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Abstract

Given a sequence of sets, where each set contains an arbi-
trary number of elements, temporal sets prediction aims to
predict which elements will appear in the subsequent set. Ex-
isting methods for temporal sets prediction are developed on
sophisticated components (e.g., recurrent neural networks, at-
tention or gating mechanisms, and graph neural networks),
which inevitably increase the model complexity due to more
trainable parameters and higher computational costs. More-
over, the involved nonlinear activation may contribute little
or even degrade the performance. In this paper, we present
a succinct architecture that is solely built on the Simplified
Fully Connected Networks (SFCNs) for temporal sets pre-
diction to bring both effectiveness and efficiency together.
In particular, given a user’s sequence of sets, we employ
SFCNs to derive representations of the user by learning inter-
set temporal dependencies, intra-set element relationships,
and intra-embedding channel correlations. Two families of
general functions are introduced to preserve the permutation-
invariant property of each set and the permutation-equivariant
property of elements in each set. Moreover, we design a user
representations adaptive fusing module to aggregate user rep-
resentations according to each element for improving the pre-
diction performance. Experiments on four benchmarks show
the superiority of our approach over the state-of-the-art under
both transductive and inductive settings. We also theoretically
and empirically demonstrate that our model has lower space
and time complexity than baselines. Codes and datasets are
available at https://github.com/yule-BUAA/SFCNTSP.

Introduction
Temporal sets can be defined as a sequence of sets, where
each set has a timestamp and includes an arbitrary number
of elements (Benson, Kumar, and Tomkins 2018). In prac-
tice, when customers purchase baskets of products (Rendle,
Freudenthaler, and Schmidt-Thieme 2010; Yu et al. 2016),
patients take medical prescriptions (Baytas et al. 2017; Jin
et al. 2018), students select courses (Lin et al. 2017) or trav-
elers choose attractions (Zhu et al. 2021) based on the his-
torical behaviors, they all deal with temporal sets. Making
accurate predictions of which elements will appear in the
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next-period set could help people make better decisions (Hu
and He 2019; Sun et al. 2020; Yu et al. 2020, 2022).

In recent years, a number of efforts have been made on
temporal sets prediction. A part of the approaches followed
a two-step strategy by first obtaining the representations
of sets via pooling operations or matrix factorization, and
then learning the temporal dependencies in user behaviors
based on Recurrent Neural Networks (RNNs) or the atten-
tion mechanism (Yu et al. 2016; Hu and He 2019; Shi et al.
2021). Another part of the methods additionally learned on
elements. Sun et al. (2020) presented a Transformer-based
dual sequential network to learn the element-level and set-
level representations for each user. Yu et al. (2020) first
constructed a sequence of element snapshots according to
their co-occurrence and then learned on the snapshots by
Graph Neural Networks (GNNs), the attention mechanism
and the gating mechanism. Yu et al. (2022) connected the
sequences of different users by a temporal graph and de-
vised an element-guided message aggregation mechanism
with the usage of temporal information.

Existing methods for temporal sets prediction are usu-
ally designed with complicated modules, such as RNNs,
the attention or gating mechanism, and GNNs. Although
these methods have achieved remarkable performance, they
inevitably introduce more trainable parameters and incur
higher computational costs. As shown in Table 1, the the-
oretical space and time complexity of the existing methods
are expensive in most cases. Moreover, in the temporal sets
prediction problem, each element is only associated with
an identifier (ID) without given semantic features. There-
fore, the nonlinear activation function involved in previous
models might become helpless or even harmful to the per-
formance, which has been observed in the fields of graph
learning (Wu et al. 2019) and recommender systems (He
et al. 2020). The above phenomena motivate us to consider
whether it is necessary to design sophisticated components
with the nonlinear activation for temporal sets prediction.

In this paper, we propose a succinct architecture that is
solely built on Simplified Fully Connected Networks for
Temporal Sets Prediction (SFCNTSP) to bring both effec-
tiveness and efficiency together1. Our approach first em-

1We name a single linear fully connected layer as the Simplified
Fully Connected Network (SFCN) in this paper.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4835



Methods Embeddings Temporal Dependencies Element Relationships Channel Correlations
Space Space Time Space Time Space Time

Sets2Sets O(nc) O(c2LT ) O(t̄c(n̄+ cLT ) — — — —
DSNTSP O(nc) O(c2LT ) O(t̄n̄c(c+ t̄n̄)LT ) O(c2LE) O(t̄n̄c2LE) — —
DNNTSP O(nc) O(c2LT ) O(t̄n̄c(c+ t̄n̄)LT ) O(c2LE) O(t̄n̄c(c+ t̄+ n̄)LE) — —
ETGNN O(mc+ nc) O(c2LT ) O(t̄n̄c2LT ) — O(nt̄n̄cLE) — —

SFCNTSP O(nc) O(t̄2) O(t̄c(n̄+ t̄)) — O(t̄n̄2c) O(c2) O(t̄n̄c2)

Table 1: Space complexity and time complexity of the existing models and our SFCNTSP in each process. LT and LE are the
numbers of layers in learning temporal dependencies and element relationships. t̄, n̄, and c denote the average sequence length,
the average number of elements in each set, and the number of embedding channels. m and n represent the number of users
and elements. Note that in ETGNN, LT is equal to LE .

ploys the SFCNs to learn on the sequence of sets of a
given user for deriving his/her representations and then com-
putes the appearing probabilities of all the elements in the
next-period set by adaptively fusing the representations. The
permutation-invariant property of each set and permutation-
equivariant property of each element within the set (Za-
heer et al. 2017; Lee et al. 2019) are also well preserved
by our method. To be specific, we first present a family of
permutation-invariant functions to obtain the vectorized rep-
resentation of each set and then utilize an SFCN to capture
the inter-set temporal dependencies in the sequence. Next,
we define a family of permutation-equivariant functions to
enable elements within the same set to interact with each
other for learning intra-set element relationships. Then, we
leverage another SFCN to exploit the implicit correlations of
different embedding channels. Finally, we adaptively aggre-
gate representations of the user according to each element
to improve the performance. Extensive experiments on real-
world datasets show that our approach could significantly
outperform existing methods under both transductive and in-
ductive settings with fewer trainable parameters and lower
computational costs. Overall, our key contributions include:
• We show that the temporal sets prediction problem can be

well addressed by a succinct architecture, which is solely
based on the SFCNs and could learn the inter-set tem-
poral dependencies, intra-set element relationships, and
intra-embedding channel correlations.

• We present two families of general functions to guaran-
tee the permutation-invariant property of each set and the
permutation-equivariant property of elements in each set.

• We design a user representations adaptive fusing module
to aggregate representations of the user with respect to
each element for facilitating the prediction task.

Preliminaries
Let U = {u1, · · · , um} and V = {v1, · · · , vn} be the
collections of m users and n elements, respectively. A set
S ⊂ V is a collection of elements. Let PS denote the collec-
tion of all the |S|! permutations of indices {1, 2, · · · , |S|}.

Permutation-invariance. For a set S, the representation
of S remains the same, regardless of the order of elements
in the set. Formally, for any permutation π ∈ PS, the func-
tion f(·) should satisfy f (S) = f (πS) , where f(·) aims to
embed S into a fixed-length vector.

Permutation-equivariance. For a set S, the representa-
tion of each element in S keeps the same, regardless of the
order of elements in the set. Formally, for any permutation
π ∈ PS , the function g(·) should satisfy g (πS) = πg (S) ,
where g(·) learns the representation for each element in S.

Temporal Sets Prediction. Given a sequence of sets
S =

{
S1, S2, · · · , St

}
that records the historical behaviors

of user u ∈ U, temporal sets prediction aims to design a
model to predict which elements will appear in the subse-
quent set Ŝt+1 according to the historical sequence S. The
model should preserve the permutation-invariant property of
each set and the permutation-equivariant property of each el-
ement in the set. Note that in this paper, we use the relative
time index for numbering user records.

Methodology
The framework of the proposed model is shown in Figure 1,
which is composed of four components: inter-set temporal
dependencies learning, intra-set element relationships learn-
ing, intra-embedding channel correlations learning, and user
representations adaptive fusing. In particular, given a user’s
sequence of sets, we first obtain the representations of ele-
ments in the sets via the element embedding layer. Then, we
present a family of permutation-invariant functions to derive
the representation of each set and employ an SFCN to cap-
ture the temporal dependencies across different sets. Next,
we introduce a family of permutation-equivariant functions
to learn the relationships of elements within each set by al-
lowing elements to interact with each other. Then, we utilize
another SFCN to exploit the implicit correlations of multiple
embedding channels. Finally, based on the user representa-
tions learned from the above modules, we adaptively aggre-
gate representations of the user according to each element
and compute its appearing probability in the next-period set.

SFCN As the Backbone
We first illustrate why we use SFCN rather than the
Fully Connected Network (FCN) or Multi-Layer Percep-
tron (MLP) as the backbone. Firstly, both FCN and MLP
are multi-layered with a series of fully connected layers.
Compared with FCN, MLP additionally involves the non-
linear activation function between every two adjacent lay-
ers, which might be unnecessary for predicting temporal sets
(explained in the Introduction). Therefore, MLP is not cho-
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Figure 1: Framework of the proposed model.

sen. Secondly, for an input X , the computation of an L-
layered FCN can be denoted by H = XW (1) · · ·W (L)

with W (l) as trainable weights, 1 ≤ l ≤ L. As linearly mul-
tiplying multiple trainable weights is theoretically equal to
multiplying a single trainable weight, we abandon the multi-
layered FCN and build our framework by the single-layered
linear SFCN with trainable weight W = W (1) · · ·W (L).
Our assumptions will be validated in the experiments.

Inter-set Temporal Dependencies Learning
Let E ∈ Rn×c denote the embedding lookup table of all
the n elements with c as the number of embedding channels.
Given the sequence of sets S =

{
S1, S2, · · · , St

}
of user

u ∈ U, we retrieve the embeddings of elements in each set
from E and obtain the input sequence

{
X1,X2, · · · ,Xt

}
with Xt′ ∈ Rnt′×c, where 1 ≤ t′ ≤ t and nt′ denotes the
number of elements in set St′ .

As each set contains an arbitrary number of elements,
we need to first embed each set into a fixed-length vec-
tor and then learn on the sequence of vectorized represen-
tations. The set representation should keep identical to any
order of elements in the set. To this end, we design a family
of permutation-invariant functions to compute on each set,
which should satisfy the following format,

f
(
X̃

)
= 1⊤

ñ

(
F ⊙ X̃

)
∈ Rc, (1)

where X̃ ∈ Rñ×c is the input. 1ñ ∈ Rñ is a ñ-dimensional
all-ones vector. F ∈ Rñ×c reflects the contributions of el-
ements in X̃ , which should not be affected by the order of
elements. We give several instances of F : for ∀1 ≤ i ≤

ñ, 1 ≤ j ≤ ñ, 1) Fi,j = 1/ñ (average pooling); 2) Fi,j = 1

(sum pooling); 3) Fi,j = 1 if i equals to argmax(X̃∗,j),
0 otherwise (max pooling); 4) Fi,j = 1 if i equals to
argmin(X̃∗,j), 0 otherwise (min pooling). We can also in-
corporate a trainable weight q ∈ Rc to derive F by X̃q1⊤

c ,
which represents the attention-based pooling. Based on f(·),
we obtain the representations of sets

{
x1,x2, · · · ,xt

}
by

xt′ = f
(
Xt′

)
∈ Rc, 1 ≤ t′ ≤ t. (2)

In this paper, we simply use the average pooling to imple-
ment f(·) (i.e., for ∀1 ≤ i ≤ ñ, 1 ≤ j ≤ ñ, Fi,j = 1/ñ) and
leave the explorations of other instances for future work.

Then, we employ an SFCN to learn the temporal depen-
dencies of sets in the sequence since SFCN is naturally sen-
sitive to the input order and suitable for dealing with sequen-
tial data. To be specific, we pack

{
x1,x2, · · · ,xt

}
up and

denote it as X ∈ Rt×c. The SFCN calculates on X by

X = WTX ∈ Rt×c, (3)
where WT ∈ Rt×t is the trainable weight for learning the
importance of each time2. Then, we unpack X to the se-
quence

{
x
1
,x

2
, · · · ,xt

}
and adopt the residual connection

(He et al. 2016) to incorporate the inputs as follows,

St′ = Xt′ + 1nt′x
t′⊤ ∈ Rnt′×c. (4)

Finally, we obtain the output sequence
{
S1,S2, · · · ,St

}
that captures the temporal dependencies of different sets.

Intra-set Element Relationships Learning
Intuitively, elements within the same set are associated with
each other and it is essential to learn the intra-set element
relationships (Yu et al. 2020). However, it is infeasible to di-
rectly employ an SFCN to capture the element relationships
because of its sensitivity to the order of elements. Therefore,
we present a family of permutation-equivariant functions to
compute order-agnostic element representations and make
intra-set elements interact with each other, which should
have the following format,

g
(
X̃

)
= GX̃ ∈ Rñ×c, (5)

where X̃ ∈ Rñ×c is the input. G ∈ Rñ×ñ captures the re-
lationships of elements in X̃ , which should be derived by
an order-agnostic manner. We introduce the following in-
stances of G.

G = α · diag(1⊤
ñ ) + β · (1ñ1

⊤
ñ ), (6)

where diag(·) returns the diagonal matrix of the input vec-
tor. α, β ∈ R can be predefined hyperparameters or trainable
weights. G could be further dependent on the inputs as:

Gi,j = s(X̃i,∗, X̃j,∗), (7)
2Since different users usually have varied sequence lengths and

SFCN can only deal with inputs with a fixed length, when imple-
menting this part, we first count the maximal user sequence length
tmax and then set the shape of WT to be tmax × tmax as well as
padding the length of the input sequence to be tmax.
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where s(x,y) computes the order-agnostic similarities be-
tween inputs x and y, such as the dot product s(x,y) =

xy⊤ or the cosine similarity s(x,y) = xy⊤

∥x∥2·∥y∥2
. Given

the aforementioned sequence
{
S1,S2, · · · ,St

}
, we get the

output sequence
{
Z1,Z2, · · · ,Zt

}
based on g(·) by

Zt′ = g(St′) ∈ Rnt′×c. (8)

In this paper, we choose the predefined hyperparameters α
and β to learn element relationships and leave the investiga-
tions of other instances for future work.

Intra-embedding Channel Correlations Learning
We further employ another SFCN to exploit the implicit
correlations of multiple channels for the element embed-
ding. Specifically, given the sequence

{
Z1,Z2, · · · ,Zt

}
,

the SFCN computes on Zt′ for 1 ≤ t′ ≤ t as

C
t′

= Zt′WC ∈ Rnt′×c, (9)

where WC ∈ Rc×c is the trainable weight for learning the
correlations of different channels. We also utilize the resid-
ual connection to consider the inputs by

Ct′ = Zt′ +C
t′ ∈ Rnt′×c. (10)

The output sequence is denoted as
{
C1,C2, · · · ,Ct

}
.

User Representations Adaptive Fusing
Let V = unique(S) ⊂ V denote the collection of ele-
ments that have appeared in user u’s sequence S . We aim
to obtain the representation of element ṽ ∈ V based on{
C1,C2, · · · ,Ct

}
. Concretely, we first retrieve ṽ’s corre-

sponding representation in Ct′ if ṽ appears in the set St′

with 1 ≤ t′ ≤ t, and then average the retrieved representa-
tions to get ṽ’s final representation hṽ ∈ Rc by

hṽ = average({retrieve(Ct′ , ṽ), ∀1 ≤ t′ ≤ t}), (11)

where retrieve(Ct′ , ṽ) returns the corresponding represen-
tation of ṽ if it is contained in the set St′ . Finally, we could
obtain the representations of all the elements in V and pack
them up as the user representations H ∈ R|V|×c. To com-
pute the appearing probability of each element v ∈ V in
the next-period set, we first adaptively aggregate user rep-
resentations H based on element v and then compute the
similarity of the fused representation with v’s embedding ev
(retrieved from the element embedding lookup table E) by

Ŷu,v = sigmoid(softmax(σ(Hev))
⊤HWPev), (12)

where Ŷu,v ∈ R is the predicted probability that element
v will appear in user u’s next-period set. σ(·) denotes the
LeakyReLU function. WP ∈ Rc×c is the trainable pro-
jection weight. The adaptive fusing module aggregates user
representations for each element, which is more expressive
than trivially averaging or adding up the representations.

Model Training Process
We train our model in a mini-batch manner by the padding
technique. To be specific, we use tmax to denote the max-
imal user sequence length. Given a batched data B =
{Si, ∀1 ≤ i ≤ |B|}, we use nB to represent the maximal
number of elements in the set in B. Then, we pad for
shorter sequences and smaller sets to align their dimen-
sions. Finally, we can obtain a four-dimensional tensor B ∈
R|B|×tmax×nB×c as the model input for mini-batch training.

We represent each element as a label and treat tempo-
ral sets prediction as a multi-label classification problem.
The ground truth of user u’s next-period set is denoted by
Yu,∗ ∈ {0, 1}n, where the entry of 1 indicates the cor-
responding element appears in the user’s next-period set.
We further convert the multi-label classification problem
into multiple binary classification problems and optimize the
model by minimizing the cross-entropy loss,

L = −
∑
u∈U

∑
v∈V

Yu,v log(Ŷu,v) + (1− Yu,v) log(1− Ŷu,v),

Model Complexity Analysis
Table 1 shows the space complexity and time complexity of
the existing methods and our SFCNTSP in each process.

Space Complexity. The overall space complexity of SFC-
NTSP is O(nc+t̄2+c2), which is irrelevant to the number of
layers due to the single-layered SFCN backbone. In addition
to the embeddings of elements E with O(nc) space com-
plexity, which are indispensable for all the methods, SFC-
NTSP just additionally introduces WT ,WC and WP with
O(t̄2 + c2) space complexity. Therefore, SFCNTSP theo-
retically has a much lower space complexity than previous
methods and can empirically outperform the state-of-the-art
with fewer parameters in the experiments.

Time Complexity. The overall time complexity of SFC-
NTSP is O(t̄c(t̄+ n̄2+ n̄c)+nc(t̄n̄+ c)), which is also not
affected by the number of layers. The first term denotes the
time complexity in learning intra-set temporal dependencies,
inter-set element relationships, and intra-embedding chan-
nel correlations, which are the main components in our ap-
proach based on the efficient SFCNs. The second term is the
time complexity in the adaptive fusing of user representa-
tions for each element, which effectively enhances the model
expressive ability. Overall, our model has lower computation
costs than baselines, which will be validated in experiments.

Experiments
In this section, we conduct experiments on four benchmarks
to evaluate the effectiveness and efficiency of our approach.

Descriptions of Benchmarks
Following Yu et al. (2022), we use four benchmarks in the
experiments, including JingDong, DC, TaoBao and TMS.

• JingDong3 records the actions of users about purchasing,
browsing, following, commenting, and adding products
to shopping carts. The purchasing actions in March 2018

3https://jdata.jd.com/html/detail.html?id=8
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Datasets #sets #users #elements #E/S #S/U
JingDong 15,195 3,063 3,551 1.26 4.96

DC 42,905 9,010 217 1.52 4.76
TaoBao 225,989 49,393 689 1.45 4.58

TMS 243,116 15,726 1,563 2.19 15.46

Table 2: Statistics of the datasets.

are chosen and products bought on the same day by each
user are treated as a set.

• Dunnhumby-Carbo (DC)4 includes the transactions of
households at a retailer in two years. Transactions in the
first 60 days are selected and products purchased on the
same day by each household are treated as a set.

• TaoBao5 contains the online user behaviors about pur-
chasing, clicking, marking products as favors, and adding
products to shopping carts. The purchasing behaviors are
chosen and the categories of products bought on the same
day by each user are treated as a set.

• Tags-Math-Sx (TMS)6 contains the history of users’
questions in Mathematics Stack Exchange and we use the
preprocessed version in Yu et al. (2022) in experiments.

We strictly follow Yu et al. (2022) to preprocess the datasets.
Concretely, we select frequent elements that cover 80%
records on JingDong, DC, and TaoBao, and use all the el-
ements on TMS. We drop the sequences with lengths less
than 4 and crop the sequences with lengths more than 20.
Table 2 shows the statistics of the datasets, where #E/S de-
notes the average number of elements in each set, and #S/U
is the average number of sets of each user.

We evaluate the methods under both transductive and in-
ductive settings. For the transductive setting, we follow Yu
et al. (2022) to use the last set, the second last set, and the
remaining sets of each user for testing, validation, and train-
ing. For the inductive setting, we follow Yu et al. (2020) to
randomly split each dataset across users with the ratio of
70%, 10%, and 20% for training, validation, and testing.

Compared Baselines
The following baselines are compared with our approach:

• TOP recommends the most frequent elements in the se-
quences of all the users as the predictions for any user.

• PerTOP predicts the most frequent elements in the per-
sonalized sequence for each user.

• FPMC combines the matrix factorization and Markov
chain for next-period basket prediction (Rendle,
Freudenthaler, and Schmidt-Thieme 2010).

• DREAM first uses pooling operations to represent bas-
kets as vectors, and then feeds the sequence of basket
representations into an RNN to predict the next-period
basket (Yu et al. 2016).

4https://www.dunnhumby.com/careers/engineering/sourcefiles
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
6https://math.stackexchange.com

Settings JingDong DC TaoBao TMS
Learning rate 0.001 0.001 0.001 0.001
Dropout rate 0.2 0.1 0.05 0.1

Embedding channels c 64 64 32 64
Hyperparameter α 1.0 1.0 1.0 1.0
Hyperparameter β 0.1 0.1 0.1 0.1

Table 3: Configurations of our approach on all the datasets.

• DIN learns user representations that are specific to each
ad by the attention mechanism for click-through rate pre-
diction (Zhou et al. 2018).

• LightGCN linearly propagates information on the user-
item interaction graph by simplified graph convolutions
to learn high-order connectivity (He et al. 2020).

• MLP4Rec uses MLP-Mixer (Tolstikhin et al. 2021)
as the backbone and proposes a tri-directional fusion
scheme for sequential recommendation (Li et al. 2022).
We incorporate the proposed permutation-invariant func-
tions into MLP4Rec to adapt it to the temporal sets pre-
diction task. The cross-feature fusion is omitted since
there is only one type of feature in our problem.

• Sets2Sets first computes the representations of sets by
the average pooling and then learns temporal dependen-
cies by the encoder-decoder framework for predicting
multi-period sets. The repeated patterns in user behaviors
are also considered (Hu and He 2019).

• DSNTSP is a dual sequential network, which is built
on Transformer and learns both element-level and set-
level representations for each user’s sequence. A co-
transformer module is presented to exploit the temporal
dependencies among elements and sets (Sun et al. 2020).

• DNNTSP constructs a sequence of element snapshots
based on their co-occurrence and then learns on the snap-
shots with graph convolutions, the attention mechanism,
and the gating mechanism. It can also incorporate re-
peated user behaviors for improving the prediction per-
formance (Yu et al. 2020).

• ETGNN first connects the sequences of different users
through a temporal graph and then learns on the graph
with the element-guided message aggregation mecha-
nism and the temporal information utilization component
(Yu et al. 2022).

Experimental Settings
Following Yu et al. (2020, 2022), we rank top-K elements
based on the predicted probabilities and set K to 10, 20, 30,
and 40 for evaluation. Recall, Normalized Discounted Cu-
mulative Gain (NDCG) and Personal Hit Ratio (PHR) are
adopted as the evaluation metrics. We use Adam (Kingma
and Ba 2015) as the optimizer with the cosine anneal-
ing learning rate scheduler (Loshchilov and Hutter 2017).
Dropout (Srivastava et al. 2014) is adopted to prevent mod-
els from over-fitting. We train the models for 2000 epochs
and use the early stopping strategy with patience of 100.
We select the model that achieves the best performance on
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Datasets Methods K=10 K=20 K=30 K=40
Recall NDCG PHR Recall NDCG PHR Recall NDCG PHR Recall NDCG PHR

JingDong

TOP 0.1531 0.0988 0.1574 0.1826 0.1076 0.1926 0.2115 0.1143 0.2207 0.2395 0.1198 0.2484
PerTOP 0.2709 0.2264 0.2905 0.2742 0.2276 0.2935 0.2757 0.2279 0.2954 0.2762 0.2280 0.2964
FPMC 0.2704 0.2109 0.2880 0.2973 0.2182 0.3134 0.3082 0.2207 0.3245 0.3178 0.2226 0.3346

DREAM 0.2888 0.2198 0.3033 0.3373 0.2329 0.3513 0.3637 0.2388 0.3787 0.3757 0.2413 0.3918
DIN 0.3024 0.2503 0.3213 0.3176 0.2545 0.3379 0.3262 0.2565 0.3461 0.3328 0.2580 0.3519

LightGCN 0.3089 0.2315 0.3265 0.3405 0.2404 0.3595 0.3613 0.2451 0.3810 0.3738 0.2477 0.3934
MLP4Rec 0.3035 0.2271 0.3173 0.3373 0.2365 0.3523 0.3564 0.2408 0.3715 0.3731 0.2441 0.3875
Sets2Sets 0.3209 0.2497 0.3418 0.3474 0.2571 0.3696 0.3623 0.2604 0.3843 0.3735 0.2627 0.3960
DSNTSP 0.3464 0.2734 0.3670 0.3750 0.2820 0.3947 0.3883 0.2852 0.4078 0.3963 0.2869 0.4150
DNNTSP 0.3224 0.2458 0.3470 0.3568 0.2551 0.3813 0.3747 0.2594 0.3986 0.3843 0.2613 0.4074
ETGNN 0.3658 0.2724 0.3885 0.4217 0.2878 0.4460 0.4558 0.2956 0.4780 0.4752 0.2997 0.4959

SFCNTSP 0.3877† 0.2775† 0.4070† 0.4459† 0.2933† 0.4652† 0.4821† 0.3017† 0.5003† 0.5018† 0.3057† 0.5191†
Improvement 5.99% 1.50% 4.76% 5.74% 1.91% 4.30% 5.77% 2.06% 4.67% 5.60% 2.00% 4.68%

DC

TOP 0.1606 0.0839 0.2326 0.2521 0.1093 0.3430 0.3279 0.1269 0.4251 0.3872 0.1397 0.4906
PerTOP 0.4080 0.3161 0.5039 0.4383 0.3246 0.5389 0.4636 0.3306 0.5663 0.4982 0.3381 0.5980
FPMC 0.2462 0.1991 0.3274 0.3175 0.2191 0.4128 0.3771 0.2332 0.4805 0.4323 0.2451 0.5386

DREAM 0.3159 0.2266 0.4091 0.4102 0.2532 0.5089 0.4813 0.2701 0.5821 0.5427 0.2833 0.6428
DIN 0.3747 0.2761 0.4752 0.4617 0.3004 0.5673 0.5166 0.3135 0.6222 0.5687 0.3247 0.6717

LightGCN 0.3412 0.2536 0.4401 0.4358 0.2802 0.5441 0.5066 0.2969 0.6142 0.5590 0.3083 0.6642
MLP4Rec 0.3730 0.2746 0.4709 0.4769 0.3037 0.5796 0.5479 0.3000 0.6486 0.6061 0.3331 0.7008
Sets2Sets 0.4417 0.3169 0.5383 0.5031 0.3342 0.6004 0.5533 0.3459 0.6514 0.5936 0.3546 0.6913
DSNTSP 0.4399 0.3201 0.5386 0.5112 0.3303 0.6105 0.5615 0.3522 0.6608 0.6031 0.3612 0.7004
DNNTSP 0.4461 0.3176 0.5442 0.5168 0.3374 0.6170 0.5634 0.3483 0.6626 0.6067 0.3575 0.7033
ETGNN 0.4593 0.3321 0.5582 0.5477 0.3567 0.6454 0.6070 0.3708 0.7009 0.6580 0.3818 0.7468

SFCNTSP 0.4734† 0.3390† 0.5709† 0.5653† 0.3648† 0.6601† 0.6264† 0.3794† 0.7173† 0.6755† 0.3899† 0.7613†
Improvement 3.07% 2.08% 2.28% 3.21% 2.27% 2.28% 3.20% 2.32% 2.34% 2.66% 2.12% 1.94%

TaoBao

TOP 0.1572 0.0835 0.1987 0.2457 0.1074 0.2964 0.3091 0.1220 0.3637 0.3609 0.1328 0.4208
PerTOP 0.1794 0.1240 0.2187 0.1909 0.1272 0.2328 0.1984 0.1289 0.2424 0.2061 0.1305 0.2517
FPMC 0.1675 0.0959 0.2088 0.2548 0.1196 0.3082 0.3189 0.1343 0.3778 0.3659 0.1440 0.4273

DREAM 0.1665 0.0932 0.2069 0.2566 0.1177 0.3079 0.3185 0.1319 0.3752 0.3663 0.1419 0.4262
DIN 0.2188 0.1317 0.2671 0.3056 0.1553 0.3623 0.3646 0.1690 0.4255 0.4088 0.1782 0.4716

LightGCN 0.1636 0.0951 0.2051 0.2606 0.1214 0.3155 0.3328 0.1380 0.3927 0.3860 0.1491 0.4489
MLP4Rec 0.2117 0.1243 0.2592 0.3077 0.1504 0.3650 0.3737 0.1656 0.4347 0.4258 0.1764 0.4884
Sets2Sets 0.2413 0.1488 0.2911 0.3228 0.1710 0.3821 0.3838 0.1850 0.4465 0.4315 0.1950 0.4954
DSNTSP 0.2363 0.1431 0.2867 0.3296 0.1685 0.3885 0.3932 0.1832 0.4557 0.4414 0.1932 0.5050
DNNTSP 0.2511 0.1535 0.3028 0.3369 0.1769 0.3972 0.3925 0.1898 0.4535 0.4384 0.1994 0.5024
ETGNN 0.2589 0.1542 0.3103 0.3525 0.1798 0.4134 0.4124 0.1937 0.4760 0.4596 0.2036 0.5239

SFCNTSP 0.2586 0.1551† 0.3108 0.3578† 0.1822† 0.4188† 0.4229† 0.1972† 0.4872† 0.4717† 0.2074† 0.5367†
Improvement -0.12% 0.58% 0.16% 1.50% 1.33% 1.31% 2.55% 1.81% 2.35% 2.63% 1.87% 2.44%

TMS

TOP 0.2620 0.1658 0.4604 0.3988 0.2076 0.6336 0.4919 0.2319 0.7313 0.5669 0.2502 0.8074
PerTOP 0.4599 0.3554 0.6535 0.5426 0.3825 0.7315 0.5602 0.3877 0.7458 0.5632 0.3885 0.7480
FPMC 0.3889 0.3212 0.5817 0.4861 0.3520 0.6910 0.5488 0.3688 0.7548 0.5966 0.3806 0.7984

DREAM 0.4433 0.3588 0.6391 0.5448 0.3912 0.7393 0.6121 0.4092 0.7991 0.6561 0.4200 0.8338
DIN 0.4429 0.3339 0.6578 0.5495 0.3675 0.7679 0.6149 0.3849 0.8272 0.6581 0.3954 0.8601

LightGCN 0.4697 0.3591 0.6972 0.5618 0.3890 0.7767 0.6109 0.4022 0.8157 0.6475 0.4112 0.8442
MLP4Rec 0.4652 0.3791 0.6841 0.5704 0.4119 0.7790 0.6461 0.4292 0.8321 0.6942 0.4412 0.8710
Sets2Sets 0.4835 0.3838 0.6924 0.5789 0.4141 0.7834 0.6327 0.4286 0.8284 0.6701 0.4377 0.8586
DSNTSP 0.4692 0.3609 0.6791 0.5771 0.3951 0.7825 0.6412 0.4122 0.8392 0.6853 0.4230 0.8716
DNNTSP 0.4861 0.3660 0.6884 0.5905 0.3994 0.7910 0.6504 0.4153 0.8455 0.6930 0.4257 0.8790
ETGNN 0.5059 0.3914 0.7138 0.6168 0.4267 0.8104 0.6818 0.4442 0.8609 0.7271 0.4553 0.8941

SFCNTSP 0.5193† 0.4010† 0.7185† 0.6307† 0.4366† 0.8180† 0.6969† 0.4543† 0.8701† 0.7415† 0.4652† 0.9009†
Improvement 2.65% 2.45% 0.66% 2.25% 2.32% 0.94% 2.21% 2.27% 1.07% 1.98% 2.17% 0.76%

Table 4: Performance of different methods on all the datasets under the transductive setting. The best and second-best perfor-
mance are boldfaced and underlined. We also show the improvements of our method over the best baseline and use † to denote
the improvements are statistically significant via a paired t-test with p <0.05.
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Figure 2: Performance of the baselines and our SFCNTSP over ten runs on JingDong.

the validation set for testing. We set the learning rate and
batch size to 0.001 and 64 on all the datasets. We search
the dropout rate and the number of embedding channels c
in [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3] and [32, 64, 128].
For hyperparameters α and β, we set α to 1.0 to represent
the residual connection and search β in [0.0, 0.01, 0.1, 0.3,
0.5]. The configurations of our model under the transductive
setting are shown in Table 3. Under the inductive setting,
the configurations are identical except for the dropout rate
on JingDong, which is set to 0.25. We run the methods ten
times with seeds from 0 to 9 and report the average perfor-
mance to eliminate deviations. We conduct the experiments
on an Ubuntu machine equipped with one Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz with 16 CPU cores. The GPU
device is NVIDIA GeForce RTX 3090 with 24 GB memory.
Our model is implemented by PyTorch (Paszke et al. 2019).

Performance Under Transductive Setting
The comparisons of all the methods under the transductive
setting are shown in Table 4, where the results of baselines
are strictly inherited from Yu et al. (2022) with one recent
baseline MLP4Rec additionally.

From Table 4, we have the following conclusions: 1)
Learning from user’s personalized sequence is essential.
Compared with TOP which indiscriminately predicts the
most frequent elements for all the users, PerTOP usually ob-
tains better results as it recommends personalized elements
for each user based on the user’s own sequence. 2) It is nec-
essary to leverage the entire historical behaviors. DREAM
often performs better than FPMC because DREAM lever-
ages RNNs to learn temporal dependencies in the whole se-
quence of each user while FPMC only captures the adjacent
behaviors by the Markov chain. 3) Some insights for rec-
ommender systems can also contribute to the prediction of
temporal sets. DIN, LightGCN, and MLP4Rec achieve bet-
ter performance than the above methods, indicating the ad-
vantages of learning element-specific representations (DIN),
exploring collaborative signals in high-order connectivity
(LightGCN), and mining the sequential and cross-channel
relationships (MLP4Rec). However, there is still space for
improvement as they fail to capture the properties of tempo-
ral sets. 4) Designing customized methods for temporal sets

prediction is important. Sets2Sets, DSNTSP, DNNTSP, and
ETGNN are often superior to other baselines. Sets2Sets ad-
ditionally models repeated user behaviors. DSNTSP learns
both element-level and set-level representations for each
user. DNNTSP captures the co-occurrence relationships of
elements in each set by GNNs. ETGNN learns element-
specific representations which are aware of the temporal in-
formation for each user and can explore the collaborative
signals in high-order user-element interactions, which is the
current state-of-the-art. 5) SFCNTSP significantly outper-
forms the existing methods in most cases even if its archi-
tecture is quite simple. The superiority of our approach lies
in the learning of inter-set temporal dependencies, intra-set
element relationships, and intra-embedding channel correla-
tions. Moreover, the adaptive fusing of user representations
further improves the prediction performance.

We further show how we conclude that the improve-
ments of our method are significant over the best base-
line. We take the JingDong dataset as an example. Fig-
ure 2 shows the performance of the baselines for tempo-
ral sets prediction and our approach over ten runs. We ob-
serve that SCFNTSP outperforms the baselines with higher
median and lower variances. We conduct the paired t-
test to compute the statistical significance between the
performance of the best baseline and SCFNTSP, where
the significance level p is set to 0.05. Specifically, the
values of p on Recall/NDCG/PHR of K from 10 to
40 are 4.13e−6/5.39e−6/2.08e−5, 1.31e−6/0.0004/1.95e−5,
6.72e−7/0.0001/1.76e−6 and 1.80e−9/7.47e−5/4.06e−9.
The results show that our method achieves statistically sig-
nificant improvements over the best baseline with p <0.05.

Performance Under Inductive Setting
We also compare the inductive ability of our method with
baselines to evaluate the model performance in predicting
new users that are not observed in the training set. We show
the performance of different methods on all the datasets un-
der the inductive setting in Figure 3. The results of TOP,
FPMC, LightGCN, and ETGNN are not presented because
TOP achieves inferior performance, and FPMC, LightGCN,
and ETGNN are inherently not inductive as they are de-
signed with user-specific trainable parameters.
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Figure 3: Performance of different methods on all the
datasets under the inductive setting.

From Figure 3, we observe that our approach often con-
sistently achieves better performance than baselines under
the inductive setting. This may indicate that the lightweight
architecture of SFCNTSP can prevent it from overfitting and
endow it with a strong generalization ability for new users.
So far, we have shown that temporal sets prediction can be
well tackled by a succinct framework without sophisticated
components and nonlinear activations.

Ablation Study
We further validate the effectiveness of the Temporal De-
pendencies Learning (TDL), Element Relationships Learn-
ing (ERL), Channel Correlations Learning (CCL), and User
Representations Adaptive Fusing (URAF) components. We
respectively remove TDL, ERL, and CCL and we denote
the remaining parts as w/o TDL, w/o ERL, and w/o CCL.
We replace the adaptive fusing mechanism in URAF by av-
eraging the user representations to obtain a single element-
agnostic vectorized representation and denote the variant as
w/o URAF. We report the performance of different variants
on all the datasets in Figure 4.

From Figure 4, we observe that SFCNTSP achieves the
best performance when it uses all the components, and re-
moving any component would lead to worse results. In par-
ticular, TDL distinguishes the importance of different sets
in the sequence. ERL captures the co-occurrence relation-
ships of elements within the same set. CCL exploits the im-
plicit correlations of multiple embedding channels. URAF
enhances the model expressive ability by fusing user repre-

Figure 4: Effects of different components on all the datasets.

sentations according to every element. Hence, the contribu-
tions of each module are demonstrated.

Model Efficiency Comparison
We show the efficiency of our approach by comparing the
parameter size and running time with baselines for temporal
sets prediction. We report the inference time to eliminate the
effects of different training strategies of the methods. We
show the comparisons of baselines and our SFCNTSP on all
the datasets in Figure 5.

Concretely, the parameter size and inference time
of SFCNTSP are 0.90MB/0.09MB/0.09MB/0.41MB and
3.45s/8.27s/46.88s/35.54s on JingDong/DC/TaoBao/TMS.

Figure 5: Comparisons of the relative parameter size and in-
ference time of different methods on all the datasets.
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Datasets SFCN FCN-1 FCN-2 MLP-1 MLP-2

JingDong 0.5018 0.4974 0.4941 0.4968 0.4657
—– -0.88% -1.53% -1.00% -7.19%

DC 0.6755 0.6760 0.6744 0.6696 0.6660
—– 0.07% -0.16% -0.87% -1.41%

TaoBao 0.4717 0.4715 0.4712 0.4682 0.4654
—– -0.04% -0.11% -0.74% -1.34%

TMS 0.7415 0.7412 0.7422 0.7371 0.7369
—– -0.04% 0.09% -0.59% -0.89%

Table 5: Recall of SFCN, FCN and MLP on all the datasets.

Compared with the baselines, SFCNTSP achieves 33.65×,
58.47×, 79.17×, and 25.77× reductions in space and 1.66×,
1.13×, 1.28×, and 1.22× accelerations in time on aver-
age. The significant decreases in space demonstrate the
lightweight property of SFCNTSP. For time complexity,
though SFCNTSP spends more time on the adaptive fusing
of user representations, its overall time complexity is still
lower than baselines because of the SCFN backbone.

Comparisons of SFCN with FCN and MLP
We also replace the SFCN with FCN and MLP and com-
pare their performance to validate our assumptions in using
SFCN as the backbone. In particular, ReLU is selected as
the nonlinear activation function for MLP. We implement
the FCN/MLP with one and two hidden layers and denote
them as FCN-1/MLP-1 and FCN-2/MLP-2. We report Re-
call on all the datasets in Table 5, where K is set to 40.

From Table 5, we find that: 1) Compared with FCN,
the nonlinear activation function in MLP often leads to
worse performance, which validates our first assumption; 2)
In FCN, multiple trainable weights are linearly multiplied,
which is theoretically identical to multiplying a single train-
able weight in SFCN. Therefore, FCN-1 and FCN-2 usu-
ally achieve similar performance with SFCN, which is in
line with our second assumption; 3) In some cases, stack-
ing more layers may result in overfitting (e.g., FCN-1 and
FCN-2 perform worse than SFCN on JingDong, and MLP-2
is inferior to MLP-1 on all the datasets).

Related Work
Temporal Sets Prediction
Temporal sets are defined as a sequence of sets with times-
tamps, where each set contains an arbitrary number of el-
ements (Benson, Kumar, and Tomkins 2018). The task of
temporal sets prediction aims to predict the appearing prob-
abilities of elements in the next-period set. Recently, many
methods have be proposed for predicting temporal sets,
which can be divided into two types. Methods in the first
type followed a two-step strategy with set embedding and
sequence learning. For instance, Yu et al. (2016) first ob-
tained the vectorized representation of each basket by pool-
ing operations and then employed RNNs to learn the dy-
namics in each customer’s sequence. Hu and He (2019) and
Shi et al. (2021) utilized the average pooling or matrix fac-
torization to compute set representation and captured the

temporal dependencies by RNNs and the attention mecha-
nism. Repeated elements in each user’s sequence are also
modeled. Methods in the second type additionally learned
on elements. Sun et al. (2020) jointly derived element-level
and set-level representations for each user by a dual sequen-
tial network based on Transformer (Vaswani et al. 2017). Yu
et al. (2020) combined GNNs, attention and gating mecha-
nisms to learn on the sequence of element snapshots, where
each snapshot is constructed by the co-occurrence relation-
ships of elements. Yu et al. (2022) constructed a temporal
graph to connect the sequences of different users and then
learned element-specific user representations with temporal
information for capturing the collaborative signals.

Although insightful, most of the above methods are built
on sophisticated components with more trainable parame-
ters and higher computational costs. In this paper, we de-
sign a succinct architecture that is solely based on SFCNs
for temporal sets prediction.

Simple Architectures in Various Fields
Recently, there is a trend of replacing complicated designs
with simple architectures in many fields. For example, in
graph learning, Wu et al. (2019) proposed a simplified ver-
sion of graph convolution networks (Kipf and Welling 2017)
by removing the nonlinear activation functions and collaps-
ing the weights between consecutive layers. Rossi et al.
(2020) devised a scalable and efficient framework with lin-
ear diffusion operators to learn on graphs. In computer vi-
sion, Tolstikhin et al. (2021) and Touvron et al. (2021) in-
troduced the MLP-based frameworks for image classifica-
tion. In recommender systems, He et al. (2020) designed
LightGCN to linearly propagate information on the user-
item interaction graph by simplified graph convolutions. For
sequential recommendations, Zhou et al. (2022) presented
FMLP-Rec to replace the multi-head self-attention in Trans-
former with filter-enhanced MLPs. Inspired by Tolstikhin
et al. (2021), Zhou et al. (2022) proposed MLP4Rec with
a tri-directional fusion scheme, which is built up by MLPs.

Although the above methods have demonstrated the
power of simple architectures in various applications, they
are not specialized for temporal sets prediction. In this pa-
per, we aim to specifically design a succinct architecture for
predicting temporal sets.

Conclusion
In this paper, we investigated the possibility of designing a
succinct architecture for temporal sets prediction. Our ap-
proach was solely built on the simplified fully connected
networks and could learn inter-set temporal dependencies,
intra-set element relationships, and intra-embedding channel
correlations with the guarantee of permutation-invariant and
permutation-equivariant properties. Experimental results on
real-world datasets showed that our approach consistently
outperformed the existing baselines under both inductive
and transductive settings with fewer trainable parameters
and less computational costs. To the best of our knowledge,
we are the first to show that a succinct architecture can be
competent for temporal sets prediction, which opens up a
promising direction for solving this problem.
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