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Abstract

Online learning with feature spaces that are not fixed but
can vary over time renders a seemingly flexible learning
paradigm thus has drawn much attention. Unfortunately, two
restrictions prohibit a ubiquitous application of this learn-
ing paradigm in practice. First, whereas prior studies mainly
assume a homogenous feature type, data streams gener-
ated from real applications can be heterogeneous in which
Boolean, ordinal, and continuous co-exist. Existing meth-
ods that prescribe parametric distributions such as Gaussians
would not suffice to model the correlation among such mix-
typed features. Second, while full supervision seems to be a
default setup, providing labels to all arriving data instances
over a long time span is tangibly onerous, laborious, and
economically unsustainable. Alas, a semi-supervised online
learner that can deal with mix-typed, varying feature spaces
is still missing. To fill the gap, this paper explores a novel
problem, named Online Semi-supervised Learning with Mix-
typed streaming Features (OSLMF), which strives to relax
the restrictions on the feature type and supervision infor-
mation. Our key idea to solve the new problem is to lever-
age copula model to align the data instances with different
feature spaces so as to make their distance measurable. A
geometric structure underlying data instances is then estab-
lished in an online fashion based on their distances, through
which the limited labeling information is propagated, from
the scarce labeled instances to their close neighbors. Exper-
imental results are documented to evidence the viability and
effectiveness of our proposed approach. Code is released in
https://github.com/wudi1989/OSLMF.

Introduction
Online learning from doubly-streaming inputs is a new
paradigm for data stream analytics that thrives very re-
cently (Zhang et al. 2016; Hou, Zhang, and Zhou 2017;
Beyazit, Alagurajah, and Wu 2019; Zhang et al. 2020; He
et al. 2021a,b; Wu et al. 2021; Lian et al. 2022; Chen et al.
2022; Wu 2023). Unlike traditional online learning that can
deal with data streams residing in a fixed feature space
only (Aggarwal 2007; Shalev-Shwartz et al. 2011), this new
learning paradigm strives to build incremental models with
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respect to both streaming data and streaming features. This
allows a more flexible learning environment in which new
features can emerge and join the model training process arbi-
trarily, and pre-existing features may become unobservable
or vanish from model during various time spans.

Invited by this flexibility, various domain applications
start to model their data in a doubly-streaming format.
Consider, for example, a crowd-sensing application, where
the mobile users commit their data collectively to train an
incremental model that detects air pollution in local ar-
eas (Meng et al. 2017; Pan et al. 2017; Schreckenberger
et al. 2020). The doubly-streaming property is manifested
from the crowd-sensed data streams – the new users joining
the sensing effort with upgraded or totally new devices (e.g.,
cellphones, sensor kits) will lead to new features, while any
users who leave (or that some devices fail to commit due to
network issues) can incur feature unobservability. To learn
from such data streams, a common practice shared by prior
studies is to establish the correlation among features, such
that the incremental model can: 1) initialize the learning co-
efficients of any new features using educated guess, expedit-
ing convergence with a jump-start when these new features
are not described by sufficient data instances, and 2) en-
joy a reconstructed information of the unobserved features,
leveraging their learned coefficients to improve the predic-
tion performance via online ensembling.

Despite their triumphs, most existing studies are limited
by two assumptions. First, the incremental model is trained
under full supervision, which means that every arriving data
instance must be accompanied with a class label. Unfortu-
nately, annotating labels is in general prohibitive, due to the
limited manpower and time stretched by the large volume
and high velocity of data streams. Second, all features flow-
ing into the model are prescribed to share the same data type,
which is often violated in real applications. For example, the
features captured by various types of sensor devices are nat-
urally in different data types including Boolean (e.g., rainy
or not), ordinal (e.g., PM2.5 levels), and continuous (e.g.,
outdoor temperature). Establishing correlation among such
mix-typed features is tangibly challenging and cannot be vi-
able by the prior online parametric models that assume, e.g.,
Gaussian correlation matrices (Agarwal, Chen, and Elango
2010; Balzano, Chi, and Lu 2018; He et al. 2019).

Motivated by this situation, we explore a new learn-
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ing problem, termed Online Semi-supervised Learning with
Mix-typed streaming Features (OSLMF), striving to make
the doubly-streaming data analytics more flexible and appli-
cable. Two challenges are coined in this new problem and
shall be solved together: 1) Labels of any arriving data in-
stances are given only occasionally, and 2) The feature space
describing data is unbounded and varies over time, in which
Boolean, ordinal, and continuous features co-exist.

Our main idea to solve the OSLMF problem is to deduce a
latent space from the mix-typed streaming features, through
respecting the inherent geometric structure among data in-
stances that delivers a reasonably high discriminant power.
To realize it, our approach consists of two key build blocks:
1) a copula model that captures data generative marginals
from a set of latent and continuous probability densities and
forms their correlations, and 2) an online density-peak clus-
tering model that probes the geometric relations underlying
data instances so as to propagate the supervision information
from the scarcely labeled instances to their neighbors.
Specific contributions of this paper are as follows:
i) This is the first study to explore the online learning

problem with mix-typed streaming features and semi-
supervision, in which two challenges, namely how the
mixed data types and scarce labels can negatively affect
the online learning efficacy, are investigated.

ii) A novel algorithm to resolve the new OSLMF problem
with copula modeling and density-peak clustering is pro-
posed and elaborated.

iii) Extensive experiments on 14 benchmark datasets are
conducted to evidence the viability, effectiveness, and su-
periority of our proposed algorithm.

Related Work
We relate our OSLMF problem to two research thrusts.

Online Learning from Doubly-Streaming Data is a re-
cent paradigm that generalizes traditional online learning by
allowing a non-fixed feature space. Representative studies
include (Zhang et al. 2015, 2016; Hou, Zeng, and Hu 2018;
Beyazit et al. 2018) which considered a monotonically in-
cremental feature space and (Hou, Zhang, and Zhou 2017;
Hou and Zhou 2017; Beyazit, Alagurajah, and Wu 2019; Wu
et al. 2019; Hou et al. 2021; Hou, Zhang, and Zhou 2021; He
et al. 2021a) that further allows features emerged at previous
rounds to become unobservable. These studies create a very
flexible thus practical learning environment, as it is often
unrealistic to define a set of informative features in advance
and hope they can be consistently available over long time
spans. Their shared technique is to establish correlation be-
tween old and new features such that, when the old features
are not observed, their information can be reconstructed to
help the learners trained on new features, which are usually
weak as they have not seen sufficient data instances, make
more accurate predictions.

Unfortunately, the prior studies mostly assume a fully su-
pervised learning setting. Without labels, the online learn-
ers cannot be updated and the feature correlation is learned
slowly, resulting in weakly learned classifiers and erro-
neously reconstructed features. This can lead to substantial

prediction errors. In our OSLMF problem, we strive to build
accurate online learners that allow scarce labels, thereby ex-
celling the prior art with a higher level of practicality.

Online Semi-Supervised Learning relieves the label re-
quirement of online learning, with the crux lying in to model
and leverage the geometric structure that underlies the data
streams. The structure can be either explicit, such as a
graph (Zhu, Goldberg, and Khot 2009; Wagner et al. 2018;
Huang et al. 2019; Zeisl et al. 2010) defined on a topolog-
ical space, or implicit, such as a Riemann manifold (Gold-
berg, Li, and Zhu 2008; Farajtabar et al. 2011; Kumagai and
Iwata 2018) or a clustering structure (Dyer, Capo, and Po-
likar 2013; Yu et al. 2015; Gu et al. 2018) learned from the
sequential inputs. The online learners can expedite conver-
gence by leveraging these geometric structures, such as en-
couraging the nearby instances to share same labels.

However, few semi-supervised online learner thus far has
been tailored for doubly-streaming inputs. The main chal-
lenge lies in that there is no metric to fairly gauge the dis-
tance between pairs of data instances when they are de-
scribed by different feature spaces, which is the gap that our
OSLMF attempt to explore and fulfill. To that end, we pro-
pose to use copula model to align the feature spaces by es-
tablishing the relationship across various data types includ-
ing Boolean, ordinal, and continuous, making the distance
among data instances arriving along the time horizon mea-
surable, thereby lending our online learner to work well with
scarce labels.

The OSLMF Problem
Let {(xt, yt) | t = 1, 2, . . . , T} denote an input sequence, of
which xt ∈ Rdt is a dt-dimensional data vector. In a doubly-
streaming setup, we let dt ̸= di for any two rounds t ̸= i in
general. With mix-typed features, we let xt := (xC ,xD),
where the subscripts C and D denote the continuous and
discrete (i.e., Boolean or ordinal) variables, respectively.

At round t, the online learner ft observes an instance xt
and returns its prediction ft(xt). Only with a small proba-
bility, the ground truth label yt ∈ {−1,+1} is revealed and
the learner suffers a loss ℓ(yt, ft(xt)). Based on the loss in-
formation, the learner evolves to ft+1 and gets ready for the
next round. Our goal is to minimize the empirical risk:

R(T ) =
1

l

T∑
t=1

π(t) · ℓ(yt, ft(xt)), (1)

where l denotes the total number of labeled instances over
T rounds. π(t) is an indicator function with π(t) = 1 for the
rounds that reveal label yt and with π(t) = 0 otherwise.

Challenges and Our Thoughts
Two challenges (CHs) are manifested from the formulation
of the OSLMF problem, described as follows:

CH 1 – Mix-typed streaming features. While the first-
order oracle, i.e., the gradient (Cesa-Bianchi and Lugosi
2006) is a common and powerful optimizer of Eq. (1), the
features of various data types often span different value
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Figure 1: Visualization of the two challenges.

scales. Thus, the gradients derived from such different fea-
tures are garbled, where the updating steps suggested by dis-
crete features are in a coarser level of granularity than those
by continuous features, leading to more radical updates.

To visualize, a toy example adapted from the “real-
stream” dataset in the experiments is illustrated in Figure 1a,
which shows the impact of feature type on the derived gradi-
ents. In particular, we observe that the the averaged cumula-
tive gradient (ACG) (Schmidt, Le Roux, and Bach 2017) as-
sociated with discrete features are oscillating in a more rad-
ical manner than that with continuous features. The higher
the variation of its ACG, the slower the coefficient of that
feature is learned. Note, new features are constantly emerg-
ing, and initializing their coefficients randomly or as zeros
can shift the decision hyperplane in a biased means (He et al.
2021a). Discrete features offering gradients with high varia-
tions cannot afford sufficiently updates towards the optimum
thus fail to correct the initialization biases. This leads the on-
line learner to make additional erroneous predictions.

CH 2 – Label Scarcity. At the rounds with no label re-
vealed, no risk (loss) is suffered, and hence no gradient is
calculated to update the learner as stated in Eq. (1). Intu-
itively, depending on how scarce the labels are available, the
online learner can commit to a low convergence rate, which
means that it would take more rounds to converge.

Figure 1b visualizes this intuition, in which Online Con-
vex Programming (Zinkevich 2003) is employed for the
learner. The cumulative error rate (CER) that gauges the pre-
diction performance of the learner is illustrated as the curves.
We observe that, as the scarcity of labels goes higher, the
CER curve tends to stay flat, which indicates a low con-
vergence rate. In online learning, the data instances are pre-
sented to the learner in one-pass only. The lower the conver-
gence rate of an online learner, the more the prediction errors
that the learner makes compared to a hindsight optimum.

Our Ideas. To overcome the two challenges, we here
sketch the two key ideas that motivate our algorithm design.
First, to tame the radical updates incurred by mix-typed fea-
tures, we desire a model that can normalize the oscillating
gradients over discrete variables into a continuous domain
on-the-fly. We advocate the Gaussian copula (GC) (Fan et al.
2017; Hoff et al. 2007; Liu, Lafferty, and Wasserman 2009)
that can model complex multivariate distribution of mixed
data types in a latent space spanned by continuous normal

variables. An online learner trained on this latent space cap-
turing feature correlation enjoys two advantages: 1) any new
features can be initialized with educated guess rather than
purely random (that incurs bias), and 2) any unobserved fea-
ture can be reconstructed such that its learned coefficient can
be leveraged to uplift the prediction accuracy.

Second, to aid the label scarcity, we exploit the abundance
of unlabelled data instances to deduce a geometric struc-
ture underlying the input sequence. On the structure, the in-
stances with similar labels are placed in neighboring regions,
while those separated instances are likely to carry disparate
labels. To discover such geometric structure, we gauge the
distance between paris of instances in the GC-learned latent
space and respect their labeling relations as a regularization
term. We frame the two ideas into a regularized risk min-
imization regime with its objective function tailored in the
problem statememt.

The Proposed Approach

Overview. Our approach can be conceptually formulated
into the following objective functions:

min
f1,...,fT

R(T ), s.t. xt
i.i.d.∼ GC(zt; g; Σ), (2)

max
g;Σ

P[xt | zt; g−1,Σ], ∀xt ∈ B. (3)

In the objectives, Eq. (2) aim at minimizing the semi-
supervised learning risk, which posits that the input se-
quences {xt}Tt=1 are independently drawn from an unknown
distribution modeled by a Gaussian copula (GC). Eq. (3) es-
timates the parameters of GC in a buffer B via an online
Expectation-Maximization (EM) process, aiming at discov-
ering a latent representation zt (with continuous normals) of
each input xt (with mix-typed variables). This section delves
into model details by scrutinizing the objectives in sequence.

Learning Latent Normals via Gaussian Copula
Gaussian copula (GC) possesses two nice properties as it
allows to model the joint distribution underlying the mix-
typed features. First, by round t-th round (t > 1), let
Ut =

⋃t
1 Rt represent a universal feature space comprising

all features observed so far. Each input xt carries a subset
of Ut owing to the feature space variations, where any unob-
served features commit to information loss, leading to an in-
ferior learner. GC solves this issue by mapping the observed
inputs onto a latent space that contains sufficient statistics
for estimating the unobserved features. Such reconstructed
information can boost learner to make more accurate online
predictions through ensembling (as we will see later in the
online ensemble).

Second, GC tames the garbled gradients by its definition:

Definition 1 (GC (Masarotto and Varin 2012)). For ∀ x ∈
Rd that follows the GC is a random vector, there is a cor-
relation matrix Σ and an element-wise monotone function
g : Rd 7→ Rd to make that x = g(z) for z ∼ Nd(0,Σ).

As we can see, the latent representation of the input xt :=
(xC ,xD) consists of a set of normal continuous variables zt
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with covariance matrix Σ and zero mean. By training learn-
ers on the latent representations, the radical updates are sug-
gested by the continuous rather than discrete features , which
is beneficial for a fine-granular search of minimizers.

To enjoy the two aforementioned properties, we explain
how to delineate the monotone g and the correlation Σ. Fol-
lowing the prior art (Zhao and Udell 2020; He et al. 2021a),
we estimate the discrete variables in xt with a monotone
cutoff operator taken on probability mass functions, as Σ is
invariant to element-wise strictly monotone transformation.
Corresponding to a discrete feature xi ∈ xD with range |k|
and mass function {pl}kl=1, the mapping is as follows:

gi := cutoff(z; S) = 1 +
∑
sl∈S

1(z > sl), (4)

where z ∈ R is continuous normal with cumulative distri-
bution function (CDF) Fz and S =

{
sl = F−1

z (
∑l

t=1 pt) :

l ∈ |k − 1|
}

. Then, the latent vector is as zt := g−1(xt) =

(g−1(xC), cutoff
−1(xD)), so by the invertibility of mono-

tone mappings. Despite continuous or discrete features, the
latent representations have a specified real-value or can yield
from Cartesian product of an interval, respectively.

Unobserved feature reconstruction. Note that the di-
mension of g−1(xt) are equal to that of xt but does not
match to that of Ut. However, in our OSLMF problem, any
feature can change to be unobservable, making the missing
entries xM ∈ Ut \ Rdt . For notational succinctness, the ob-
served instance xt is denoted as xO. To obtain a complete
latent representation, we reconstruct zt = ϕ(xt) ∈ R|Ut|

by establishing relationships between xO and xM . The in-
tuition of our solution is to map the conditional mean vector
of the corresponding zM based on the marginals of the ob-
served xO. Such feature reconstruction has two approxima-
tion steps: 1) making expectation of the observed zO given
the observation xO and 2) making expectation of the miss-
ing zM given zO. The two steps are formulated as follows:

z̃M = E
[
E[zM | zO,Σ] | xO,Σ

]
= ΣM,O · Σ−1

O,O · E [zO | xO,Σ] , (5)

where ΣM,O represents the feature indexes (xM ,xO) cor-
responding to rows, and ΣO,O represents the feature indexes
(xO,xO) corresponding to columns, of sub-matrices of cor-
relation Σ, respectively. Supposing z̃M is an unbiased es-
timation of zM , we achieve a complete view of the latent
representation zt = (zO, z̃M ). Therefore, we can obtain a
reconstructed space of input xt by sampling from the copula
GC(zt, g,Σ), denoted as xrec

t = (x̂O, x̂M ) ∈ Ut.

Online EM for parameter estimation. The feature re-
construction allows us to optimize the function g and the
correlation Σ by gauging the discrepancy between the ob-
served xt := xO and the reconstructed x̂O in a stochastic
and online fashion. We first define g−1

i = Φ−1 ◦ Fi, where
Φ is a standard normal CDF and Fi corresponds to the true
yet unknown CDF of the i-th feature. A buffer B of arriving
instances is employed to empirical estimate Fi as F̂i. The
estimator for continuous feature is defined as follows.

ĝ−1
i (xi) = Φ−1(H · F̂i (xi)

)
, (6)

where a finite result is ensured by the scale H = |B|/(|B|+
1). For discrete features, by swapping out the i-th feature’s

sample mean for its probability mass pil , we can denote cut-
off Si as a special case of Eq. (6).

Si =

{
Φ−1

(∑|B|
t=1 1 (xt[i] ≤ l)

|B|+ 1

)
, l ∈ |k − 1|

}
, (7)

where xt[i] indicates the i-th discrete feature of the t-th
input. To estimate the correlation Σ, online EM is progressed
in the buffer B.

Specifically, by taking the conditional expectation os Σ,
we aim to maximize the likelihood that the obserced entries
(denoted by XO) of the buffered matrix XB ∈ R|Ut|×|B|

can be accurately reconstructed. To disambiguate the no-
tation, the empirical correlation obtained in the precedent
round, denoted as Σ(t−1), and the objective to be approxi-
mated in the current round, denoted as Σ̂, respectively. The
log-likelihood function is the following:

Q
(
Σ̂; Σ(t−1),XO

)
:=

1

|B|

|B|∑
t=1

E
[
L(Σ̂;xt, zt) | zt,Σ(t−1)

]
= const−1

2
log det(Σ̂)− 1

2
Tr
(
Σ̂−1G(Σ(t−1),xt)

)
, (8)

with Σ(0) initialized as an identity matrix. To maximize
Eq. (8), two steps iterate in a different way as shown below.
E-step. We use Eq. (5) to calculational expectation
given xt and Σ(t−1) in order to express the likeli-
hood Q(Σ̂; Σ(t−1),XO) in terms of Σ̂ by substituting
G(Σ(t−1),xt) = Et∈B [ztz

⊤
t | xt,Σ

(t−1)] in Eq. (8).
M-step. Solve Σ̃ = argmaxΣ Q(Σ;Σ(t−1),XO) which, ac-
cording to the EM theory, is guaranteed to increase the like-
lihood, cf. Chapter 3 in (McLachlan and Krishnan 2007).
Then, we use (Cappé and Moulines 2009) to change the cor-
relation in the current round to a harmonic sum of the corre-
lation from the previous round, which is given by Σ(t−1) and
Σ̃. This treatment can generate a Σ(1), . . . ,Σ(T ) sequence
with smooth updates. However, we note that this sequence
represents an unconstrained series of monotonically conver-
gent local likelihood maximizers. We use an approximation
to fit the empirical maximizer into a normal covariance as
follows:

Σ̂ = PE
(
(1− γt)Σ

t−1 + γtΣ̃
)
, (9)

with γt ∈ (0, 1] being a decaying step size and PE( ·)
normalizes the correlation as D−1/2Σ̂D−1/2 with D =
diag(Σ̂) (Zhao and Udell 2020; He et al. 2021a).

Learning Data Geometrics via Local Density-Peaks
In the learned latent spaces, any two instances that arrive at
different time steps have their feature spaces aligned, hence
their distance become measurable. This allows us to uncover
the underlying geometric structure of instances, propagating
the very limited supervision information from the scarce la-
belled instances to their neighbors on the structure.

In this work, we harvest the clustering structure to ap-
proximate the underlying geometric structure of the data.
To respect the online property, a non-iterative, density-peak-
based clustering method (Rodriguez and Laio 2014) is em-
ployed, with its main process illustrated in Figure 2. Specif-
ically, we characterize each arriving instance xt with two

4723



indicators, namely the local density ρt and the distance δt,
defined as:

ρt =
∑

xi∈B,i̸=t

e−
(
d(xt,xi)/dcut

)2
, (10)

δt =
{

mini:ρt<ρi(d(xt,xi)), others
maxi(d(xt,xi)), ∀i, ρt ≥ ρi

, (11)

where d(xt,xi) gauges the Euclidean distance between xt

and xi in the reconstructed universal feature space Ut, and
dcut is the adaptively adjusted cutoff distance. The distance
δt is measure between xt and any other instance xi with a
local density higher than ρt. Note, we set the cutoff distance
dcut as dcut = ⌊PArr × |B| × (|B| − 1)/2⌋, where PArr is
empirically set between 1% and 2% (Wu et al. 2018).

The centroids of clusters can thus be determined intu-
itively: an instance that has a high ρt (hence surrounded by
a large number of neighbors) and a high δt (hence placed
far away from any other likely centroids) is deemed as a
centroid. Figure 2a illustrates the decision graph that selects
centroids by their harmonic mean of ρt and δt. Empirical and
theoretical evidences were documented in (Rodriguez and
Laio 2014) to substantiate that the centroids and their cor-
responding clusters selected through this density-peak crite-
rion is on a par with those iterative clustering methods such
as online K-means (Hosseini, Gholipour, and Beigy 2016;
Din et al. 2020), yet renders a much higher computational
efficiency and better fit to an online learning setting.

Label propagation via geometric structure. After deter-
mining the cluster centroids, we can construct the geometric
structure by letting each xt point to its nearest instance xi

that has a higher ρt, thereby forming a directed graph as
shown in Figure 2b. To propagate the very limited super-
vision information, we conduct self-training on the learned
structure. The crux lies in an iterative selection of unlabelled
instances that can be predicted correctly with high confi-
dence. Such instance can be naturally deemed as that pointed
by the labelled instances. If no labeled instance is pointing to
it, then the propagating path further traces back with a depth-
first search, until one label is found. To scale up for stream-
ing inputs, our online learner proceeds as follows. As xt ar-
rives, we merge it into B and pop up a previously buffered
instance xi that is not labeled. We select xi as the most con-
fidently predicted instance, so by the constructed geometric
shape. Compared to the prior semi-supervised online learn-
ers (He et al. 2021a; Din et al. 2020) that pop up and pre-
dict the oldest instance in B (where the prediction on xt is
actually made at the t + B-th time step, with a B predic-
tion delay), our approach enjoys a higher online efficiency
as the prediction delay of any arriving instance xt is at most
B. Specifically, in the worst case, xt cannot be confidently
predicted and is not popped up until it becomes the oldest
instance in B, our approach shares a B prediction delay as
previous studies. In more ideal cases, xt is pointed by a la-
beled instance and is hence predicted at the same or nearby
round as it appears.

Online Ensembling for Expedited Convergence
Thus far, we have described how to build classifier to make
on-the-fly predictions with a buffer B on the feature space

Figure 2: An example of learning data geometrics with 9
instances in a 2D feature space. (a) The orginal data distri-
bution, and the inserted figure is the decision graph to yield
instances with high ρ and δ. (b) The learned geometric struc-
ture and its self-training processes where colored solid cir-
cles (‘6’ and ‘1’) are initial labelled instances. The label-
ing information is propagated through the learned topologi-
cal structure, from the labeled instances to their immediate
neighbors (‘8’ and ‘2’) at first, and gradually to more far-
away instances.

reconstructed with the learned GC model. We denote this
classifier as fO, with ‘O’ indicating that it is trained on the
original, mix-typed features. Let yO = ⟨fO,xrec

t ⟩ conceptu-
ally denote the prediction. Despite the latent space learned
by GC is intermediately leveraged as xrec

t = g(zt), its power
is not fully compiled into the model as the latent space is
with continuous (normal) variables only thus may lead to
faster convergence. However, this gives rise to a trade-off, as
any newly emerge feature being not described by a sufficient
number of instances can create inaccurate latent representa-
tions. It is hence desireable to train the online learners that
can enjoy the continuous merit of the learned latent space on
the one hand, but will not suffer from its inaccuracy on the
other. This motivates us to leverage online ensemble learn-
ing that two base classifiers trained on both original and la-
tent feature spaces jointly suggest more accurate predictions.

Let yZ = ⟨fZ , zt⟩ denote the prediction made on the la-
tent representation of xt. The ensemble prediction is ŷt =
α1 · yO + α2 · yZ , with α1 + α2 = 1. The values of α1 and
α2 determine the importance of the two base classifiers fO
and fZ , respectively. Let RO(T ) =

∑T
t=1 π(t) · ℓ(yt, yO)

and RZ(T ) =
∑T

t=1 π(t) · ℓ(yt, yZ) be the cumulative risks
suffered by fO and fZ over T rounds, respectively. Then, at
the round T +1, α1 is updated based on the risk exponentials
as follows(He et al. 2019; Cesa-Bianchi and Lugosi 2006):

α1 = e−µRO(T )/(e−µRO(T ) + e−µRZ(T )) (12)

where µ = 2
√
2 ln 2/T is a tuned parameter.

Experiments
This section documents empirical evidence to substantiate
the effectiveness of our proposed OSLMF algorithm.

Datasets. Our evaluation are conducted on 14 datasets, in-
cluding 13 from the UCI repository (Asuncion 2007) and
one from the Massive Online Analysis (MOA) (Bifet et al.
2018) that simulates a real streaming setup. The evaluated
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Dataset #Inst. #Feat. Dataset #Inst. #Feat.

wpbc 198 33 dna 949 180
ionosphere 351 34 german 1000 24
wdbc 569 30 splice 3190 60
australian 690 14 kr-vs-kp 3196 36
credit-a 690 15 magic04 19,020 10
wbc 699 9 a8a 22,696 123
diabetes 768 8 stream 10,000 1000

Table 1: Statistics of the studied datasets.

datasets span diverse application domains, such as educa-
tion, finance, etc. Table 1 summarizes their statistics.

Evaluation Protocol. We follow the same protocol of
prior studies (Zhang et al. 2016; He et al. 2019) to simu-
late two types of streaming feature dynamics. 1) Trapezoidal
Data Streams, in which later inputs tend to carry incremen-
tally more features. we split the original datasets into ten
chunks, where in the i-th chunk only the first i∗10% features
would be retained, i.e., the first data batch will retain the first
10% features and so forth. 2) Capricious Data Streams, in
which new features appear and old features fadeaway over
time arbitrarily, we randomly remove 50% features in each
arriving instance randomly. To simulate a semi-supervised
learning environment, 50% labels are randomly removed
from the datasets. Cumulative error rate (CER) is employed
to measure the algorithm performance, which counts the ra-
tio of error predictions over all instances seen so far.

Results. Table 2 and Figures 3-4 documents the experi-
mental results. We compare OSLMF with four rival models,
FOBOS (Singer and Duchi 2009), OMR (Goldberg, Li, and
Zhu 2008), OLSF (Zhang et al. 2016), and OVFM (He et al.
2021a), aiming to answer questions (Q1 – Q4) as follows.

Q1. Does our OSLMF outperform the state-of-the-arts?

To better analyze the results in Table 2, we make statis-
tical analyses of the loss/win, the Wilcoxon signed-ranks
test (p-value) (Demšar 2006), and the Friedman test (F-
rank) (Demšar 2006). The statistical results are attached at
the bottom of the table. We make three observations from
the results. First, OSLMF achieves the best accuracy per-
formance (the lowest CER) on most cases and loses to its
competitors in five out of 84 settings only. Second, all the
p-value are smaller than 0.05, which verifies that OSLMF
has significantly better prediction accuracy than all the com-
parison models at a 95% confidence level. Third, according
to F-rank, the performance of OVFM and OLSF tie and are
both inferior to our OSLMF, followed by OMR and lastly
FOBOS. Such result coincides with the design of these com-
petitors, where OVFM and OLSF have tailored learning ma-
chinism to deal with a varying feature space while OMR
posits fixed features. FOBOS reprents a baseline without any
speical design for feature space dynamics nor label scarcity,
thus ends up with the worst accuracy performance.

Q2. How actually can GC tame mix-typed features online?

The comparison between our OSLMF and OMR amounts
to the answer. Whereas both of them leveraged the geomet-
ric structure of data to realize online semi-supervised learn-
ing, OMR does not allow inputs with mix-typed streaming
features. We observe that OSLMF has a lower CER than
OMR by a ratio of 23.1%. Also, from Figures 3, OSLMF
arrives at 60.56%, 38.97%, 0.41%, and 76.63% lower CER
than those of OMR on the datasets of australian, german,
kr-vs-kp, and a8a, respectively – the datasets naturally with
mix-typed features. These findings substantiate that the ef-
fectiveness of GC in dealing with mix-typed streaming fea-
tures, which helped our OSLMF to attain superior prediction
performance.

Q3. Can density-peaks profile geometric-structure of data?

The comparison between our OSLMF and OVFM
amounts to the answer, as OVFM assumes fully labeled data
streams. Also, we compare their ultimate CERs in Table 2
and trends of CERs over time in the setting of capricious
data streams as shown in Figure 3. We observe that OSLMF
has a lower CER than OVFM throughout the online learn-
ing process. Its ultimate CERs are 23.92%, 29.28%, 13.93%,
and 54.97% lower than that of OVFM on the datasets of aus-
tralian, german, kr-vs-kp, and a8a, respectively. These ob-
servations verify that by propagating the limited labeling in-
formation on the learned data geometrics via local density-
peaks, our OSLMF enjoys the abundance of unlabelled data,
which are leveraged to uplift its prediction accuracy.

Q4. Does online ensembling yield better accuracy?

To empirically investigate how OSLMF adaptively con-
trols the combination of the two base classifiers, we monitor
the changes of the ensembling coefficient α1, as plotted in
Figure 4. The pattern of α2 is symmetric to α1 as they add
up to 1 thus is omitted to keep succinct. We observe that the
variation patterns of α1 differs across datasets, while the ac-
curacy performance of OSLMF remains its increasing trend
(with a decreasing CER). The inconsistent patterns of α1

necessitates the ensembling, as the higher/lower its value,
the more/less important the classifier trained in the observed
feature space, while it is next to foresee when this classi-
fier prevail the other classifier trained on the latent normal
space. Our ensemble strategy allows the coefficients α1 and
α2 learned from the streaming inputs, thus lifts the overhead
of choosing the better classifier in a prior. To further investi-
gate, we ablate the proposed algorithm by plotting the CER
of using observed features to make predictions only, yield-
ing an simplified algorithm named OSLMF-F. We observe
that OSLMF-F is inferior to the ensemble OSLMF with a
consistently higher CER (thus lower accuracy).

Conclusion
In this paper, we strive to push the boundary of online learn-
ing from doubly-streaming data. A new learning problem
named OSLMF is explored, which imposes no assumption
on the feature types nor the learning labels, thereby excelling
the prior studies that make assumptions on either or both
in terms of flexibility and applicability. To tame the mix-
typed streaming features, we leverage the Gaussian copula
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Trapezoidal Data Streams Capricious Data Streams

Dataset FOBOS OMR OLSF OSLMF FOBOS OMR OVFM OSLMF

wpbc .237± .000 .345± .000 .366± .001 .235± .003 .248± .000• .320± .000• .309± .000• .567± .001
ionosphere .342± .000 .443± .000 .230± .000 .225± .000 .479± .000 .418± .000• .269± .000• .466± .000
wdbc .577± .000 .460± .000 .347± .000 .187± .000 .628± .000 .399± .000 .113± .000 .110± .000
australian .497± .000 .491± .000 .486± .000 .356± .000 .455± .000 .492± .001 .255± .000 .194± .000
credit-a .445± .000 .415± .000 .312± .000 .186± .000 .445± .000 .484± .000 .484± .000 .416± .000
wbc .345± .000 .394± .000 .455± .000 .219± .000 .162± .000 .461± .000 .072± .000 .059± .000
diabetes .349± .000 .376± .000 .331± .000 .170± .000 .349± .000 .426± .000 .399± .000 .331± .004
dna .518± .000 .496± .000 .499± .000 .462± .000 .511± .000 .496± .000 .282± .000 .229± .000
german .300± .000 .381± .000 .407± .000 .227± .000 .700± .000 .372± .000 .321± .000 .227± .000
splice .500± .000 .493± .000 .375± .000 .311± .000 .519± .000 .400± .001 .498± .000 .424± .000
kr-vs-kp .482± .000 .523± .000 .239± .000 .221± .000 .478± .000 .242± .000 .280± .000 .241± .000
magic04 .665± .000 .529± .000 .374± .000 .348± .000 .689± .000 .438± .000 .317± .000 .091± .000
a8a .375± .000 .482± .003 .273± .004 .179± .001 .401± .003 .368± .001 .191± .001 .086± .001
stream .615± .000 .472± .000 .233± .000 .230± .000 .621± .000 .471± .000 .231± .000 .224± .000

loss/win 0/14 0/14 0/14 0/42 1/13 2/12 2/12 5/37
p-value .0005 .0005 .0005 −− .0008 .0015 .0071 −−
F-rank 3.286 3.124 2.500 1.000 3.357 3.071 2.286 1.285

Table 2: The comparison results on cumulative error rates. We repeated the experiment 10 times for each dataset, averaged the
cumulative error rate (CER), and calculated the variance of the 10 times values. Experimental results (CER ± Variance) for 14
data sets in the case of trapezoidal and capricious data streams. • indicates the cases that OSLMF loses the comparison.
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Figure 3: CER trends of four methods in capricious data streams.
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Figure 4: (Capricious) Temporal variation of ensemble weight α1 and CERs of OSLMF and its ablation variant OSLMF-F .

to model the correlation between discrete and continuous
variables in a latent normal space, so as to mitigate radical
updates for fast convergence. To exploit the scarce labeled
instances, we uncover the geometric structure underlying the
arriving instances via density-peak clustering, so as to prop-
agate the labeling information to their unlabeled neighbors.
Extensive experiments on 14 benchmark datasets are con-
ducted to evidence the viability, effectiveness, and superior-

ity of our proposed algorithm. The results substantiated that
our proposed algorithm significantly outperforms the state-
of-the-art competitors. In the future, we plan to make the
hyper-parameters of our proposed algorithm self-adaptive
through evolutionary computation algorithms.
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Demšar, J. 2006. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine learning re-
search, 7: 1–30.
Din, S. U.; Shao, J.; Kumar, J.; Ali, W.; Liu, J.; and Ye, Y.
2020. Online reliable semi-supervised learning on evolving
data streams. Information Sciences, 525: 153–171.
Dyer, K. B.; Capo, R.; and Polikar, R. 2013. Compose: A
semisupervised learning framework for initially labeled non-
stationary streaming data. IEEE transactions on neural net-
works and learning systems, 25(1): 12–26.
Fan, J.; Liu, H.; Ning, Y.; and Zou, H. 2017. High dimen-
sional semiparametric latent graphical model for mixed data.

Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(2): 405–421.
Farajtabar, M.; Shaban, A.; Rabiee, H. R.; and Rohban,
M. H. 2011. Manifold coarse graining for online semi-
supervised learning. In ECML-PKDD, 391–406. Springer.
Goldberg, A. B.; Li, M.; and Zhu, X. 2008. Online man-
ifold regularization: A new learning setting and empirical
study. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 393–407. Springer.
Gu, B.; Yuan, X.-T.; Chen, S.; and Huang, H. 2018. New
incremental learning algorithm for semi-supervised support
vector machine. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, 1475–1484.
He, Y.; Dong, J.; Hou, B.-J.; Wang, Y.; and Wang, F. 2021a.
Online Learning in Variable Feature Spaces with Mixed
Data. In ICDM, 181–190. IEEE.
He, Y.; Wu, B.; Wu, D.; Beyazit, E.; Chen, S.; and Wu, X.
2019. Online learning from capricious data streams: a gen-
erative approach. In IJCAI.
He, Y.; Yuan, X.; Chen, S.; and Wu, X. 2021b. Online Learn-
ing in Variable Feature Spaces under Incomplete Supervi-
sion. In AAAI, volume 35, 4106–4114.
Hoff, P. D.; et al. 2007. Extending the rank likelihood for
semiparametric copula estimation. The Annals of Applied
Statistics, 1(1): 265–283.
Hosseini, M. J.; Gholipour, A.; and Beigy, H. 2016. An en-
semble of cluster-based classifiers for semi-supervised clas-
sification of non-stationary data streams. Knowledge and
information systems, 46(3): 567–597.
Hou, B.-J.; Yan, Y.-H.; Zhao, P.; and Zhou, Z.-H. 2021. Stor-
age Fit Learning with Feature Evolvable Streams. In AAAI.
Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2017. Learning with
feature evolvable streams. NeurIPS, 30.
Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2021. Prediction
With Unpredictable Feature Evolution. IEEE Transactions
on Neural Networks and Learning Systems, 1–10.
Hou, C.; Zeng, L.-L.; and Hu, D. 2018. Safe classifica-
tion with augmented features. IEEE transactions on pattern
analysis and machine intelligence, 41(9): 2176–2192.
Hou, C.; and Zhou, Z.-H. 2017. One-pass learning with
incremental and decremental features. IEEE transactions
on pattern analysis and machine intelligence, 40(11): 2776–
2792.
Huang, C.; Li, P.; Gao, C.; Yang, Q.; and Shao, J. 2019. On-
line Budgeted Least Squares with Unlabeled Data. In ICDM,
309–318. IEEE.
Kumagai, A.; and Iwata, T. 2018. Learning dynamics of de-
cision boundaries without additional labeled data. In KDD,
1627–1636.
Lian, H.; Atwood, J. S.; Hou, B.; Wu, J.; and He, Y. 2022.
Online Deep Learning from Doubly-Streaming Data. In
ACM Multimedia.
Liu, H.; Lafferty, J.; and Wasserman, L. 2009. The non-
paranormal: Semiparametric estimation of high dimensional

4727



undirected graphs. Journal of Machine Learning Research,
10(10).
Masarotto, G.; and Varin, C. 2012. Gaussian copula
marginal regression. Electronic Journal of Statistics, 6:
1517–1549.
McLachlan, G. J.; and Krishnan, T. 2007. The EM algorithm
and extensions. John Wiley & Sons.
Meng, Y.; Jiang, C.; Quek, T. Q.; Han, Z.; and Ren, Y. 2017.
Social learning based inference for crowdsensing in mobile
social networks. IEEE Transactions on Mobile Computing,
17(8): 1966–1979.
Pan, Z.; Yu, H.; Miao, C.; and Leung, C. 2017. Crowd-
sensing air quality with camera-enabled mobile devices. In
AAAI, volume 31, 4728–4733.
Rodriguez, A.; and Laio, A. 2014. Clustering by fast search
and find of density peaks. science, 344(6191): 1492–1496.
Schmidt, M.; Le Roux, N.; and Bach, F. 2017. Minimizing
finite sums with the stochastic average gradient. Mathemat-
ical Programming, 162(1-2): 83–112.
Schreckenberger, C.; Glockner, T.; Stuckenschmidt, H.; and
Bartelt, C. 2020. Restructuring of Hoeffding Trees for
Trapezoidal Data Streams. In ICDM, 416–423. IEEE.
Shalev-Shwartz, S.; et al. 2011. Online learning and online
convex optimization. Foundations and trends in Machine
Learning, 4(2): 107–194.
Singer, Y.; and Duchi, J. C. 2009. Efficient learning using
forward-backward splitting. Advances in Neural Informa-
tion Processing Systems, 22.
Wagner, T.; Guha, S.; Kasiviswanathan, S.; and Mishra, N.
2018. Semi-supervised learning on data streams via tempo-
ral label propagation. In International Conference on Ma-
chine Learning, 5095–5104. PMLR.
Wu, D. 2023. Robust Latent Feature Learning for Incom-
plete Big Data. Springer Nature press.
Wu, D.; He, Y.; Luo, X.; Shang, M.; and Wu, X. 2019. On-
line feature selection with capricious streaming features: A
general framework. In 2019 IEEE International Conference
on Big Data (Big Data), 683–688. IEEE.
Wu, D.; He, Y.; Luo, X.; and Zhou, M. 2021. A latent factor
analysis-based approach to online sparse streaming feature
selection. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 52(11): 6744–6758.
Wu, D.; Shang, M.; Luo, X.; Xu, J.; Yan, H.; Deng, W.; and
Wang, G. 2018. Self-training semi-supervised classification
based on density peaks of data. Neurocomputing, 275: 180–
191.
Yu, Z.; Luo, P.; You, J.; Wong, H.-S.; Leung, H.; Wu, S.;
Zhang, J.; and Han, G. 2015. Incremental semi-supervised
clustering ensemble for high dimensional data clustering.
IEEE Transactions on Knowledge and Data Engineering,
28(3): 701–714.
Zeisl, B.; Leistner, C.; Saffari, A.; and Bischof, H. 2010. On-
line semi-supervised multiple-instance boosting. In CVPR,
1879–1879. IEEE.

Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; and
Wu, X. 2015. Towards mining trapezoidal data streams.
In 2015 IEEE International Conference on Data Mining,
1111–1116. IEEE.
Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; and
Wu, X. 2016. Online learning from trapezoidal data streams.
IEEE Transactions on Knowledge and Data Engineering,
28(10): 2709–2723.
Zhang, Z.-Y.; Zhao, P.; Jiang, Y.; and Zhou, Z.-H. 2020.
Learning with feature and distribution evolvable streams. In
ICML, 11317–11327. PMLR.
Zhao, Y.; and Udell, M. 2020. Missing value imputation
for mixed data via gaussian copula. In Proceedings of the
26th ACM SIGKDD international conference on knowledge
discovery & data mining, 636–646.
Zhu, X.; Goldberg, A. B.; and Khot, T. 2009. Some new di-
rections in graph-based semi-supervised learning. In ICME,
1504–1507. IEEE.
Zinkevich, M. 2003. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In ICML, 928–936.

4728


