
A Noise-tolerant Differentiable Learning Approach for Single Occurrence Regular
Expression with Interleaving

Rongzhen Ye1, Tianqu Zhuang1, Hai Wan1*, Jianfeng Du2*, Weilin Luo1, Pingjia Liang1

1 School of Computer Science and Engineering, Sun Yat-sen University
2 Guangzhou Key Laboratory of Multilingual Intelligent Processing, Guangdong University of Foreign Studies

yerzh@mail2.sysu.edu.cn, zhangzhq58@mail2.sysu.edu.cn, wanhai@mail.sysu.edu.cn, jfdu@gdufs.edu.cn,
luowlin3@mail2.sysu.edu.cn, liangpj3@mail2.sysu.edu.cn

Abstract

We study the problem of learning a single occurrence regu-
lar expression with interleaving (SOIRE) from a set of text
strings possibly with noise. SOIRE fully supports interleav-
ing and covers a large portion of regular expressions used in
practice. Learning SOIREs is challenging because it requires
heavy computation and text strings usually contain noise in
practice. Most of the previous studies only learn restricted
SOIREs and are not robust on noisy data. To tackle these is-
sues, we propose a noise-tolerant differentiable learning ap-
proach SOIREDL for SOIRE. We design a neural network
to simulate SOIRE matching and theoretically prove that cer-
tain assignments of the set of parameters learnt by the neu-
ral network, called faithful encodings, are one-to-one corre-
sponding to SOIREs for a bounded size. Based on this cor-
respondence, we interpret the target SOIRE from an assign-
ment of the set of parameters of the neural network by explor-
ing the nearest faithful encodings. Experimental results show
that SOIREDL outperforms the state-of-the-art approaches,
especially on noisy data.

Introduction
Learning regular expressions (REs) is a fundamental task
in Machine Learning. For example, REs are the target in
EXtensible Markup Language (XML) schema inference, for
covering a set of text strings about an XML element. The
regular expression with interleaving, denoted as RE(&), is
an extension of regular expressions, where the operator in-
terleaving (&) is added to interleave two strings. RE(&)
has been widely used in various areas, ranging from XML
database system (Makoto and Clark 2003; Colazzo et al.
2013; Martens et al. 2017) to system verification (Gischer
1981; Bojanczyk et al. 2006) and natural language process-
ing (Kuhlmann and Satta 2009; Nivre 2009), etc.

We focus on a subclass of RE(&), single occurrence regu-
lar expression with interleaving (SOIRE), where each sym-
bol occurs at most once in a SOIRE. Learning SOIREs is
still meaningful, as SOIREs have the second highest cover-
age rate of REs on the schema database Relax NG among
all well-known subclasses (Li et al. 2019b). Although a
subclass is generally easier to learn than the full class, it

*Both Hai Wan and Jianfeng Du are corresponding authors.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is still challenging to learn SOIREs. On one hand, learn-
ing SOIREs is a search problem requiring heavy computa-
tion. On the other hand, real-life text strings usually con-
tain noise (Kearns and Li 1988; Galassi and Giordana 2005;
Bex et al. 2006). For example, in XML schema inference,
the XML data may contain incorrect symbols (Bex et al.
2006). The presence of noise makes the problem of learn-
ing SOIREs more challenging.

There have been a number of proposals for learning either
the full class or its subclasses of SOIRE, from a set of text
strings (Freydenberger and Kötzing 2015; Zhang et al. 2018;
Li et al. 2019a, 2020b). However, they are hard to guarantee
that the learnt REs reach the full declared expressive power.
For example, Li et al. (2019a) claimed to learn SOIREs, but
Wang and Zhang (2021) showed that they just learn special
cases of SOIRE. Besides, existing approaches are not robust
on noisy data because any modification to given strings will
alter the patterns in learnt REs. As far as we know, there is
no approach to learning SOIREs that works well with both
noise-free data and noisy data.

In this paper, we propose a noise-tolerant differentiable
learning approach SOIREDL for SOIREs. Specifically, we
design a neural network to simulate SOIRE matching for
text strings. Since existing work for SOIRE matching (Wang
2021b, 2022) is not suitable for differentiable learning, we
propose a new SOIRE matching algorithm SOIRETM based
on the syntax tree of SOIRE, and accordingly, an algorithm
for converting SOIRETM to a neural network. We theoreti-
cally prove that certain assignments of the set of parameters
learnt by the neural network, called faithful encodings, one-
to-one correspond to SOIREs for a bounded size. This cor-
respondence allows us to interpret the target SOIRE from
an assignment of the set of learnt parameters of the neural
network by exploring the nearest faithful encodings.

To evaluate the performance of SOIREDL on noisy data,
we extract 30 SOIREs from the RE database built by Li
et al. (2018) to make a group of datasets covering five do-
mains with different noise levels. Experimental results show
that at all noise levels, the average accuracy of SOIREDL
is higher than state-of-the-art (SOTA) approaches and the
faithfulness of SOIREDL is always beyond 80%. In par-
ticular, the average accuracy of SOIREDL only decreases
slightly with increasing noise levels, which suggests that
SOIREDL is robust on noisy data.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4809

Related Work

Matching algorithms for regular expressions. It has been
shown (Mayer and Stockmeyer 1994) that the matching
problem of RE(&) is NP-hard. For SOIREs, Wang (2021b)
proposed a finite automata with interleaving, written FA(&),
to solve the matching problem. Wang (2022) proposed a
single occurrence finite automata, written SFA(&, #), for
matching single occurrence regular expressions with inter-
leaving and counting. All above studies do not consider
converting the matching algorithm into a neural network.
In contrast, we present not only a matching algorithm for
SOIREs but also the way to convert it to a neural network.
Learning approaches for regular expressions. There also
exists work for learning different subclasses of REs from
a set of text strings, such as the deterministic regular ex-
pressions with counting (Wang and Chen 2018), the deter-
ministic regular expressions with unorder (Wang and Chen
2020), and the deterministic regular expression with count-
ing and unorder (Wang 2021a). Some subclasses of the ex-
tension RE(&) have also been explored, such as chain reg-
ular expression with interleaving (ICHARE) (Zhang et al.
2018), restricted SOIRE (RSOIRE) (Li et al. 2019a), and k-
occurrence regular expression with interleaving (kOIRE) (Li
et al. 2020a). All of them are learnt from positive strings
only. Li et al. (2020b) learnt a subclass of ICHARE, called
SIRE, from both positive and negative strings based on a
genetic algorithm. The relation of expressive powers sup-
ported by these classes is SIRE ⊂ ICHARE ⊂ RSOIRE ⊂
SOIRE ⊂ kOIRE. Li et al. (2021) proposed a natural lan-
guage processing based RE synthesizer to learn REs from
natural language descriptions together with positive and neg-
ative strings. This problem setting is different from ours.
Differentiable learning. Differentiable learning has at-
tracted much research interest recently. Most studies focus
on learning logical rules from knowledge bases (Yang, Yang,
and Cohen 2017; Sadeghian et al. 2019; Cohen, Yang, and
Mazaitis 2020; Huang et al. 2021) or on neural logic pro-
gramming (Yang and Song 2020; Gao et al. 2022; Wang
et al. 2020). In particular, some studies (Rocktäschel and
Riedel 2017; Minervini et al. 2020b,a) focus on neural the-
orem proving. They convert the symbolic operations into
differentiable modules to enhance the reasoning ability of
the neural network. Mensch and Blondel (2018) utilized a
strongly convex regularizer to smooth the max operator and
convert a broad class of dynamic programming (DP) algo-
rithms into differentiable operators. Wang et al. (2019) pro-
posed a differentiable MaxSAT solver integrated into the
deep learning networks to solve the problems like visual Su-
doku, which has implicit satisfiability constraints. For REs,
Jiang et al. (2020) injected a weighted finite-state automa-
ton (FSA) of REs into the recurrent neural network (RNN)
to improve the performance of text classification. Further,
Jiang, Jin, and Tu (2021) injected a finite-state transducer of
REs into RNN for slot filling. Both of the above methods
fine-tune initial regular expressions given from the expert
knowledge to obtain better results. Different from all above
studies, we further study the one-to-one correspondence be-
tween parameters of a neural network and SOIREs.

Preliminaries
A regular expression with interleaving, written RE(&), over
an alphabet Σ is defined recursively as follows (Mayer and
Stockmeyer 1994):

r := ε
∣∣a∣∣r∗1∣∣r1 · r2

∣∣r1&r2

∣∣r1|r2

where ε is empty string, the symbol a ∈ Σ, and r1, r2 are
RE(&). The operator ∗ denotes Kleene-Star, · denotes con-
catenation (it can be omitted if there is no ambiguity), &
denotes interleaving, | denotes disjunction. The operators ?
and + are commonly used for repetition. They are defined
as r? := r

∣∣ε and r+ := r · r∗, respectively. The operator &
for two strings s1, s2 is defined as follows:

s1&s2 :=

{
s2 if s1 = ε
s1 if s2 = ε

a(s′1&s2)|b(s1&s′2) otherwise

where s1 = as′1, s2 = bs′2, a, b ∈ Σ.

Definition 1 (Single occurrence regular expression with in-
terleaving (SOIRE) (Li et al. 2019a)). SOIRE is a RE(&)
where each symbol occurs at most once in the expression.

Example 1. (a&b)c∗ is a SOIRE. (a&b)a∗ is a RE(&) but
not a SOIRE, because the symbol a occurs twice.

Each SOIRE can be expressed by its prefix notation where
operators are written in front of operands rather than writ-
ten in the middle as the infix notation. By PreForm(r) we
denote the prefix notation of a SOIRE r. For the SOIRE
r = (a&b)c∗ given in Example 1, PreForm(r) is ·&ab ∗ c.
Syntax tree. Each SOIRE can also be represented as a bi-
nary tree, called syntax tree, where each inner vertex in the
tree represents an operator and each leaf represents a sym-
bol. By RE2Tree(r) we denote the syntax tree of a SOIRE
r. In a syntax tree, each leaf represents a symbol in Σ and
each symbol occurs at most once, while each inner vertex
represents an operator and the number of children of it is
equal to the number of its operands. Figure 1 shows the syn-
tax tree of (a&b)c∗ in Example 1. The size of a SOIRE
r, denoted by |r|, is defined as the number of vertices in
the syntax tree of r. For example, the size of (a&b)c∗ is
6. Obviously, the preorder traversal sequence of the syn-
tax tree of r is PreForm(r) and each subtree represents
a subexpression. In this preorder traversal sequence, ver-
tex t + 1 is the left child for any inner vertex t. We use
rt(1 ≤ t ≤ |r|) to denote the corresponding SOIRE of the
subtree of RE2Tree(r) whose root is vertex t. Further, if
vertex t represents a binary operator, we use ηt to denote
the sequential number of its right child. For r = (a&b)c∗ in
Example 1, r2 = a&b and η2 = 4.
From prefix notation to syntax tree. We show a way to
realize RE2Tree(r). It scans PreForm(r) from back to
front and maintains a stack of syntax trees. Take Figure 1
for instance, PreForm(r) = ·&ab ∗ c. RE2Tree(r) scans
PreForm(r) from c to ·. When scanning c, push c (v6) into
the stack. When scanning ∗, pop c (v6) from the stack and
make c the left child of ∗, then push ∗c (v5) into the stack.
When scanning b and a, push b (v4) and a (v3) into the stack.
When scanning &, pop a (v3) and b (v4) from the stack and

4810

Figure 1: The syntax tree of SOIRE (a&b)c∗. v1, . . . , v6

represent ·, &, a, b, ∗ and c, respectively.

make a the left child of & and b the right child, then push
&ab (v2) into the stack. In this way, the syntax tree in Fig-
ure 1 is built. We use Tree2RE(ξ) to denote the inverse
function of RE2Tree(r), which returns PreForm(r) from
the syntax tree ξ = RE2Tree(r) by preorder traversal.
SOIRE matching. By r |= s we denote that a SOIRE r
matches a string s. Then the problem of SOIRE matching
is to check whether r |= s, which can be decided in the
following way:

r |= s :=

s = a if r = a
s = ε ∨ r1 |= s if r = r?

1
s = ε ∨ ∃s1∃s2, (s = s1s2 ∧ s2 6= ε
∧r∗1 |= s1 ∧ r1 |= s2) if r = r∗1
∃s1∃s2, (s = s1s2 ∧ r∗1 |= s1 ∧ r1 |= s2) if r = r+

1
∃s1∃s2, (s = s1s2 ∧ r1 |= s1 ∧ r2 |= s2) if r = r1 · r2

∃s1∃s2, (s = s1&s2 ∧ r1 |= s1 ∧ r2 |= s2) if r = r1&r2

r1 |= s ∨ r2 |= s if r = r1|r2

(1)

where r1, r2 are SOIREs and a ∈ {ε} ∪ Σ.
SOIRE learning. Given a set of strings Π = Π+ ∪ Π−,
where Π+ (resp. Π−) denotes the set of strings with the pos-
itive (resp. negative) label, the problem of SOIRE learning
is to find a SOIRE r that maximizes acc(r) defined below.

acc(r) =
|{s|r |= s, s ∈ Π+}|+ |{s|r 6|= s, s ∈ Π−}|

|Π|
(2)

The Proposed SOIREDL Approach
In this section, we first describe a new matching algorithm
SOIRETM, then show how to convert SOIRETM to a neu-
ral network. Afterwards, we show correspondence between
parameters of the neural network and SOIREs. Finally, we
show how to interpret the target SOIRE from the parameters.

First of all, we introduce a variant problem of SOIRE
matching, called filter matching. Filter matching for a
SOIRE r and a string s is to check if r matches
filter(s, α(r)), where α(r) denotes the set of symbol in
a SOIRE r, and the filter function filter(s, V) returns a
string that only retains symbols in V , where V ⊆ Σ.
For Example 1 and s = dbac, the corresponding prob-
lem of filter matching is to check if (a&b)c∗ matches
filter(dbac, {a, b, c}) = bac, as α((a&b)c∗) = {a, b, c}.

Given a SOIRE r and a string s, we use gti,j ∈ {0, 1}
(1 ≤ t ≤ |r|, 1 ≤ i, j ≤ |s|) to denote whether rt matches
filter(si,j , α(rt)), where si,j denotes the substring of s
from i to j, and where s1,0 = ε specially. If rt matches

SOIRE Semantics of r |= filter(s, α(r))
r = a ∈ Σ 1. filter(s, a) = a.
r = r?

1 1. filter(s, α(r?
1)) = ε.

= ε|r1 2. r1 |= filter(s, α(r1)).
r = r∗1 1. filter(s, α(r∗1)) = ε.
= ε|r1 2. r1 |= filter(s, α(r1)).
|r∗1 · r1 3. r∗1 |= filter(s1, α(r∗1))

and r1 |= filter(s2, α(r1)),
where s = s1s2(s1, s2 6= ε).

r = r+
1 1. r1 |= filter(s, α(r1)).

= r1 2. r+
1 |= filter(s1, α(r+

1))
|r+

1 · r1 and r1 |= filter(s2, α(r1)),
where s = s1s2(s1, s2 6= ε).

r = r1 · r2 1. r1 |= filter(s, α(r1 · r2)) and r2 |= ε.
2. r2 |= filter(s, α(r1 · r2)) and r1 |= ε.
3. r1 |= filter(s1, α(r1 · r2))
and r2 |= filter(s2, α(r1 · r2)),
where s = s1s2(s1, s2 6= ε).

r = r1&r2 r1 |= filter(s, α(r1))
and r2 |= filter(s, α(r2)).

r = r1|r2 1. r1 |= filter(s, α(r1|r2)).
2. r2 |= filter(s, α(r1|r2)).

Table 1: The semantics of filter matching, where r, r1, r2 are
SOIREs and s, s1, s2 are strings. r |= filter(s, α(r)) if and
only if at least one condition on the right is satisfied.

filter(si,j , α(rt)), then gti,j = 1, otherwise gti,j = 0. In
particular, gt1,0 denotes if rt matches ε since for all t from 1

to |r|, filter(s1,0, α(rt)) = ε. For Example 1 and s = dbac,
g2

1,2 denotes if a&b matches ba and g2
1,2 = 1.

SOIRE Matching by SOIRETM
We propose a new matching algorithm for SOIRE, named
SOIRETM, based on dynamic programming. Generally,
SOIRETM divides the original matching problem into
smaller ones to conquer. We observe that SOIRE matching
can be simplified to filter matching, as shown in the follow-
ing theorem.

Theorem 1. Given a SOIRE r and a string s, r |= s iff
filter(s, α(r)) = s and r |= filter(s, α(r)).1

Theorem 1 presents a necessary and sufficient condition
for SOIRE matching. The condition filter(s, α(r)) = s
guarantees that α(r) contains all symbols in s, which is easy
to check. Therefore, the primary problem is to check if r
matches filter(s, α(r)).

We build the syntax tree of r and compute the result of
filter matching of s and r, namely g1

1,|s|. The proposed algo-
rithm SOIRETM is detailed in Algorithm 1. Initially, line 1
checks if filter(s, α(r)) = s. Then we calculate gti,j from
shorter substrings to longer ones and from bottom to top of
the syntax tree. The statements in Line 7-20 conform to the
semantics of each operator, given by Table 1 and Lemma 2.

1All the proofs of theorems/lemmas/propositions are provided
in appendix of (Ye et al. 2022).

4811

Algorithm 1 Matching Algorithm for SOIRE, SOIRETM.
Input: A SOIRE r and a string s.
Output: The answer of whether r matches s.

1: if filter(s, α(r)) 6= s then
2: Return 0;
3: Build the syntax tree of r by RE2Tree(r);
4: Let flagt,t

′

i,j denote 1[filter(si,j , α(rt)) =

filter(si,j , α(rt
′
))], where 1[µ] = 1 iff µ is true;

5: for all substring si,j from ε to s (shorter to longer) do
6: for t← |r| downto 1 do
7: if rt = a ∈ α(r) then
8: gti,j ← 1[filter(si,j , {a}) = a];
9: else if rt = (rt+1)? then

10: gti,j ← 1[filter(si,j , α(rt)) = ε] ∨ gt+1
i,j ;

11: else if rt = (rt+1)∗ then
12: gti,j ← 1[filter(si,j , α(rt)) = ε] ∨ gt+1

i,j ∨∨j−1
k=i(g

t
i,k ∧ g

t+1
k+1,j);

13: else if rt = (rt+1)+ then
14: gti,j ← gt+1

i,j ∨
∨j−1
k=i(g

t
i,k ∧ g

t+1
k+1,j);

15: else if rt = rt+1 · rηt then
16: gti,j ← (flagt,t+1

i,j ∧ gt+1
i,j ∧ g

ηt

1,0) ∨ (flagt,η
t

i,j ∧
gη

t

i,j ∧ g
t+1
1,0) ∨

∨j−1
k=i(flag

t,t+1
i,k ∧ gt+1

i,k ∧ flag
t,ηt

k+1,j ∧
gη

t

k+1,j);

17: else if rt = rt+1&rη
t

then
18: gti,j ← gt+1

i,j ∧ g
ηt

i,j ;
19: else if rt = rt+1|rηt then
20: gti,j ← (flagt,t+1

i,j ∧ gt+1
i,j) ∨ (flagt,η

t

i,j ∧ g
ηt

i,j);

21: Return g1
1,|s|;

Lemma 2. Given a SOIRE r and a string s. If r = r1 · r2

or r = r1&r2 or r = r1|r2, then for all i ∈ {1, 2}, ri |=
filter(s, α(r)) iff filter(s, α(ri)) = filter(s, α(r)) and
ri |= filter(s, α(ri)).

The time complexity of Algorithm 1 is O(|s|3|r|). It is
sound and complete according to the following theorem.
Theorem 3. Given a SOIRE r and a string s, r |= s iff
SOIRETM(r, s) = 1.

From SOIRETM to Neural Network
We now detail how to convert SOIRETM to a trainable neu-
ral network to simulate SOIRE matching.
SOIRETM uses the syntax tree for SOIRE matching, so

the trainable parameters of an expected neural network can
be defined by constructs of the syntax tree. There are two
parts of parameters used in an expected neural network,
θ = (w, u), where w ∈ [0, 1]T×|B|, u ∈ [0, 1]T×T and
B = Σ∪{?, ∗,+, ·,&, |, none}, and where T is the bounded
size of the target SOIRE. For 1 ≤ t ≤ T, a ∈ B, wta de-
notes the probability of vertex t representing a symbol in Σ
or an ordinary operator or the none operator. For 1 ≤ t ≤ T
and t + 2 ≤ t′ ≤ T , utt′ denotes the probability of vertex t

choosing vertex t′ as its right child. The total number of the
parameters to be learnt is T |B| + (T−1)(T−2)

2 . Example 2
shows the parameters of the neural network θ = (w, u) cor-
responding to the syntax tree in Figure 1.
Example 2. When T = 6, w1

· , w
2
&, w3

a, w4
b , w5

∗, w
6
c , u1

5,
u2

4 are 1s, whereas other parameters are 0s. When T = 8,
w7

none, w8
none are 1s in addition to the above parameters.

There are four parts that should be considered during
the conversion of SOIRETM to neural network: α(rt),
flagt,t

′

i,j , g
t
i,j , and the return value of Algorithm 1.

Recall that α(rt) represents the set of symbols in rt,
which is also the set of symbols occurring in the subtree
whose root is t. We use ρta to denote the probability of sym-
bol a ∈ Σ that occurs in the subtree whose root is t. We
calculate ρta from bottom to top of the syntax tree by Equa-
tion 3, where σ01(x) = min(max(x, 0), 1). For all t > T
and a ∈ Σ, ρta is set to 0. Note that min(x) = −max(−x),
and the max function amounts to ReLU and can be approx-
imated by a more differentiable LeakyReLU function.

ρta = σ01(wta +
∑

o∈{?,∗,+,
·,&,|}

wtoρ
t+1
a +

∑
o∈
{·,&,|}

wto

T∑
t′=t+2

utt′ρ
t′

a)

(3)
For converting flagt,t

′

i,j , we treat it as the probability that
there does not exist a symbol occurring in both si,j and
α(rt) but not occurring in α(rt

′
), as defined in Equation 4.

Note that t′ can only be either t+ 1 or ηt.

flagt,t
′

i,j = 1− σ01(
∑
a∈Σ

σ01(1[a ∈ si,j] + (ρta − ρt
′

a)− 1))

(4)
For converting gti,j , we introduce pti,j(?) (resp. pti,j(∗) or

pti,j(+)) to denote the probability that the right-hand side of
Line 10 (resp. 12 or 14) in Algorithm 1 evaluates to 1, as
well as pti,j(·, t′) (resp. pti,j(&, t

′) or pti,j(|, t′)) the probabil-
ity that the right-hand side of Line 16 (resp. 18 or 20) with
ηt substituted by t′ evaluates to 1. For example, p8

1,3(&, 10)

denotes the probability that g9
1,3 ∧ g10

1,3 evaluates to 1. Since
a right-hand side may contain logical connectives ∧ or ∨,
we apply the transformations given in Table 2 to estimate
the ultimate probability that the right-hand side evaluates
to 1, where the special transformation is only used in the
third term of Line 12 and Line 16 as well as the second
term of Line 14 since these terms may have a large num-
ber of operands, while anywhere else the general transfor-
mations are used. With the probabilities that the right-hand
sides evaluate to 1, the probability that gti,j evaluates to 1 can
be defined recursively by Equation 5, where we reuse gti,j to
represent such a probability.

gti,j =
∑
a∈Σ

wta · 1[filter(si,j , a) = a]

+
∑

o∈{?,∗,+}

wtop
t
i,j(o) +

∑
o∈{·,&,|}

wto

T∑
t′=t+2

utt′p
t
i,j(o, t

′)

(5)

4812

Logical General Special
operation transformation transformation
A ∧B min(pA, pB) -
A ∨B σ01(pA + pB) max(pA, pB)

Table 2: The transformation from logical operations to nu-
merical computations, where A and B are formulae, and pA
(resp. pB) is the probability that A (resp. B) evaluates to 1.

For converting the return value of Algorithm 1, we con-
sider Line 1 and Line 21 in Algorithm 1 and compute the
return value by Equation 6, where the second term in Equa-
tion 6 ensures that all symbols occurring in s appear in the
target SOIRE too.

ŷ = g1
1,|s| −max

a∈Σ
σ01(1[a ∈ s]− ρ1

a) (6)

The converted neural network is trained to minimize the
objective function 1

2 (ŷ−y)2, where y ∈ {0, 1} is the ground-
truth label for r matching s.

Faithful Encoding
We simply refer to an assignment of the set of trainable pa-
rameters of the converted neural network as an encoding of
SOIREs. We find that encodings can one-to-one correspond
to prefix notations of SOIREs for a bounded size, when it
satisfies certain conditions given by Definition 2.
Definition 2 (Faithful encoding). An encoding θ = (w, u)
of SOIREs with length T is said to be faithful if it satisfies
all the following conditions:
1. ∀1 ≤ t ≤ T,wt is a one-hot vector.
2. ∀1 ≤ t ≤ T, ut is either a one-hot vector or an all-zero

vector.
3. ∀1 ≤ t ≤ T,

∑T
t′=t+2 u

t
t′ +

∑
a∈Σ∪{?,∗,+,none} w

t
a = 1.

4. ∀1 ≤ t ≤ T − 1, wt+1
none − wtnone ≥ 0.

5. ∀2 ≤ t ≤ T,
∑
a∈{?,+,∗,·,&,|} w

t−1
a +

∑t−2
t′=1 u

t′

t +

wtnone = 1.
6. ∀3 ≤ t ≤ T, ∀1 ≤ p ≤ t − 2, (t − 1 − p)upt +∑t−1

p′=p+1

∑T
t′=t+1 u

p′

t′ ≤ t− 1− p.

7. ∀a ∈ Σ,
∑T
t=1 w

t
a ≤ 1.

All conditions in a faithful encoding are translated from
the construction constraints of a syntax tree. Condition 1
guarantees that each vertex in the syntax tree represents a
symbol, an ordinary operator or the none operator. Condi-
tion 2 guarantees that each vertex has at most one right child.
Condition 3 guarantees that each vertex either has a right
child, or represents a symbol, a unary operator or the none
operator. Condition 4 guarantees that if vertex t represents
the none operator, then vertex t+1 is also the none operator.
Condition 5 guarantees that if vertex t represents the none
operator, then vertex t is not the child of any vertex; other-
wise, vertex t is the child of exactly one vertex. Condition 6
guarantees that the vertices are numbered in the order of pre-
order traversal. Condition 7 guarantees that each symbol in
Σ occurs at most once in the syntax tree. Example 2 shows
two faithful encodings with lengths 6 and 8, respectively.

By Enc2Pre(θ) we denote the prefix notation of the
SOIRE interpreted from a faithful encoding θ. Enc2Pre(θ)

decodes wt and ut
′

t (1 ≤ t′ ≤ t − 2) into the syntax tree of
r from t = 1 to T progressively until wtnone = 1, and then
translates the constructed syntax tree of r to the prefix no-
tation of r. Take Example 2 for instance, Enc2Pre(θ) =
·&ab ∗ c is decoded from the faithful encoding θ with length
T = 8.

Proposition 4 shows that Enc2Pre(θ) always yields the
prefix notation of a SOIRE.

Proposition 4. For any faithful encoding θ, there exists a
SOIRE r such that Enc2Pre(θ) = PreForm(r).

Proposition 5 and Proposition 6 show that Enc2Pre(θ)
is surjective and injective, respectively, for a bounded size.

Proposition 5. Given a bounded size T ∈ Z+, for any
SOIRE r such that |r| ≤ T , there exists a faithful encoding
θ with length T such that Enc2Pre(θ) = PreForm(r).

Proposition 6. Given a bounded size T ∈ Z+, for any two
different faithful encodings θ1 and θ2 with length T , we have
Enc2Pre(θ1) 6= Enc2Pre(θ2).

Since Enc2Pre(θ) is both injective and surjective, faith-
ful encodings are one-to-one corresponding to the prefix no-
tations of SOIREs for a bounded size.

Theorem 7. Given a bounded size T ∈ Z+, prefix no-
tations of SOIREs r with |r| ≤ T and faithful encodings
θ with length T have a one-to-one correspondence, i.e.,
Enc2Pre(θ) = PreForm(r).

To make an encoding more faithful, we add one regular-
ization for each condition to the objective function2.

SOIRE Interpretation
We apply beam search to find a faithful encoding nearby the
learnt encoding and then interpret it to the target SOIRE.
The algorithm is shown in Algorithm 2. The interpretation
steps are conducted from bottom to top of the syntax tree.
We keep β candidate SOIREs for each subtree according
to the score of each candidate SOIRE, which is defined as
the geometric mean of the probabilities of all operators and
symbols. At each step, we select different operators and can-
didate SOIREs from the left child and right child (if any) and
merge them to generate new candidates. At last, we calculate
the accuracy of each SOIRE in the last step on the training
set and pick out the SOIRE with the highest accuracy.

Evaluation
We conduct experiments to evaluate the performance of
SOIREDL on both noise-free data and noisy data.
Datasets. We extract 30 SOIREs from the RE database
built by Li et al. (2018) and generate datasets with noise
from them. The SOIREs are randomly chosen from different
classes: SIRE, ICHARE, RSOIRE, SOIRE. We set Σ as 10
letters. For each SOIRE r, we generate a dataset (Π+,Π−)
randomly, making sure that for all s ∈ Π−, there exists

2Details of regularizations are provided in (Ye et al. 2022).

4813

Algorithm 2 SOIRE Interpretation.

Input: A training set (Π+
train,Π

−
train) on the alphabet Σ, an

encoding θ = (w, u) and the the beam width β.
Output: The infix notation of the target SOIRE.

1: Let T be the first dimension of w;
2: LetCt be the set of candidate solutions (r, e) of the sub-

tree with the root t, where r is the infix notation of a
SOIRE and e is its score;

3: for t from T down to 1 do
4: for all a ∈ Σ do
5: Add (a,wta) into Ct;
6: for all (ri, ei) ∈ Ct+1 do
7: Add (r?

i , eiw
t
?) into Ct;

8: Add (r∗i , eiw
t
∗) into Ct;

9: Add (r+
i , eiw

t
+) into Ct;

10: for t′ from t+ 2 to T do
11: for all ((ri, ei), (rj , ej)) ∈ Ct+1 × Ct′ do
12: if α(ri) ∩ α(rj) = ∅ then
13: Add ((ri) · (rj), eiejwt·) into Ct;
14: Add ((ri)&(rj), eiejw

t
&) into Ct;

15: Add ((ri)|(rj), eiejwt|) into Ct;

16: Sort all (r, e) in Ct according to the descending order
of e

1
|r| and keep only the top-β elements;

17: Get the accuracy of r on (Π+
train,Π

−
train) for all r in C1;

18: Return r in C1 that has the highest accuracy;

s′ such that r |= s′ and s can be modified to s′ by delet-
ing a character, inserting a character at any position, replac-
ing a character with another one, or moving a character to
any other position. For example, string abc can be modi-
fied to ac, abac, acc or bca. We set the maximum length
of strings to 20 in the dataset. For training sets and test
sets, we set |Π+| = |Π−| = 250, whereas for validation
sets, we set |Π+| = |Π−| = 50. The noise levels are set
to δ = {0, 0.05, 0.1, 0.15, 0.2}, where for each δ, we re-
verse the labels for |Π+|δ positive strings and |Π−|δ nega-
tive strings in the training and validation sets.
Competitors. We choose approaches iSOIRE (Li et al.
2019a), GenICHARE (Zhang et al. 2018), iSIRE (Li
et al. 2020b) and RE2RNN (Jiang et al. 2020) as com-
petitors. iSOIRE learns RSOIREs and GenICHARE learns
ICHAREs from positive strings only. iSIRE learns SIREs
from both positive and negative strings. RE2RNN embeds a
weighted FSA to improve the performance on text classifica-
tion. It can also learn an automaton if we randomly initialize
the parameters. Thus we also compare the performance be-
tween SOIREDL and RE2RNN.
Settings. We implement iSOIRE, GenICHARE, iSIRE
according to their papers, and reuse the source code of
RE2RNN. The hyper-parameters of RE2RNN are set as de-
fault, except that the number of states is set to 100 and
the threshold in interpretation to 0.12 for achieving the
best accuracy. We train SOIREDL with the AdamW opti-
mizer. The hyper-parameters of SOIREDL are set as fol-
lows: the bounded size T is 4|Σ| − 2 according to Propo-

sition 8, the batch size is 64, the regularization coeffi-
cient λ is 0, and the beam width β is 500. The optimal
λ is selected from {0, 10−3, 10−2, 10−1, 1, 10} and β from
{10, 50, 100, 300, 500, 1000} for maximizing the accuracy
on the validation set. iSOIRE, GenICHARE and iSIRE
use the union of the training and validation sets for learning.

All experiments were conducted on a Linux machine
equipped with an Intel Xeon Gold 6248R processor with 126
GB RAM and a single NVIDIA A100. We train SOIREDL
with five learning rates 0.01, 0.05, 0.1, 0.15, 0.2 and select
the SOIRE achieving the best accuracy on the validation set.
Therefore, the running time of SOIREDL is the sum of train-
ing time and interpretation time with five learning rates. The
time limit for each approach is set to 5000 seconds.

Proposition 8. For any SOIRE r over Σ, there exists an-
other SOIRE r′ over Σ and a faithful encoding θ with length
4|Σ| − 2 such that PreForm(r′) = Enc2Pre(θ) and
{s|r′ |= s} = {s|r |= s}.
Evaluate metrics. We use accuracy on the test set to evalu-
ate the performance of all approaches. For SOIREDL and
RE2RNN, We introduce faithfulness defined as N=

|Π+|+|Π−|
to evaluate the consistency between the neural network and
the interpreted SOIRE (SOIREDL) or automata (RE2RNN),
where N= is the number of test strings that the neural net-
work and the SOIRE or automata predicts the same label.
Comparison on noise-free data. The results of differ-
ent approaches on noise-free data are shown in Table 3.
For learning from both positive and negative strings,
SOIREDL outperforms iSIRE and RE2RNN on almost all
datasets, achieves comparable performance with iSOIRE
and GenICHARE (both of which learn from positive strings
only), and achieves the highest average accuracy among all
approaches. Regarding the accuracy of the intermediate neu-
ral network, SOIREDL is also superior to RE2RNN. These
results show that SOIREDL achieves the SOTA performance
on noise-free data.
Comparison on noisy data. The average accuracy of differ-
ent approaches on noisy data is shown in Figure 2 (a). The
performance of iSOIRE and GenICHARE drops sharply
when noise is present, suggesting that they are not robust
on noisy data. The average accuracy of RE2RNN also de-
creases quickly when the noise level increases, and so does
the neural network of it. Both SOIREDL and iSIRE per-
form well on noisy data. The average accuracy of SOIREDL
slightly decreases when the noise level increases, but it still
keeps higher than others at all noise levels. This suggests
that SOIREDL is the most robust on noisy data.
Comparison in terms of faithfulness. The average faithful-
ness of SOIREDL and RE2RNN is shown in Figure 3. Obvi-
ously, the faithfulness of SOIREDL is much higher than that
of RE2RNN and keeps over 80% at all noise levels, suggest-
ing that the neural network of SOIREDL and its interpreted
SOIRE are more consistent in performing SOIRE matching.
Case study. We pick one RE from each subclass of SOIREs
considered in our experiments to show their learnt results,
reported in Table 4. Although the ground-truth REs and the
SOIREs learnt by SOIREDL are not exactly the same in the
subclasses ICHARE and RSOIRE, they still belong to the

4814

Positive and negative strings Positive strings only
Data iSIRE RE2RNN SOIREDL iSOIRE GenICHARE iSIRE RE2RNN SOIREDLset

1 86.0 52.4 (94.4) 100.0 (100.0) 89.4 89.4 83.8 48.0 (50.0) 57.0 (57.0)
2 77.4 48.8 (91.4) 100.0 (100.0) 100.0 100.0 100.0 50.4 (50.0) 100.0 (100.0)
3 90.8 50.6 (77.4) 100.0 (100.0) 100.0 97.2 95.6 50.6 (49.6) 65.4 (65.4)
4 72.4 49.0 (80.2) 99.6 (73.4) 73.8 72.6 73.4 49.6 (49.8) 61.4 (61.4)
5 90.8 52.6 (91.4) 58.2 (87.2) 100.0 100.0 86.2 49.6 (50.2) 52.8 (52.8)
6 77.8 51.6 (62.2) 93.4 (93.0) 100.0 100.0 70.4 50.2 (50.0) 52.6 (52.6)
7 81.2 52.2 (95.8) 99.2 (99.2) 100.0 96.4 89.0 49.2 (49.8) 69.4 (69.4)
8 76.2 49.8 (88.0) 100.0 (100.0) 100.0 100.0 100.0 49.8 (50.0) 100.0 (100.0)
9 93.8 44.2 (48.4) 98.4 (98.4) 99.8 98.8 98.0 47.2 (49.6) 81.6 (81.6)

10 94.8 50.2 (89.8) 99.8 (100.0) 99.8 99.8 82.8 44.4 (50.2) 61.2 (61.2)
11 91.0 52.4 (88.6) 89.2 (91.0) 100.0 100.0 91.4 47.6 (50.2) 57.4 (57.4)
12 78.6 51.2 (98.4) 100.0 (100.0) 100.0 100.0 100.0 50.8 (49.4) 100.0 (100.0)
13 96.6 52.8 (50.2) 100.0 (100.0) 100.0 100.0 83.6 51.2 (49.6) 67.0 (67.0)
14 74.4 50.0 (79.0) 84.8 (71.6) 70.0 74.4 68.8 49.0 (50.0) 54.4 (54.4)
15 95.2 54.0 (49.8) 96.2 (100.0) 100.0 100.0 100.0 47.8 (50.2) 66.2 (66.2)
16 96.8 49.0 (71.4) 94.8 (100.0) 100.0 100.0 75.4 49.4 (50.0) 75.4 (75.4)
17 91.0 46.2 (87.2) 100.0 (100.0) 100.0 100.0 100.0 50.6 (50.0) 100.0 (100.0)
18 81.0 42.8 (78.8) 87.4 (99.2) 87.4 100.0 82.0 40.2 (50.2) 53.0 (53.0)
19 88.2 50.0 (63.8) 100.0 (93.4) 100.0 100.0 88.0 50.4 (50.0) 54.6 (54.6)
20 93.4 45.2 (54.4) 83.4 (90.0) 100.0 99.2 95.8 47.4 (50.0) 56.0 (51.2)
21 69.8 48.8 (96.2) 100.0 (100.0) 71.2 71.2 71.2 49.8 (50.4) 71.2 (71.2)
22 90.6 47.6 (50.6) 100.0 (100.0) 100.0 100.0 91.4 50.0 (50.2) 58.2 (58.2)
23 85.6 32.8 (84.4) 86.8 (65.2) 90.0 90.0 88.0 50.0 (48.8) 56.8 (56.8)
24 69.4 49.0 (57.2) 74.6 (76.8) 77.6 76.0 71.4 47.6 (50.0) 54.2 (54.2)
25 67.8 54.2 (93.4) 99.8 (74.6) 70.0 70.0 70.0 50.2 (50.0) 69.6 (69.6)
26 80.2 50.4 (50.4) 63.8 (98.2) 100.0 100.0 85.2 51.0 (49.6) 63.8 (63.8)
27 92.0 52.0 (91.6) 96.4 (96.4) 100.0 100.0 97.4 52.2 (50.2) 67.6 (67.6)
28 65.0 54.8 (95.2) 100.0 (98.6) 65.6 65.6 65.6 50.0 (50.0) 65.6 (65.6)
29 93.4 56.2 (75.8) 97.6 (97.2) 100.0 99.8 81.2 49.2 (49.8) 54.2 (54.2)
30 60.4 41.4 (61.6) 78.8 (79.6) 61.0 61.0 60.4 49.8 (49.8) 54.8 (54.8)

Avg. 83.4 49.4 (76.6) 92.7 (92.8) 91.9 92.0 84.9 49.1 (49.9) 66.7 (66.6)

Table 3: Accuracy (%) on noise-free data with best results in bold. For X(Y), X denotes the accuracy of the learnt SOIRE or
automaton, and Y the accuracy of the neural network.

Subclass Dataset Ground-truth SOIREDLSOIREs
SIRE 13 a?&b∗&c? a?&c?&b∗

ICHARE 22 (a|b)∗ c∗d∗ (a∗&b∗) c∗d∗

RSOIRE 3 a+| (b|c)∗ |d+ (b+|c)∗ |a∗|d∗
SOIRE 1 ((a|b) c∗)+

d ((a|b) c∗)+
d

Table 4: The ground-truth SOIREs and the SOIREs learnt
by SOIREDL on different subclasses of SOIREs.

same subclass. These results show that SOIREDL is able to
learn different subclasses of SOIREs.

We also analyse the relation between the accuracy of the
SOIRE learnt by SOIREDL and the size of the ground-truth
SOIRE. Figure 4 shows that the accuracy decreases when
the size of the ground-truth SOIRE increases. This may be
due to the difficulty for a neural network to capture the long-
distance dependency in SOIRE matching.
The necessity for using negative strings. The results of

learning from positive strings only are shown in Table 3 and
Figure 2 (b). Neural networks do not perform well because
they prefer to classify unseen strings as positive ones when
training on positive strings only. Even worse, when noise is
present, the accuracy of any competitor drops sharply to no
more than 60% as shown in Figure 2 (b). This suggests that
negative strings are crucial in effectively learning with noisy
data, possibly because they infer what kinds of strings that
the target SOIRE cannot match. By learning from positive
and negative strings, both SOIREDL and RE2RNN achieve
significantly better performance; in particular, SOIREDL
outperforms iSOIRE and GenICHARE in terms of average
accuracy, as shown in Table 3 and Figure 2 (a).

Conclusion and Future Work
In this paper, we have proposed a noise-tolerant differ-
entiable learning approach SOIREDL and a matching al-
gorithm SOIRETM based on the syntax tree for SOIREs.
The neural network introduced in SOIREDL simulates the
matching process of SOIRETM. Theoretically, the faith-

4815

Figure 2: Average accuracy (%) on test sets at different noise
levels δ. SOIREDL-ipt and RE2RNN-ipt represent the learnt
SOIREs or automata, whereas SOIREDL-net and RE2RNN-
net represent the neural networks. (a) Positive and negative
strings. (b) Positive strings only.

ful encodings learnt by SOIREDL one-to-one correspond
to SOIREs for a bounded size. Experimental results have
demonstrated higher performance compared with the SOTA
approaches. In the future work, we will tackle the problem
of long dependency in SOIRE matching and extend our ap-
proach to other subclasses of REs.

Acknowledgments
We thank Kunxun Qi for discussion on the paper and anony-
mous referees for helpful comments.

This paper was supported by the National Natural Sci-
ence Foundation of China (No. 62276284, 61976232,
61876204), the National Key Research and Develop-
ment Program of China (No. 2021YFA1000504), Guang-
dong Basic and Applied Basic Research Foundation (No.
2022A1515011355), Guangzhou Science and Technology
Project (No. 202201011699), Guizhou Science Support
Project (No. 2022-259), as well as Humanities and Social
Science Research Project of Ministry of Education (No.
18YJCZH006).

Figure 3: Average faithfulness (%) of SOIREDL and
RE2RNN on test sets at different noise levels δ.

Figure 4: The relation of the accuracy (%) of a SOIRE learnt
by SOIREDL and the size |r| of the ground-truth SOIRE r.

References
Bex, G. J.; Neven, F.; Schwentick, T.; and Tuyls, K. 2006.
Inference of Concise DTDs from XML Data. In VLDB, 115–
126.
Bojanczyk, M.; Muscholl, A.; Schwentick, T.; Segoufin, L.;
and David, C. 2006. Two-Variable Logic on Words with
Data. In LICS, 7–16.
Cohen, W. W.; Yang, F.; and Mazaitis, K. 2020. Tensor-
Log: A Probabilistic Database Implemented Using Deep-
Learning Infrastructure. J. Artif. Intell. Res., 67: 285–325.
Colazzo, D.; Ghelli, G.; Pardini, L.; and Sartiani, C. 2013.
Efficient asymmetric inclusion of regular expressions with
interleaving and counting for XML type-checking. Theor.
Comput. Sci., 492: 88–116.
Freydenberger, D. D.; and Kötzing, T. 2015. Fast Learning
of Restricted Regular Expressions and DTDs. Theory Com-
put. Syst., 57(4): 1114–1158.
Galassi, U.; and Giordana, A. 2005. Learning Regular Ex-
pressions from Noisy Sequences. In SARA, volume 3607,
92–106.
Gao, K.; Inoue, K.; Cao, Y.; and Wang, H. 2022. Learn-
ing First-Order Rules with Differentiable Logic Program Se-
mantics. In IJCAI, 3008–3014.
Gischer, J. L. 1981. Shuffle Languages, Petri Nets, and
Context-Sensitive Grammars. Commun. ACM, 24(9): 597–
605.
Huang, J.; Li, Z.; Chen, B.; Samel, K.; Naik, M.; Song,
L.; and Si, X. 2021. Scallop: From Probabilistic Deduc-
tive Databases to Scalable Differentiable Reasoning. In
NeurIPS, 25134–25145.
Jiang, C.; Jin, Z.; and Tu, K. 2021. Neuralizing Regular
Expressions for Slot Filling. In EMNLP, 9481–9498.

4816

Jiang, C.; Zhao, Y.; Chu, S.; Shen, L.; and Tu, K. 2020.
Cold-Start and Interpretability: Turning Regular Expres-
sions into Trainable Recurrent Neural Networks. In EMNLP,
3193–3207.
Kearns, M. J.; and Li, M. 1988. Learning in the Presence of
Malicious Errors (Extended Abstract). In STOC, 267–280.
Kuhlmann, M.; and Satta, G. 2009. Treebank Grammar
Techniques for Non-Projective Dependency Parsing. In
EACL, 478–486.
Li, Y.; Cao, J.; Chen, H.; Ge, T.; Xu, Z.; and Peng, Q. 2020a.
FlashSchema: Achieving High Quality XML Schemas with
Powerful Inference Algorithms and Large-scale Schema
Data. In ICDE, 1962–1965.
Li, Y.; Chen, H.; Zhang, L.; Huang, B.; and Zhang, J. 2020b.
Inferring Restricted Regular Expressions with Interleaving
from Positive and Negative Samples. In PAKDD, volume
12085, 769–781.
Li, Y.; Chen, H.; Zhang, X.; and Zhang, L. 2019a. An effec-
tive algorithm for learning single occurrence regular expres-
sions with interleaving. In IDEAS, 24:1–24:10.
Li, Y.; Chu, X.; Mou, X.; Dong, C.; and Chen, H. 2018.
Practical Study of Deterministic Regular Expressions from
Large-scale XML and Schema Data. In IDEAS, 45–53.
Li, Y.; Li, S.; Xu, Z.; Cao, J.; Chen, Z.; Hu, Y.; Chen, H.;
and Cheung, S. 2021. TRANSREGEX: Multi-modal Regu-
lar Expression Synthesis by Generate-and-Repair. In ICSE,
1210–1222.
Li, Y.; Zhang, X.; Cao, J.; Chen, H.; and Gao, C. 2019b.
Learning k-Occurrence Regular Expressions with Interleav-
ing. In DASFAA, volume 11447, 70–85.
Makoto, M.; and Clark, J. 2003. RELAX NG. https:
//relaxng.org/. Accessed: 2022-06-01.
Martens, W.; Neven, F.; Niewerth, M.; and Schwentick, T.
2017. BonXai: Combining the Simplicity of DTD with the
Expressiveness of XML Schema. ACM Trans. Database
Syst., 42(3): 15:1–15:42.
Mayer, A. J.; and Stockmeyer, L. J. 1994. The Complexity of
Word Problems - This Time with Interleaving. Inf. Comput.,
115(2): 293–311.
Mensch, A.; and Blondel, M. 2018. Differentiable Dynamic
Programming for Structured Prediction and Attention. In
ICML, volume 80, 3459–3468.
Minervini, P.; Bosnjak, M.; Rocktäschel, T.; Riedel, S.; and
Grefenstette, E. 2020a. Differentiable Reasoning on Large
Knowledge Bases and Natural Language. In AAAI, 5182–
5190.
Minervini, P.; Riedel, S.; Stenetorp, P.; Grefenstette, E.; and
Rocktäschel, T. 2020b. Learning Reasoning Strategies in
End-to-End Differentiable Proving. In ICML, volume 119,
6938–6949.
Nivre, J. 2009. Non-Projective Dependency Parsing in Ex-
pected Linear Time. In ACL, 351–359.
Rocktäschel, T.; and Riedel, S. 2017. End-to-end Differen-
tiable Proving. In NeurIPS, 3788–3800.

Sadeghian, A.; Armandpour, M.; Ding, P.; and Wang, D. Z.
2019. DRUM: End-To-End Differentiable Rule Mining On
Knowledge Graphs. In NeurIPS, 15321–15331.
Wang, P.; Donti, P. L.; Wilder, B.; and Kolter, J. Z. 2019.
SATNet: Bridging deep learning and logical reasoning using
a differentiable satisfiability solver. In ICML, volume 97,
6545–6554.
Wang, P.; Stepanova, D.; Domokos, C.; and Kolter, J. Z.
2020. Differentiable learning of numerical rules in knowl-
edge graphs. In ICLR.
Wang, X. 2021a. Inferring Deterministic Regular Expres-
sion with Unorder and Counting. In DASFAA, volume
12682, 235–252.
Wang, X. 2021b. Learning Finite Automata with Shuffle. In
PAKDD, volume 12713, 308–320.
Wang, X. 2022. Membership Algorithm for Single-
Occurrence Regular Expressions with Shuffle and Counting.
In DASFAA, volume 13245, 526–542.
Wang, X.; and Chen, H. 2018. Inferring Deterministic Reg-
ular Expression with Counting. In Conceptual Modeling
- 37th International Conference, ER, volume 11157, 184–
199.
Wang, X.; and Chen, H. 2020. Inferring Deterministic Reg-
ular Expression with Unorder. In SOFSEM, volume 12011,
325–337.
Wang, X.; and Zhang, X. 2021. Discovering an Algo-
rithm Actually Learning Restricted Single Occurrence Reg-
ular Expression with Interleaving. CoRR, abs/2103.10546.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
Learning of Logical Rules for Knowledge Base Reasoning.
In NeurIPS, 2319–2328.
Yang, Y.; and Song, L. 2020. Learn to Explain Efficiently
via Neural Logic Inductive Learning. In ICLR.
Ye, R.; Zhuang, T.; Wan, H.; Du, J.; Luo, W.; and Liang,
P. 2022. A Noise-tolerant Differentiable Learning Approach
for Single Occurrence Regular Expression with Interleaving.
arXiv:2212.00373.
Zhang, X.; Li, Y.; Cui, F.; Dong, C.; and Chen, H. 2018. In-
ference of a Concise Regular Expression Considering Inter-
leaving from XML Documents. In PAKDD, volume 10938,
389–401.

4817

