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Abstract

Verifying the facts alleged by prosecutors before the trial re-
quires the judges to retrieve evidence within the massive ma-
terials accompanied. Existing Legal AI applications often as-
sume the facts are already determined and fail to notice the
difficulty of reconstructing them. To build practical Legal AI
applications and free judges from the manual searching work,
we introduce the task of Legal Evidence Retrieval, which
aims to automatically retrieve precise fact-related verbal evi-
dence within a single case. We formulate the task in a dense
retrieval paradigm and jointly learn the contrastive represen-
tations and alignments between facts and evidence. To avoid
tedious annotations, we construct an approximated positive
vector for a given fact by aggregating a set of evidence from
the same case. An entropy-based denoising technique is fur-
ther applied to mitigate the impact of false positive samples.
We train our models on tens of thousands of unlabeled cases
and evaluate them on a labeled dataset containing 919 cases
and 4, 336 queries. Experimental results indicate that our ap-
proach is effective and outperforms other state-of-the-art rep-
resentation and retrieval models. The dataset and code are
available at https://github.com/yaof20/LER.

1 Introduction
Linking each fact with the relevant evidence is an essential
step for the judge to make findings of fact, and it is the pre-
condition of application of law and the foundation of legal
judgment. In judicial practice, the facts and evidence for the
same case tend to be submitted in separate files and are not
linked with each other, which may cost the judges a lot of
time to retrieve relevant evidence to validate the authenticity
of each fact. Though tremendous advances have been made
in Legal AI, such as Legal Information Extraction (Chen
et al. 2020; Yao et al. 2022), Legal Case Retrieval (Ma et al.
2021, 2022) and Legal Judgment Prediction (Zhong et al.
2018), little attention has been paid to evidence-related re-
search and most existing works assume the facts determined
by the judges, ignoring the expensive cost behind it.

In this work, we introduce the task of Legal Evidence
Retrieval (LER), which aims to automatically retrieve the
relevant evidence given a fact description within a case.
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... The defendant Guo XX then cut a knife toward the neck of 
the victim Wang XX ...  Guo fled the scene after the crime ...

... I was stunned, he let me 
go, then I ran away ... 

... I told the man to leave
so that my son would not 

fight with him ... 

... Guo XX pulled out a knife 
and hacked a men on the left 

side of his neck ...

Prosecutor

Defendant

Victim

Witness

... I used my left hand to take 
out the kitchen knife and then 

cut at his neck ... 

... He rushed to me and used 
the knife to slash twice at the 
back of my head and neck ... 

...  He let Guo XX leave 
quickly, Guo XX

apologized and left ... 

Evidence linked with fact 1 Evidence linked with fact 2

Figure 1: The way judges linked the facts written by the
prosecutor with the verbal evidence from multiple resources.
Facts and evidence in the same color are relevant to each
other. The highlighted evidence contradicts the facts above.

Specifically, we focus on the retrieval of sentence-level ver-
bal evidence in criminal cases, where there tend to be mul-
tiple participants of different roles involved and their nar-
ratives are in various styles, making LER a challenging yet
practical Legal AI task. Figure 1 shows an example of how
the judge linked the prosecuted facts with the verbal evi-
dence from different parties. Some pieces of the facts can
be simultaneously mentioned by the defendant, victim, and
witness. Therefore, the task of LER can be formulated to re-
trieve the relevant evidence by querying with any piece of
the prosecuted facts or verbal evidence. The former type of
query can help the judges find the fact-relevant evidence and
verify the authenticity of the prosecuted facts, and the latter
can be useful to identify the underlying conflicts between
relevant evidence. By convention, the prosecutors have to
summarize the testimony from different litigants and restate
the facts in a formal document before the court. Therefore,
there exists a certain semantic gap between the prosecuted
facts and the verbal evidence, which distinguishes LER from
the traditional retrieval problem that can be well-handled by
the conventional models utilizing word co-occurrence be-
tween the queries and candidates.
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To facilitate the research of LER, we propose a large-
scale dataset named LERD, consisting of more than 300k
fact queries and over 11 million “query (fact) and candidate
(evidence)” pairs, within which 4, 436 queries and their cor-
responding 234, 693 candidates are annotated with the rele-
vance ranking scores.

Considering the versatility of the model and the huge cost
of data annotations, the default setting of LER task is unsu-
pervised with unlabeled data for training and annotated ones
for evaluation. We also provide a split of annotated dataset
in case of the need for supervised training.

Due to the vocabulary mismatch problem in LER task,
we formulate our task in the dense retrieval paradigm
(Karpukhin et al. 2020; Sciavolino et al. 2021; Zhang et al.
2022), where the facts and verbal evidence are encoded into
dense embeddings by pretrained models, and the retrieval is
conducted in the dense representation space.

The most challenging part of dense retrieval without su-
pervision is to construct a positive sample for a given query.
Previous works handle this problem by sub-sequence sam-
pling that: (1) generating two non-overlapping spans from
the same document as positive (Lee, Chang, and Toutanova
2019), (2) randomly sampling two arbitrary continuous
spans that may overlap with each other as positive (Izac-
ard et al. 2021b), (3) recurring spans across passages in a
document to create pseudo positives (Ram et al. 2022). All
of these strategies are designed for document-level retrieval
tasks and the assumption is that any two sub-sequences sam-
pled from the same document are positive to each other.
However, LER is a fine-grained sentence-level retrieval task
where only the relevant evidence and fact are positive to each
other and the rest sub-sequences of the case are negatives.

To tackle the challenges mentioned above, we propose
Structure-aWare contrastive learning with Approximate ag-
gregated Positive (SWAP) which leverages the legal case
structure information to construct approximate positives and
sample negatives. Based on the premise that the true posi-
tive evidence for a given fact query must be within the same
case, we construct an approximate positive for each fact by
aggregating the representations of all the evidence from the
same case. Then, we sample negatives from both inner-case
facts and inter-case evidence, and adopt contrastive learning
to pull together the positives and push apart the negatives
in the representation vector space. Finally, considering that
the approximated positives are generated by aggregating the
potential samples and can be noisy, we explore an entropy-
based denoising technique to reduce the influence of false
positives and negatives during training.

Extensive experiments are conducted on LERD, and the
results indicate that LER is a challenging task and our pro-
posed method SWAP significantly outperforms state-of-the-
art methods. We summarize our contributions as follows:

• We introduce a novel task of Legal Evidence Retrieval
(LER), which is a challenging yet practical task with
promising value for real-world Legal AI applications.
A large-scale dataset is proposed with fine-grained rel-
evance ranking annotations as well as a coarse parallel
fact-evidence aligned corpus.

• We propose a novel framework for unsupervised dense
retrieval that constructs positive and negative samples
with case structure knowledge injected. A denoising ap-
proach based on entropy theory is further introduced
to mitigate the influence brought by the false positives
among the approximated samples.

• Extensive experiments show the effectiveness of our ap-
proach and we substantially outperform other strong
sparse and dense retrieval baselines. To motivate other
scholars, the dataset and code are publicly available.

2 Task and Dataset
2.1 Task Definition
Given a prosecuted facts collection Fk = {fk

i }
mk

i=1 and a
verbal evidence collection Ek = {ekj }

nk

j=1
from the same

case k, the task of Legal Evidence Retrieval (LER) is to find
and rank the relevant evidence e within Ek for each fact f
from Fk. The fact f is the concise description of what hap-
pened in the case, formally written by the prosecutor in third
person. While the evidence e is the verbose record of oral
statements by case participants (victim, defendant, witness)
in first person. Both f and e are sentences, and there can be
zero, one, or multiple evidence relevant to a given fact query.
The unique point is that different queries from the same case
can be highly similar since they reveal the same crime in
general, increasing the difficulty of query understanding.

LER task is mainly faced with the following challenges:
(1) Expression Mismatch. To keep the reliability and bet-
ter restore the truth, the evidence is directly quoted from the
oral statements of the case participants, which are verbose
and less informative than the concise facts, resulting in the
semantic gap between them. (2) Fine Granularity. LER is
targeted at retrieving the relevant sentence-level verbal ev-
idence from multiple resources and requires a fine-grained
relevance annotation between facts and evidence. Whereas
the common IR task focuses more on document-level re-
trieval and fails to highlight fine-grained informative state-
ments. (3) Dynamic Retrieval Pools. In most IR tasks, the
candidate pool is the same for each query. Therefore, the
representation of the documents in the candidate pool can
be computed offline in advance. However, the evidence pool
in LER task varies from case to case and the facts and evi-
dence from different cases are irrelevant by nature.

2.2 Data Construction
In this section, we described in detail the construction of
the Dataset for LER task (named LERD). In order to collect
data sets aligned with facts and evidence, we found in judg-
ment documents that judges usually cite the facts described
by prosecutors and the testimony of each party (an example
is shown in Figure 1). Therein, we collect the judgment doc-
uments of the criminal cases from the public legal judgment
document website1 as the document pool. To enable model
training and testing, we further create a large unsupervised
training data set and a relatively small supervised data set
for evaluation or weakly supervised training.

1https://wenshu.court.gov.cn/
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Task #Query #Can./que. #Que-can. pair #Char./que. #Pos./que. #Case #Crime Granularity

LeCaRD 107 100 10, 700 444.58 10.33 10, 700 20 Document-level
LERD-usp 308, 749 35 11, 079, 998 63.22 – 35, 423 255 Sentence-level
LERD-sup 4, 336 54 234, 693 67.63 3.15 919 91 Sentence-level

Table 1: The statistics of LERD and LeCaRD datasets. The suffix ‘-usp’ and ‘-sup’ indicate the unsupervised and labeled parts.
‘Can.’, ‘Char.’, and ‘Pos.’ are short for candidate, character and positive, the relevant candidate to a query. ‘/que.’ denotes value
per query, and – means the value is not applicable since there is no annotation for the unsupervised part.

Unsupervised Dataset. A paragraph-level labeling model
is trained to parse the crawled judgment documents into
several semantic segments (e.g. litigant description, plain-
tiff’s claim, fact identification, evidence description, ratio-
nale, and judgment). Then, we utilize regular expressions
to refine the prosecuted facts and verbal evidence, and split
them into non-overlapping sentences. We filter out the cases
with few facts and evidence, thus obtaining a collection of
36, 423 pairs of facts and evidence.

Supervised Dataset. For quantitative evaluation of LER
task, we also construct a corpus with fine-grained annota-
tions of the relevance between evidence and each query,
which can be also employed for weakly supervised training.
We randomly extract 1, 000 cases from the raw judgment
documents excluding the ones in unsupervised dataset. We
then invite 10 lawyers to annotate the evidence ranking by
the relevance to each prosecuted fact. Each case is firstly an-
notated by two lawyers independently, and a third lawyer is
required to handle the disagreement. The criteria to rate the
relevance scores between a fact-evidence pair are as follows:

• Score 2, Highly Relevant: The occurring time described
in evidence (if any), the participants and the types of the
events2 mentioned in the evidence are very similar to the
ones in the fact.

• Score 1, Partially Relevant: The occurring time described
in evidence (if any), the participants and the types of the
events mentioned in the evidence are partially matched
with the ones in the fact.

• Score 0, Irrelevant: The occurring time, the participants
or the types of the events mentioned in the evidence are
completely different from the ones in the fact.

In this paper, we mainly utilize unsupervised data for
training and supervised data for evaluation. We also extend
the experiments to the supervised setting (see Sec.5.1) to ex-
plore the different usage of our dataset.

2.3 Data Analysis
To better understand the proposed dataset LERD, we make a
comparison with another legal domain dataset LeCaRD (Ma
et al. 2021), which is commonly adopted in the scenario of
legal case retrieval. The detailed statistics are shown in Table
1. It can be observed that our data focuses on fine-grained
retrieval and covers a wide range of types of crimes. As for
the supervised part, LERD contains more queries and query-
candidate pair annotations than LeCaRD, which contributes

2Typically the key actions involved, like steal, bodily-harm, etc.

(a) Supervised Contrastive 
Learning

(b) Self-supervised Contrastive 
Learning

(c) Contrastive Learning 
with Approximate Positive

Fact

Evidence

Push apart

Pull together

Approximate 
Positive

Fact with 
DropoutApproximate

Possible
Positive

Figure 2: Illustration of the contrastive learning framework
with different positive and negative settings. Stars and cir-
cles in black are ground-truth negatives.

to a more reliable evaluation. Moreover, the unsupervised
data contains richer types of crimes and a large number of
cases with facts and evidence parallels, serving as a valuable
resource for the unsupervised solutions to LER.

3 Preliminaries
The followings are preliminaries about our model architec-
ture and training strategies:

Bi-Encoder Architecture The bi-encoder architecture
consists of a query encoder ENCQ and a document encoder
ENCD to map sparse queries and documents into separate
dense vectors, and leverages similarity function to measure
their relevance (Karpukhin et al. 2020; Izacard et al. 2021b;
Ram et al. 2022). For the LER task, we denote the fact en-
coder and evidence encoder as ENCf and ENCe respec-
tively, which are both Transformer encoders. For an input
fact fk

i of case k, the encoder produces a sequence of hid-
den states and leverages a pooling layer (e.g. averaging) to
obtain a vector f̂k

i ∈ Rd as the dense representation. The
vector êki for each evidence eki is produced in the same way
using ENCe. The cosine similarity function is typically uti-
lized to measure the similarity between the fact f and evi-
dence e as follows:

sim(f, e) =
ENCf (f) · ENCe(e)

∥ENCf (f)∥∥ENCe(e)∥
(1)

Contrastive Learning for Retrieval Contrastive
Learning (CL) is a type of technique that pulls together
embeddings of related data pairs and pushes away irrelevant
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Query 
Encoder

Evidence 
Encoder

Approximate

Approximate

negative

negative

Figure 3: Illustration of the contrastive learning framework
with approximate aggregated positive samples. Corroborat-
ing facts and approximate positive samples inside a case are
pulled together as shown with red arrows.

ones. Under this paradigm, given a fact fi, its relevant evi-
dence e+i and a set of r irrelevant evidence E−

i = {e−i,j}r,
the contrastive optimization object is to minimize:

LC = −log
expsim(fi,e

+
i )/τ

expsim(fi,e
+
i )/τ +

∑r
j=1 exp

sim(fi,e
−
i,j)/τ

(2)

where τ is the temperature parameter ranging from 0 to
1. For the sake of simplicity, we abstract Equation 2 as
Contra(f, f+, N−) where f , f+ and N− denotes anchor
fact, positive sample, and a set of negative samples, respec-
tively. As shown in Figure 2, supervised CL (a) utilizes
ground-truth relevant evidence as positive sample and irrel-
evant evidence as negatives, while self-supervised model (b)
may leverage augmented data points as positive and other
facts as negatives. We further discuss the positive and nega-
tive sampling strategies of SWAP (c) in the next section.

4 Method
We formulate the LER task in the Dense Retrieval (DR)
paradigm, and propose a structure-aware contrastive learn-
ing framework. We first introduce a procedure to construct
approximate positive samples in unsupervised settings and
then present the method to integrate both positive and neg-
ative samples in the contrastive learning framework. A de-
noising technique to alleviate the negative impacts of gener-
ated samples will be discussed in subsection 4.3.

4.1 Construct Positive Instances
For unsupervised dense retrieval, the e+i in Equation 2 is
not readily available. Previous unsupervised methods solve
this problem by sub-sequence sampling (Lee, Chang, and
Toutanova 2019; Izacard et al. 2021b; Ram et al. 2022),
which treats the sub-sequence sampled from the same doc-
ument as a positive instance. However, these sorts of text-
based positive building strategies are not applicable to our
task where most of the facts and evidence from the same
document (case) are not necessarily positive to each other.

Therefore, we propose to construct representation-level
positives to jointly learn the contrastive representations and
alignment between the facts and evidence. To simplify the
notations, we denote F̂k = {f̂k

i }
m

i=1 and Êk = {êkj }
n

j=1
as

collections of d-dimensional dense vector representations of
facts and evidence.

Dropout Positive Inspired by the great success achieved
by (Gao, Yao, and Chen 2021), we feed the same input to
the encoder twice to obtain two representations with differ-
ent dropout (Srivastava et al. 2014) masks, and treat one of
them as the positive instance to the other. Using the dropout
positive in contrastive learning leads to a strong and robust
representation of the input text. In our implementations, we
build dropout positive fk+

i,dp for fact fk
i and ek+j,dp for evidence

ekj simultaneously. We refer to the instance constructed by
this strategy as Dropout Positive (DP) for simplification.

Approximate Aggregated Positive Though the dropout
positives can provide powerful representations of the facts
and evidence, the problem of not having a labeled positive
e+i for the fact fi remains unsolved. Fortunately, we notice
that the true positive ek+i for the fact fk

i is doomed to be
within the evidence collection Ek = {ekj }

n

j=1
that from the

same case k by nature. Therefore, we propose to construct
an approximate ak+i through aggregating the representations
of all ekj in Ek = {ekj }

n

j=1
. We denote the approximate pos-

itive as AP for short, and the vector âk+i of ak+i for fk
i is as

calculated by the following equation:

âk+
i =

n∑
j=1

ef̂
k
i ·êkj∑m

l=1 ef̂
k
i ·êk

l

· êkj (3)

4.2 Structure-Aware Contrastive Learning
Since the facts and evidence from the same case are rele-
vant in general, we propose a structure-aware contrastive
learning framework that considers both the inner-case and
inter-case structure when sampling positives and negatives.
To keep the case structure information, we use case-level
examples during training. Assume the mini-batch size is B,
the input fact and evidence examples in the mini-batch are
{F1, · · · , FB} and {E1, · · · , EB}, where Fk = {fk

i }
mk

i=1

and Ek = {ekj }
nk

j=1
. The training loss consists of two terms

regarding the dropout positive and approximate aggregated
positive respectively.

We first construct the dropout positives fk+
i,dp for fact fk

i

and ek+j,dp for evidence ekj for each fact and evidence in the
mini-batch. For negative sampling, we consider both in-case
and out-case negatives that come from other cases respec-
tively. Take the fact fk

i for example, the in-case and out-case
negatives are denoted in Equation 4 and 5 respectively,

Nfk
i
= {fk

x }m
k

x=1,x ̸=i (4)

Ufk
i
= {{fy

x}m
y

x=1}By=1,y ̸=k (5)

where mk and my denote the number of evidence in the k-th
and the y-th case, respectively.
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Training loss regarding the Dropout Positive (DP) for fact
fk
i is calculated by:

LDP
fk
i
= Contra(fk

i , f
k+
i,dp, [Nfk

i
;Ufk

i
]) (6)

where [; ] denotes merging two collections of vectors. The
calculation of the loss LDP

ekj
for evidence ekj is the same as

LDP
fk
i

.The overall loss regarding the dropout positive is de-
fined in Equation 7. Note that different from the original
implementation (Gao, Yao, and Chen 2021) of contrastive
learning with dropout positive where all of the sentences are
mixed up for training, we keep the facts and evidence apart
and calculate the loss from them separately.

LDP =

B∑
k=1

mk∑
i=1

LDP
fk
i
+

B∑
k=1

nk∑
j=1

LDP
ekj

(7)

Secondly, we build the approximate aggregated positive
ak+i for each fact fk

i by Equation 3. The negatives sampled
in this part also include in-case negatives Nak

i
and out-case

negatives Uak
i

which share the forms in Equation 4 and 5.
The loss LAP

ak
i

concerning the Approximated Positive (AP)
is calculated by the following equation:

LAP
fk
i
= Contra(fk

i , a
k+
i , [Nak

i
;Uak

i
]) (8)

The loss with respect to the Approximated Positive (AP)
is calculated by:

LAP =

B∑
k=1

mk∑
i=1

LAP
ak
i

(9)

The final optimization object of the structure-aware con-
trastive learning framework is:

L = LDP + LAP (10)

4.3 Instance Denoising
There are two underlying problems with the proposed
structure-aware contrastive learning framework, which are
(1) False Positive: the approximate aggregated positive is
built for each fact in the case, but there can be no rele-
vant evidence involved for some of the facts in the training
data; (2) False Negative: the second part of the objective
function LAP involves the in-case negatives NI

k
a,i for each

fact fk
i . As mentioned in Section 2.1, a fraction of the facts

from the same case can be highly similar. Therefore, the ap-
proximate aggregated positives generated by them might be
nearly identical, which are not necessarily negative to fk

i .
To handle these problems, we introduce an entropy-based

denoising method that lowers the weights of the false posi-
tives and false negatives when computing the loss. The en-
tropy we adopt here is the uniformity of the weights used
for aggregating evidence to approximate a positive instance
which is used in Equation 3. The updated weight of the ap-
proximate positive ak+i for loss calculation is defined as:

wk
i =

√√√√ n∑
j=1

(
ef

k
i ·ekj∑n

l=1 ef
k
i ·ek

l

)2

(11)

The intuition behind is that a close approximation of the
true positive should be dominated by the relevant evidence
rather than the averaging of all evidence. Hence, when com-
puting the loss, we decrease the importance of those false
approximate positives contributed by all evidence evenly.

Since the false in-case negatives are nearly indistinguish-
able, we set their weights to zero for loss calculation. The
loss Lak

i
with instance denoising is defined as:

LDE
ak
i
= − log

wk
i · esim(fk

i ,ak+
i )/τ

wk
i · esim(fk

i ,ak+
i )/τ +

∑
aj∈U

ak
i

wk
j · esim(fk

i ,aj)/τ

(12)

5 Experiments
5.1 Experiment Settings
Dataset We conducted experiments on LERD in both un-
supervised and supervised settings. Specifically, in the un-
supervised setting, we use LERD-usp for training and split
LERD-sup into valid and test sets for evaluation. And we
split LERD-sup into train, valid, and test sets for the super-
vised experiments. The statistics of the data splits in both
settings are shown in Table 2.

Setting Split #Query #Que-can. #Case #Crime

Usp
train 308, 749 11, 079, 998 35, 423 255
valid 943 57, 017 200 44
test 3, 393 177, 676 719 84

Sup
train 2, 940 154, 257 619 78
valid 453 23, 419 100 34
test 943 57, 017 200 44

Table 2: The data splits for experiments. ‘Que-can.’ is short
for query-candidate pair. ‘Usp’ and ‘Sup’ indicate super-
vised and unsupervised settings, respectively.

Model We employ the bi-encoder architecture that con-
sists of a fact encoder EncF and an evidence encoder EncE ,
both of which are Transformers-based models. For the main
experiments, we initialize the encoders with RoBERTa-
base-Chinese checkpoint (Cui et al. 2020) and the param-
eters are shared between them. The dense representations of
the facts and evidence are obtained by the average pooling
strategy. We use cosine similarity as the function to measure
the similarity between the fact and evidence representations.
We also conduct experiments with different backbones and
pooling strategies to verify the effectiveness and robustness
of our proposed methods. The experimental results and de-
tailed analysis are discussed in Section 5.2 and 5.3.

Training During the training stage for SWAP, we use
case-level examples to retain the structure information of
each case in the mini-batch. We randomly sample cases from
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Category Method MAP MRR R@1 R@3 R@5 NDCG@1 NDCG@3 NDCG@5

Sparse Retrieval BM25 39.03 45.83 29.03 38.20 48.29 31.10 35.29 39.75
Legal-Event-IR 37.25 45.29 30.12 36.71 44.52 32.45 35.15 38.49

Text
Representation

BERT 47.97 58.15 43.77 49.46 57.25 46.16 47.64 50.58
RoBERTa 51.63 61.62 47.51 53.11 61.44 50.10 51.28 54.58
LawFormer 52.25 62.52 48.78 54.05 61.73 51.40 52.42 55.23
SBERT◦ 40.51 50.13 34.39 40.52 49.19 36.63 38.61 42.11
SimCSE∗ 56.09 66.39 52.99 58.73 66.06 55.60 56.54 59.29

Dense Retrieval

Contriever◦ 45.44 56.11 41.37 46.56 55.18 43.64 44.65 48.08
Contriever(MS)◦ 53.67 64.68 50.89 55.52 64.02 53.50 53.88 57.09
Condensor∗ 54.65 64.82 51.01 57.14 64.40 53.57 55.08 57.80
SWAP-BERT(ours) 59.65 69.58 56.68 62.09 69.83 59.44 60.43 63.33
SWAP-RoBERTa(ours) 61.45 71.25 58.92 64.11 71.97 61.62 62.34 65.27

Supervised DPR-RoBERTa 62.07 72.94 60.02 64.91 70.04 63.06 63.50 63.99
DPR-SWAP-RoBERTa(ours) 64.07 75.67 64.05 67.92 73.44 66.82 66.22 67.64

Table 3: The performances of different methods on LERD. Baseline marked with ∗ is initialized with RoBERTa and trained on
our unsupervised corpus, and those marked with ◦ are the multilingual version and ‘MS’ means pretrained on MS MARCO.

the training data and set the maximum input length of facts
and evidence to 128 tokens. We treat fact as query and evi-
dence as candidate. We train SWAP on 1 × Tesla-A100 80G
GPU with a batch size of 8 and optimize the model with
AdamW with a learning rate of 1e-5, 10% steps for warm-
up and 5 epochs. The temperature hyper-parameter τ is 0.1.

Evaluation Sentence-level evidence is retrieved and
ranked for each fact by the cosine similarity score between
their dense representation. We employ Mean Average Pre-
cision (MAP), Mean Reciprocal Rank (MRR), top-k Re-
call (R@k), and Normalized Discounted Cumulative Gain
(NDCG@k) as the evaluation metrics and report the overall
test results averaged over the fact queries.

Supervised Setting We utilize dense retrieval model DPR
(Karpukhin et al. 2020) as the supervised baseline and train
the model on our dataset with the released code and initialize
the encoders with RoBERTa. The batch size is set to 32, we
regard irrelevant evidence of a given fact in the same case as
hard negative and use default settings for other options.

5.2 Overall Performance
In the unsupervised setting, we compare SWAP with three
types of baselines. For sparse retrieval, which is based
on word co-occurrence, we choose BM25 (Robertson and
Zaragoza 2009) and Legal-Event-IR (Yao et al. 2022) for
comparison. Regarding dense retrieval, Contriever (Izac-
ard et al. 2021a) and Condenser (Gao and Callan 2021)
for both unsupervised and transfer settings are adopted as
baselines. We also consider text representation methods in-
cluding pretrained language models, such as BERT (Devlin
et al. 2019), Roberta (Cui et al. 2020) and LawFormer (Xiao
et al. 2021) using average pooling, along with sentence em-
bedding methods including SBERT (Reimers and Gurevych
2019) and SimCSE (Gao, Yao, and Chen 2021).

The overall performances are shown in Table 3. In the
unsupervised setting, SWAP substantially outperforms both
sparse and dense retrieval baselines. All dense models yield
better results than BM25 and Legal-Event, which can not

Method MAP MRR R@5 NDCG@5

SWAP 61.45 71.25 71.97 65.27
SWAPwo-DE 60.72 70.57 70.56 64.09
−AP 51.01 61.98 59.39 53.92
−DP 52.90 62.89 63.16 56.03
−DP-in-case 54.81 64.72 65.37 58.15

SWAPcls 57.10 67.39 67.00 60.78
SWAPcls

wo-DE 56.77 66.94 66.02 59.97
−AP 45.17 55.69 54.13 47.79
−DP 48.18 58.05 57.89 51.13
−DP-in-case 51.01 60.93 60.84 54.02

Table 4: Comparison of different training strategies.
SWAPwo-DE: without denoising, −AP: without approximate
positive, −DP: without dropout positive, −DP-in-case:
without dropout in-case negatives, SWAPcls: with [cls]
pooling strategy.

deal with the vocabulary mismatch problem in LERD. The
unsupervised SimCSE fine-tuned with LERD outperforms
other baselines and even beats methods designed for infor-
mation retrieval. Since the adopted dense retrieval baselines
are mainly focused on modeling coarse-grained relevance
at the document level, it is reasonable that they do not per-
form well on LER task, which requires a meticulous compar-
ison between facts and evidence. SWAP models outperform
other baselines by a large margin, indicating the proposed
structure-aware contrastive learning framework is effective.

In the supervised setting, we train DPR on LERD with
RoBERTa initialization. Further, we utilize the trained
SWAP-RoBERTa as initialization and achieve a perfor-
mance gain of 2 points on MAP, which indicates that pre-
training with SWAP also works in the supervised scenario.

5.3 Ablation Study
We verify the effectiveness of the different parts in SWAP
by removing each of them independently, and the results are
shown in Table 4. We find that both dropout positive and
approximate positive are indispensable. Since facts in a case
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Backbone Model MAP MRR R@5 NDCG@5

BERT-tiny
Vanilla 45.82 55.77 54.99 48.15
SWAPwo-DE 51.48 61.39 60.99 54.17
SWAP 52.17 62.38 61.85 55.00

BERT
Vanilla 47.97 58.15 57.25 50.58
SWAPwo-DE 57.42 67.93 67.67 61.14
SWAP 59.65 69.58 69.83 63.33

RoBERTa
Vanilla 51.63 61.62 61.44 54.58
SWAPwo-DE 60.72 70.57 70.56 64.09
SWAP 61.45 71.25 71.97 65.27

MENGZI
Vanilla 48.91 59.25 57.90 51.47
SWAPwo-DE 61.17 70.98 71.78 64.94
SWAP 61.31 71.32 71.16 65.06

ERNIE
Vanilla 47.03 56.89 55.98 49.46
SWAPwo-DE 59.29 69.68 68.61 62.77
SWAP 60.83 70.34 71.34 64.71

Table 5: Performance of applying our training strategy on
different backbone models. ‘Vanilla’ denotes directly using
the backbone model with avg-pooling.

can be highly similar, adding the in-case negatives is another
key factor to enable the model to differentiate between sim-
ilar facts. The denoising strategy also leads to a gain on all
metrics, indicating that approximate positives are noisy and
our entropy-guided denoising strategy is effective. We also
conduct ablation on SWAP with cls pooling strategy and the
results indicate SWAP is pooling-independent and robust.

5.4 Effect of Backbones
We conduct experiments on different backbones to verify the
generalization of SWAP, results are shown in Table 5.

Among those backbones, the parameter size of Bert-
tiny (Turc et al. 2019) is 7% of the others, Mengzi (Zhang
et al. 2021) utilizes a lightweight training strategy and
Ernie (Sun et al. 2019) is a knowledge-enhanced language
model. From those results, we could conclude that the pro-
posed method is constantly effective on different backbones
with various sizes and training objectives.

5.5 Effect of Training Samples
Scale of Training Data To validate the influence of the
training data size, we train SWAP with 1K, 3K randomly
sampled cases, and test the performance on the whole test
set. The results in Table 6 illustrate that training with only
1K data achieves a comparable result and scaling up the
training data can steadily promote the performance and
adding more data brings a higher performance gain, which
exhibits that SWAP is an effective method of leveraging the
unsupervised data in the legal domain.

Train MAP MRR R@5 NDCG@5

1K 59.17 69.18 69.21 62.48
3K 60.31 70.12 70.54 63.90
All 61.45 71.25 71.97 65.27

Table 6: Test results of training with data of different scales.

Train MAP MRR R@5 NDCG@5

Drug 55.06 65.81 64.87 58.22
Steal 59.21 69.45 69.36 62.61

Bodily-harm 58.42 68.85 68.92 62.15

Table 7: Test results of training with data on different crimes.

Type of Training Data There are over 400 crimes in the
criminal law of China and the facts involved vary a lot. To
test the generalization ability of SWAP, we train SWAP on
each different crime with 2000 training cases and test them
on the whole test set. As shown in Table 7, training with
Drug data achieves worse performance, because the facts in
the drug cases are relatively fixed while those in the other
two crimes involve more kinds of actions. The overall per-
formances of training with a single crime are within a satis-
fying range, indicating that SWAP generalizes to all crimes.

6 Related Works
Despite the success of NLP techniques for legal applica-
tions in recent years, only a few works focus on the cru-
cial step of fact retrieval. Tomlinson et al. (2007) proposed
to retrieve business records in legal databases, but they only
consider tobacco-related documents. Teng and Chao (2021)
introduce the task of evidence association to clustering ev-
idence, however, their method only operates on document
titles and could not align facts with evidence. Different from
legal case retrieval (Ma et al. 2021; Shao et al. 2020) that
aims to acquire similar cases with fact, the proposed legal
evidence retrieval task requires finer-grained text represen-
tation and the ability to handle expression mismatch. Build-
ing positive samples is the vital step toward unsupervised
dense retrieval. Previous works(Lee, Chang, and Toutanova
2019; Izacard et al. 2021b; Ram et al. 2022) typically lever-
age a sub-sequence sampling strategy that randomly selects
a span from the initial document as the query and treats the
rest part (all of them or another random span) as the positive
sample. While these strategies work well for open-domain
information retrieval and question-answering tasks, they are
designed to learn coarse-grained text correlation, which is
inherently different from the fine-grained matching problem
of our task. As far as we know, we are the first to propose the
legal evidence retrieval task and tackle the positive sample
generation problem through approximate aggregation.

7 Conclusion
In this paper, we propose the task of Legal Evidence Re-
trieval (LER) to build real-world Legal AI applications that
can help judges efficiently find relevant oral evidence for
a given fact. A large-scale dataset is constructed for the
design and evaluation of LER algorithms, including well-
annotated cases and a partially aligned corpus. We introduce
Structure-aWare contrastive learning with Approximate ag-
gregated Positive (SWAP), which involves a novel strategy
of approximating positives along with an effective technique
for denoising the false positive samples. We use the SWAP
framework to train dense retrieval models in an unsupervised
manner, achieving state-of-the-art performance on LERD.
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Ethical Statement
The task of LER is aimed at helping the judges quickly find
the relevant evidence to review and check the prosecuted
facts before the trial instead of helping the judges make de-
cisions. And the facts will be further checked with the de-
fendant, victim, and witness during the trial. All source files
of our dataset are from the official legal document website
which is publicly available. All techniques we introduced in
this paper are only designed to serve as an auxiliary tool in
the finding of fact process and do not play any decisive role.
We do not analyze the content of the case or the litigants in
any way other than evidence retrieval.
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E.; Castells, P.; Gonzalo, J.; Carterette, B.; Culpepper, J. S.;
and Kazai, G., eds., SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, Madrid, Spain, July 11 - 15, 2022, 438–
448. ACM.
Ma, Y.; Shao, Y.; Wu, Y.; Liu, Y.; Zhang, R.; Zhang, M.;
and Ma, S. 2021. LeCaRD: A Legal Case Retrieval Dataset
for Chinese Law System. In Diaz, F.; Shah, C.; Suel,
T.; Castells, P.; Jones, R.; and Sakai, T., eds., SIGIR ’21:
The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event,
Canada, July 11-15, 2021, 2342–2348. ACM.
Ram, O.; Shachaf, G.; Levy, O.; Berant, J.; and Glober-
son, A. 2022. Learning to Retrieve Passages without Su-
pervision. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2687–
2700. Seattle, United States: Association for Computational
Linguistics.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 3982–3992. Hong Kong, China: Asso-
ciation for Computational Linguistics.
Robertson, S. E.; and Zaragoza, H. 2009. The Probabilistic
Relevance Framework: BM25 and Beyond. Found. Trends
Inf. Retr., 3(4): 333–389.
Sciavolino, C.; Zhong, Z.; Lee, J.; and Chen, D. 2021. Sim-
ple Entity-Centric Questions Challenge Dense Retrievers. In
Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, 6138–6148. Online and
Punta Cana, Dominican Republic: Association for Compu-
tational Linguistics.

4790



Shao, Y.; Mao, J.; Liu, Y.; Ma, W.; Satoh, K.; Zhang, M.;
and Ma, S. 2020. BERT-PLI: Modeling Paragraph-Level
Interactions for Legal Case Retrieval. In Bessiere, C., ed.,
Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, 3501–3507. In-
ternational Joint Conferences on Artificial Intelligence Or-
ganization. Main track.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1): 1929–1958.
Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Chen, X.; Zhang, H.;
Tian, X.; Zhu, D.; Tian, H.; and Wu, H. 2019. ERNIE:
Enhanced Representation through Knowledge Integration.
CoRR, abs/1904.09223.
Teng, Y.; and Chao, W. 2021. Argumentation-Driven Ev-
idence Association in Criminal Cases. In Findings of the
Association for Computational Linguistics: EMNLP 2021,
2997–3001. Punta Cana, Dominican Republic: Association
for Computational Linguistics.
Tomlinson, S.; Oard, D. W.; Baron, J. R.; and Thompson, P.
2007. Overview of the TREC 2007 Legal Track. In TREC.
Turc, I.; Chang, M.; Lee, K.; and Toutanova, K. 2019. Well-
Read Students Learn Better: The Impact of Student Initial-
ization on Knowledge Distillation. CoRR, abs/1908.08962.
Xiao, C.; Hu, X.; Liu, Z.; Tu, C.; and Sun, M. 2021. Law-
former: A pre-trained language model for Chinese legal long
documents. AI Open, 2: 79–84.
Yao, F.; Xiao, C.; Wang, X.; Liu, Z.; Hou, L.; Tu, C.; Li,
J.; Liu, Y.; Shen, W.; and Sun, M. 2022. LEVEN: A Large-
Scale Chinese Legal Event Detection Dataset. In Findings of
the Association for Computational Linguistics: ACL 2022,
183–201. Dublin, Ireland: Association for Computational
Linguistics.
Zhang, S.; Liang, Y.; Gong, M.; Jiang, D.; and Duan, N.
2022. Multi-View Document Representation Learning for
Open-Domain Dense Retrieval. In Proceedings of the 60th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 5990–6000. Dublin, Ire-
land: Association for Computational Linguistics.
Zhang, Z.; Zhang, H.; Chen, K.; Guo, Y.; Hua, J.; Wang,
Y.; and Zhou, M. 2021. Mengzi: Towards Lightweight
yet Ingenious Pre-trained Models for Chinese. CoRR,
abs/2110.06696.
Zhong, H.; Guo, Z.; Tu, C.; Xiao, C.; Liu, Z.; and Sun, M.
2018. Legal Judgment Prediction via Topological Learning.
In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, 3540–3549. Brussels,
Belgium: Association for Computational Linguistics.

4791


