OGB-PPA

GCN 0.8 1.1 0.35 1.0
GraphSAGE 0.8 1.0 0.35 0.9

GAT 1.0 2.4 0.39 1.5
DiffPool 0.8 1.3 0.34 1.2

GIN 0.5 1.0 0.19 0.7
RGCN-SUM 1.0 2.4 0.38 1.7
RGCN-DN 1.5 3.7 0.50 2.2
RGIN-SUM 0.7 1.9 0.23 1.3
RGIN-DN 1.4 2.9 0.39 1.8

Count-GNN 0.4 2.5 0.04 1.3

Table 3: Comparison of training time per epoch, in seconds.

SMALL LARGE MUTAG
MAE Q-err Time MAE Q-err Time MAE Q-err Time

Q1
LRP 11.5 3.6 0.13 126.1 38.3 0.04 12.3 2.1 0.01
CG 3.0 1.4 0.04 111.2 2.9 0.22 2.5 1.2 0.00

Q2
LRP 12.6 4.6 0.12 19.8 3.7 0.04 7.8 2.9 0.01
CG 4.6 1.1 0.05 4.3 1.1 0.07 5.0 2.1 0.01

Q3
LRP 31.5 4.1 0.05 87.2 7.1 0.04 8.3 2.8 0.01
CG 23.2 1.3 0.03 58.0 1.8 0.08 4.3 1.8 0.01

Avg LRP 18.5 4.1 0.10 77.7 16.4 0.04 9.5 2.6 0.01
CG 10.3 1.3 0.04 57.8 1.9 0.12 3.9 1.7 0.01

Table 4: Evaluation in the secondary setting. Time is re-
ported in seconds, on the total inference time on all test
triples. CG is the abbreviation of Count-GNN.

namely, edge-centric aggregation and query-conditioned
graph modulation, can improve structure matching between
input graphs and structurally diverse queries. In terms of effi-
ciency measured by the query time, we make three observa-
tions. First, Count-GNN achieves 65x∼324x speedups over
the classical VF2. While the other exact method Peregrine is
orders of magnitude faster than VF2, Count-GNN can still
achieve 8x∼26x speedups over Peregrine. Second, Count-
GNN is also more efficient than other GNN-based iso-
morphism counting models. On the one hand, Count-GNN
achieves 3.1x∼6.5x speedups over DMPNN-LRP, which is
generally the second best GNN-based method after Count-
GNN in terms of effectiveness. On the other hand, Count-
GNN also obtains consistent and notable speedups over the
fastest RGCN/RGIN variant (i.e., RGIN-Sum), while reduc-
ing the errors by 20% or more in most cases. Finally, al-
though many conventional GNNs can achieve a compara-
ble or faster query time, they have much worse errors than
Count-GNN, by at least 30% in most cases.

Furthermore, we compare the training time of GNN-based
approaches in Table 3. Our proposed Count-GNN generally
requires relatively low training time on SMALL and MU-
TAG, while having comparable training time to the baselines
on LARGE and OGB-PPA.

Testing with secondary setting. We also generate another
group of triples for comparison with the baseline LRP, in the

Methods SMALL LARGE MUTAG
MAE Q-error MAE Q-error MAE Q-error

Count-GNN\E 11.3 2.07 33.58 4.96 18.63 5.92
Count-GNN\M 8.66 1.46 29.65 3.34 4.41 1.82
Count-GNN 8.54 1.41 30.91 2.46 4.22 1.76

Table 5: Ablation study on Count-GNN.

so-called secondary setting due to the design requirement
of LRP. In particular, we only evaluate on three datasets
SMALL, LARGE and MUTAG, as LRP is out-of-memory
on OGB-PPA with large and dense graphs. For each dataset
we select three query graphs of different sizes (see Ap-
pendix C). On each dataset, we couple each query graph
with all the input graphs, thus forming 6790/3240/188 triples
for each query in SMALL/LARGE/MUTAG, respectively.
Besides, we split the triples of SMALL and LARGE in the
ratio of 1:1:2 for training, validation and testing, while using
the ratio of 1:1:1 for MUTAG.

The results are reported in Table 4. We observe that
Count-GNN consistently outperforms LRP in terms of effec-
tiveness, significantly reducing MAE by 43% and Q-error by
64% on average. This verifies again the power of the two key
modules in Count-GNN. For efficiency, neither Count-GNN
nor LRP emerges as the clear winner.

5.3 Model Analysis
To evaluate the impact of each module in Count-GNN,
we conduct an ablation study by comparing Count-
GNN with its two degenerate variants: (1) Count-GNN\E,
which replaces the edge-centric aggregation with the node-
centric GIN; (2) Count-GNN\M, which replaces the query-
conditioned modulation with a simple sum-pooling as the
readout for the input graph. As shown in Table 5, the
full model generally outperforms the two variants, fur-
ther demonstrating the benefit of edge-centric aggregation
and query-conditioned modulation. Furthermore, Count-
GNN\M is usually better than Count-GNN\E, which im-
plies that edge-centric aggregation may contribute more to
the performance boost, possibly due to its more central role
in capturing fine-grained structure information by treating
edges as the first-class citizen.

We present additional results on scalability, parameter
sensitivity and the impact of training size in Appendix F.

6 Conclusions
In this paper, we proposed a novel model called Count-
GNN to approximately solve subgraph isomorphic counting
on labeled graphs. In terms of modelling, we designed two
key modules for Count-GNN, namely, edge-centric mes-
sage passing and query-conditioned graph modulation, to
improve structure matching between the query and input
graphs. In terms of theory, we showed that edge-centric mes-
sage passing is more expressive than its node-centric coun-
terpart. In terms of empirical results, we conducted extensive
experiments on several benchmark datasets to demonstrate
the effectiveness and efficiency of Count-GNN.
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