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Abstract

Recommender systems now consume large-scale data and
play a significant role in improving user experience. Graph
Neural Networks (GNNs) have emerged as one of the most
effective recommender system models because they model
the rich relational information. The ever-growing volume of
data can make training GNNs prohibitively expensive. To ad-
dress this, previous attempts propose to train the GNN models
incrementally as new data blocks arrive. Feature and struc-
ture knowledge distillation techniques have been explored to
allow the GNN model to train in a fast incremental fashion
while alleviating the catastrophic forgetting problem. How-
ever, preserving the same amount of the historical informa-
tion for all users is sub-optimal since it fails to take into
account the dynamics of each user’s change of preferences.
For the users whose interests shift substantially, retaining too
much of the old knowledge can overly constrain the model,
preventing it from quickly adapting to the users’ novel inter-
ests. In contrast, for users who have static preferences, model
performance can benefit greatly from preserving as much of
the user’s long-term preferences as possible. In this work, we
propose a novel training strategy that adaptively learns per-
sonalized imitation weights for each user to balance the con-
tribution from the recent data and the amount of knowledge to
be distilled from previous time periods. We demonstrate the
effectiveness of learning imitation weights via a comparison
on five diverse datasets for three state-of-art structure distil-
lation based recommender systems. The performance shows
consistent improvement over competitive incremental learn-
ing techniques.

Introduction
The growth of online services has rendered recommender
systems a vital part of providing personalized recommenda-
tions to users. Making highly relevant recommendations im-
proves user experience and increases the service provider’s
revenue. Deep learning models are becoming more preva-
lent in all aspects of recommender system design due to their
superiority in constructing high-quality user and item repre-
sentations in an end-to-end fashion (Covington, Adams, and
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Sargin 2016; Guo et al. 2017; Cheng et al. 2016). There is a
recent trend to formulate the recommendation problem as a
learning task on graphs because of the rich relational infor-
mation that graphs can model. Much of the data from rec-
ommender systems can naturally be expressed using graph
structures (van den Berg, Kipf, and Welling 2018; Wang
et al. 2019b, 2021; Sun et al. 2019). For example, we can
use the user-item bipartite interaction graph, an item simi-
larity graph, a user-user graph derived from social network
exchanges, and an additional knowledge graph to improve
the representation learning process. Graph Neural Network
(GNN) based recommender systems have emerged as one
of the most effective models because the message-passing
paradigm allows sufficient modeling of the relational infor-
mation in the data. However, training GNNs on large-scale
graphs can be prohibitively expensive (Ying et al. 2018; Zou
et al. 2019; Chiang et al. 2019; Zeng et al. 2020; Qiu et al.
2020; Xu et al. 2020), which makes deploying models with
GNN backbone networks extremely challenging on large-
scale recommender systems.

One approach to address the computation issue is to train
the deep learning models incrementally as new data blocks
arrive (Kirkpatrick et al. 2017; Shmelkov, Schmid, and Ala-
hari 2017; Castro et al. 2018; Rebuffi et al. 2017; Mallya and
Lazebnik 2018; Xu and Zhu 2018; Qiu et al. 2020). How-
ever, directly using the data from the incremental block to
fine-tune a model can lead to catastrophic forgetting (Kirk-
patrick et al. 2017; Shmelkov, Schmid, and Alahari 2017).
Because of their superiority in terms of efficiency and per-
formance, knowledge distillation approaches (Castro et al.
2018; Kirkpatrick et al. 2017; Xu et al. 2020; Wang, Zhang,
and Coates 2021) are preferable for models with a GNN
backbone architecture. Benefiting from the knowledge dis-
tillation paradigm, key information from the historical data
is preserved and transferred to the student model trained us-
ing only newly arrived data. This is achieved by regulariz-
ing the distance between the representations of the teacher
and the student models. Both feature and structure knowl-
edge distillation techniques have been explored; these al-
low the GNN model to better preserve both the node feature
and structure information in the previous training data while
enjoying the fast incremental training process (Yang et al.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4711



Figure 1: Motivation of the designed framework where the
boy has a constant preference from time t − 1 to t, while
the girl’s interests change more dynamically. Capturing the
interest shift difference between users via a personalized in-
cremental learning scheme will be beneficial.

2020; Xu et al. 2020; Wang, Zhang, and Coates 2021).
However, preserving the same amount of historical infor-

mation for all users without any distinction between them
might be sub-optimal since it fails to take into account the
dynamics of each user’s potential change of preferences. For
users whose interests shift substantially, retaining too much
of the old knowledge from the past via the knowledge distil-
lation process might prevent the model from quickly adapt-
ing to the users’ latest interests. In contrast, for users who
have more static preferences, model performance can bene-
fit greatly from preserving as much of the user’s long-term
preference as possible. We illustrate this with an example in
Figure 1.

Thus, how to design an incremental learning training
scheme that can model the dynamics of users’ personal-
ized preference change to determine how much knowledge
to preserve from the past is an intriguing and important re-
search question. We address this research question by tar-
geting an important hyper-parameter in knowledge distilla-
tion objective functions, named the imitation weight, which
is used to balance the contributions to the overall loss from
the new data and from distillation.

In this work, following the above intuition, we propose
a novel end-to-end training strategy that adaptively learns
personalized imitation weights for each user to better bal-
ance the contributions from the recent data and the amount
of knowledge to be distilled from previous time windows.
Specifically, we first model each user’s preference as a distri-
bution over the distance to item cluster centers, with the clus-
ters being obtained by a deep structural clustering method
applied to the user-item bipartite graph. The cluster learn-
ing process is integrated into the overall training procedure.
Then we construct, for each user, a state vector that encodes

the distance between two preference distributions associated
with that user, which are derived from consecutive training
blocks. This state vector is passed as the input to a weight
generator parameterized by a neural network to produce a
user-specific imitation weight. This personalized imitation
weight determines how much information pertinent to the
user is inherited from the teacher (historical) model. Our
proposed approach is not restricted to a specific backbone
architecture or incremental learning procedure. It can easily
be integrated with multiple existing state-of-the-art methods.

To summarize, the main contributions of the paper are:
1. We demonstrate that explicitly assessing the user inter-

est shift between consecutive training blocks and using
this signal to learn a user-specific imitation weight is an
important modeling factor. It can significantly impact the
performance of knowledge distillation-based incremental
learning techniques. To the best of our knowledge, this is
the first incremental learning training scheme that explic-
itly models user change of preferences.

2. We propose a novel training strategy that adaptively
learns personalized imitation weights for each user to
balance the contribution from recent data and the amount
of knowledge that is distilled from previous periods.

3. We demonstrate the effectiveness of learning imita-
tion weights via a thorough comparison on five diverse
datasets. Our best-performing model improves the SOTA
method by 2.30%. We integrate our proposed training
procedure with three recent SOTA incremental learning
techniques for recommender systems. We show consis-
tent improvement over the non-adaptive counterparts.

Related Work
Incremental Learning
Incremental learning is a branch of machine learning that
aims to develop models which are updated continuously
with new data. However, naively training on new batches
of data as they arrive leads to the problem of catastrophic
forgetting that the model forgets previously learned infor-
mation and is overly biased to new data (Kirkpatrick et al.
2017; Shmelkov, Schmid, and Alahari 2017; Castro et al.
2018).

There are two main groups of approaches to combat this
issue:(i) regularization-based knowledge distillation (Castro
et al. 2018; Kirkpatrick et al. 2017; Xu et al. 2020; Wang,
Zhang, and Coates 2021) and (ii) experience replay, also
referred to as reservoir sampling (Prabhu, Torr, and Doka-
nia 2020; Ahrabian et al. 2021). Reservoir methods sample
a data reservoir containing the most representative histor-
ical data and replay it while learning new tasks to allevi-
ate forgetting. Some key reservoir sampling works such as
iCarl (Rebuffi et al. 2017) and GDumb (Prabhu, Torr, and
Dokania 2020) focus on optimizing the reservoir construc-
tion either via direct optimization or via greedy heuristics.
Recent work on graph recommender systems expands on the
GDumb heuristic and proposes inverse degree sampling of
nodes for reservoir construction (Ahrabian et al. 2021).

Regularization techniques typically introduce penalty pa-
rameters in the loss function to prevent the model weights
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from “drifting” too far from their tuned values from histori-
cal data blocks, thus preventing forgetting (Yang et al. 2019;
Xu et al. 2020; Wang, Zhang, and Coates 2021). Knowl-
edge distillation is one of the most common regularization
approaches. Knowledge distillation refers to the process of
transferring knowledge from a large and complex teacher
model to a smaller student model without significant loss
in performance (Hinton, Vinyals, and Dean 2015). In incre-
mental learning, the teacher model is trained on the histori-
cal data and the student model is trained on the new data.

Although both incremental learning and sequential learn-
ing take advantage of historical information, sequential rec-
ommendation learning is different from incremental learn-
ing in several important aspects. First, incremental learn-
ing aims to substantially reduce the training sample num-
ber by inheriting the knowledge from the previously trained
model with knowledge distillation or experience reply. In
contrast, sequential recommender systems focus on better
characterizing the user’s long-term or short-term interaction
sequences through memory units (Hidasi and Karatzoglou
2018), Recurrent Neural Networks (RNNs)or attention de-
sign (Kang and McAuley 2018; Fan et al. 2021). The for-
mer is a training strategy in the scenario that requires incre-
mental updates and the latter is a specific model architecture
to handle the given sequence of data. Second, incremental
learning in the context of recommender systems is agnostic
to any type of backbone architecture. Both sequential and
non-sequential models should be compatible with the incre-
mental training method.

Incremental Learning on Graph Structured Data
Graph representation learning techniques have become a
mainstream tool for collaborative filtering and recommender
systems (Sun et al. 2019; Ying et al. 2018; Wang et al.
2019b; He et al. 2020). However, they suffer from a com-
putation and memory burden introduced by either the neigh-
borhood sampling process, message passing procedure or
the storage of the adjacency matrix, which prevents GNN
models from satisfying a strict training time constraint for
online systems (Xu et al. 2020). Several incremental rec-
ommender system designs have been proposed to tailor
the GNN models to better preserve the structural informa-
tion. GraphSAIL (Xu et al. 2020) employs knowledge dis-
tillation at the node level, the node neighborhood, and the
global graph level. LSP s (Yang et al. 2020) minimizes the
distance between structure-related distributions drawn from
the model trained at previous time steps and the fine-tuned
model. SGCT (Wang, Zhang, and Coates 2021) introduces
a contrastive approach to knowledge distillation. The objec-
tive of SGCT is to maximize the lower bound of the mu-
tual information between pairs of adjacent node embeddings
from the student and the teacher model. LWC-KD (Wang,
Zhang, and Coates 2021) improves over SGCT by consider-
ing intermediate layer embedding distillation and additional
contrastive distillation on the user-user and item-item graph.

Novelty of our work Prior works focus on universally
distilling as much information as possible for all users, with-
out distinguishing between them. However, this is not al-
ways optimal or desirable as the interests of some users

may shift quickly over time and the recommendation models
should be able to adapt quickly to the new user preference.
Our work proposes an adaptive weight mechanism to learn
the amount of knowledge to distill for each user. We show
experimentally that personalizing the distillation strength by
assessing how rapidly each user’s interests are changing can
lead to significantly better recommendation performance for
state-of-art backbones.

Methodology
In this section, we present the proposed Structure Aware
Incremental Learning with Personalized Imitation Weight
frameworks, abbreviated to SAIL-PIW, which exploits per-
sonalized imitation weights by characterizing the user in-
terest distribution shift between the historical data and the
newly arrived incremental data. The personalized imitation
weight is used in the knowledge distillation loss to balance
the contribution of the recent data and the amount of histori-
cal knowledge to be distilled from previous time periods. To
better model each user’s preference, we learn a distribution
over the distance to item cluster centers, with the clusters
being obtained by a structural clustering method applied to
the user-item bipartite graph. Once we obtain the user in-
terest distribution, we then use the difference of the interest
distribution between the incremental learning block and the
teacher model as a user interest shift indicator. This shift in-
dicator models the change of user preferences between the
most recent training block and the newly arrived incremental
block. The shift indicator is then passed to a weight gener-
ator, parameterized by a multi-layer perceptron to output a
user-specific imitation weight. Our proposed framework is
trainable in an end-to-end fashion via back-propagation.

The overall architecture of our model is presented in Fig-
ure 2. In the following subsections, we initially describe in
detail the individual components of our proposed method.
Thus, we delicately separate sections into (i) the proposed
personalized distillation loss, (ii) the architecture of the im-
itation weight generator, (iii) the structure-aware item clus-
tering technique to obtain the cluster center embedding, and
finally (iv) the way we construct the metric to characterize
the user interest shift. It is important to note that our frame-
work is not limited to a particular GNN model, graph-based
recommender system architectureor a specific incremental
learning framework. We illustrate promising results of using
GraphSAIL, SGCT and LWC-KD as backbones. Thus, our
proposed solution is highly appealing in real-world settings
as it can be readily applied on top of existing graph-based
systems regardless of the base models that these systems al-
ready employ.

Personalized Distillation Loss
Knowledge distillation is commonly used for model com-
pression in which a small model (student model) aims to
achieve approximately equivalent performance to a larger
model (teacher model) by inheriting important knowledge
from the larger model (Hinton, Vinyals, and Dean 2015).
Typically, when applying knowledge distillation in an incre-
mental learning setting we use a teacher model trained on
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Figure 2: Overall framework of SAIL-PIW. (a). Student model at time t takes a new user-item interaction graph as input
to learn user and item embeddings, regularized by knowledge distillation from the teacher model at time point t − 1. (b).
We learn the distance of an item embedding from the GNN model to a learnable item anchor embedding. It minimizes the
KL divergence between learned items’ distribution to clusters P and target distribution Q. (c). The user’s distribution to item
anchors is calculated for both time point t − 1 and time point t. Two types of users are illustrated: user 1 with low interest
shift and user 2 with high interest shift. (d). The user interest shift is calculated as the difference of user’s normalized distance
distribution to item cluster centers. The weight generator produces a personalized imitation weight.

historical data and a student model trained on the incremen-
tal data block. When training the student model, a distillation
term is introduced to the loss (see eq. (1)), in order to retain
the knowledge acquired by the teacher model. The objective
function for training the incremental learning model can be
formulated as:

LS = Lnew(yS , ỹS) + λLKD(ỹT , ỹS) , (1)

where Lnew denotes the student model’s loss function be-
tween ground truth labels yS and the predicted values ỹS ,
and LKD denotes the knowledge distillation loss between
the teacher and the student models. Here, λ denotes a scalar
that controls the amount of distillation loss involved during
training (Hinton, Vinyals, and Dean 2015).

In the context of recommender systems, Lnew is of-
ten a Bayesian personalized ranking (BPR) (Rendle et al.
2009) loss. In a recent GNN-based knowledge distillation
approach called GraphSAIL (Xu et al. 2020) LKD consists
of self-embedding distillation, global structure distillation,
and local structure distillation. Though previous works have
achieved promising performance and efficient training pro-
cesses (Xu et al. 2020; Wang, Zhang, and Coates 2021; Qiu
et al. 2020), they preserve previous knowledge using a sin-
gle imitation weight λ that applies to all users. However,
fully preserving the historical information for all users is
sub-optimal since it fails to take into account the dynamics
of each user’s change of preferences. In practice, we observe
that user preferences are dynamic and different users can
be expected to exhibit different levels of interest change be-
tween the past time blocks and the arrival of the incremental
data block. For users whose interests shift significantly from
previous time periods, we do not want the student model’s
learning on the incremental data to be overly constrained by
the teacher model. Therefore, following this intuition, we
aim to distinguish different distillation levels for different
users, so we propose to adaptively learn an imitation weight
wu for each user and apply it to the knowledge distillation
objective function. We elaborate on the process for learning

wu in the following subsections.
Our personalized knowledge distillation loss is:

LU
KD - PIW =

∑
u∈U

wuLu
KD(ỹu,T , ỹu,S)

where wu is the personalized imitation weight learned for
each user to identify the amount of knowledge to retain from
the teacher model. Lu

KD refers to the knowledge distillation
loss for a user u.

The overall incremental learning training objective is:

LS = Lnew(yS , ỹS) + λ
(
LU

KD - PIW + LI
KD

)
(2)

whereLI
KD =

∑
i∈I Li

KD(ỹi,T , ỹi,S) is the knowledge dis-
tillation loss among all the items and Li

KD refers to knowl-
edge distillation loss for a item i. Since item knowledge is
usually static by nature, we adopt the original knowledge
distillation without imitation weight personalization.

Imitation Weight Generator
Directly learning the personalized imitation weight wu will
introduce a large number of learnable parameters because of
the large user number. Instead, we propose to learn the per-
sonalized imitation weights using a learnable function pa-
rameterized by a neural network. For each training block,
we associate with each user a state vector su ∈ RM which
represents the user interest change between consecutive time
blocks. Here M is the total number of clusters of items. We
explain how we construct, initialize and update this state
vector below. For now, assuming we have such a vector su,
we apply it as input to a weight generator network f(su)
to learn the imitation weight of each user for distillation. In
our realization of the framework, f(su) is specified by the
following equations:

zu = relu(W1 · su + b1), (3)
wu = softplus(W2 · zu + b2), (4)
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with W1 ∈ RM×l, W2 ∈ Rl, b1 ∈ Rl, and b2 ∈ R
as the learnable parameters, where l is size of the hidden
layer. We note that applying a more advanced network as
the weight generator may further improve the performance,
but this is not the focus of this work. Thus, we use a sim-
ple form where the weight generator is parameterized by a
2-layer multi-layer perceptron (MLP). In the final layer, we
adopt a softplus (Zheng et al. 2015) activation function to
produce a strictly non-negative imitation weight. An addi-
tional normalization is applied across all the user imitation
weights in each training mini-batch to better enhance stabil-
ity during the training process.

Structure Aware Item Clustering
To derive the interest shift state vector, it is first necessary
to cluster the items. Inspired by the deep structure clustering
method (Wang et al. 2019a; Bo et al. 2020), where both node
attributes and higher-order structural information are fully
considered during the clustering process, we adopt a similar
objective function to learn the item center clusters given the
underlying user-item bipartite graph.

We measure the similarity between item embeddings and
the item cluster centers’ embeddings. Let qti,m ∈ R1 de-
note the similarity between the item embedding from the fi-
nal layers of the GNN backbone encoder ht

i ∈ Rd at time
point t and the item cluster center embedding (item anchor)
µt

m ∈ Rd. We measure this distance using a Student’s t-
distribution to handle differently scaled clusters in a com-
putationally convenient manner (Van der Maaten and Hin-
ton 2008). This can be seen as a soft clustering assignment
distribution of each item. The distribution mass of item i at
current time block t for item cluster m is calculated as:

qti,m =
(1 + ||ht

i − µt
m||2/ν)− ν+1

2∑
m′∈M (1 + ||ht

i − µt
m′ ||2/ν)−

ν+1
2

, (5)

where M is the total number of item clusters.
The deep structural clustering model we adopt is

trained by a self-supervised learning loss using the Kull-
back–Leibler (KL) divergence (Kullback and Leibler 1951):

Lkl
soft = DKL(P ||Q)t =

∑
i

∑
m

pti,mlog
pti,m
qti,m

(6)

where pti,m =
(qti,m)2/ft

m∑
m′∈M (qt

i,m′ )
2/ft

m′
, f t

m =
∑

i q
t
i,m and pti ∈

RM is the target distribution for item i at time point t which
strives to push the representations closer to cluster centers.
With the clusters defined, we can now derive su.

User Interest Shift Modelling
In this section, we detail the generation and initializa-
tion of su. We use µt

m as an item cluster anchor embed-
ding. We calculate the user distance to clusters as G̃t

u =
[µt

1W1(h
t
u)

T , ...,µt
MWM (ht

u)
T ] and apply softmax:

Gt
u,m =

eG̃
t
u,m∑M

m′=1 e
G̃t

u,m′
, (7)

where Wm ∈ Rd×d is a cluster-specific transformation ma-
trix. Similarly, using the node embeddings from the previous
time block we can get Gt−1

u . We hypothesize that user inter-
est shift is strongly related to the change of the users’ distri-
bution of distances to item clusters. Therefore, we design the
state vector with the assumption that the importance weights
of users are related to their distribution changes between two
time blocks. We define the state vector as:

su = (Gt−1
u −Gt

u)⊙ (Gt−1
u −Gt

u) (8)

where ⊙ denotes the Hadamard product.
Our framework is compatible with any graph-based rec-

ommender system incremental learning architecture such as
GraphSAIL (Xu et al. 2020), SGCT (Wang, Zhang, and
Coates 2021) and LWC-KD (Wang, Zhang, and Coates
2021). These are standard state-of-the-art incremental learn-
ing approaches for recommender systems.

The Overall Training Framework
Having illustrated the detailed design of the adaptive knowl-
edge distillation loss as well as the state vector su which
characterizes the user interest shift behavior, we now focus
on presenting the overall training objective function. Our
model is trained in a fully end-to-end fashion where the BPR
loss LBPR, which is applied on the incremental block, the
personalized knowledge distillation loss for users LU

KD - PIW,
the distillation loss for items LI

KD , and the self-supervised
loss Lkl

soft for item clustering are combined jointly as fol-
lows:

L = LBPR + λ1Lkl
soft + λ2

(
LU

KD - PIW + LI
KD

)
. (9)

Here λ1 and λ2 are the coefficients that balance the loss con-
tributions between the three terms.

Dataset Gowalla Yelp Tbao14 Tbao15 Netflix

# e(M) 0.28 0.94 0.75 1.33 12.40
# users 5992 40863 8844 92605 63691
u deg 46.96 23.06 84.74 14.39 194.73

# items 5639 25338 39103 9842 10271
i deg 49.90 37.19 19.17 135.40 1207.56

% new u 2.67 3.94 1.67 2.67 4.36
% new i 0.67 1.72 2.60 0.22 0.72
# months 19 6 1 5 6

Table 1: Data Statistics. # e(M) represents the number of
edges in millions. % new u/i refers to the average percentage
of new users/items relative to all users/items in each incre-
mental block. u/i deg refers to average user/item degrees

EXPERIMENTS
Datasets We use a diverse set of datasets consisting of
real-world user-item interactions. As shown in Table 1, the
datasets vary in the number of edges and number of user
and item nodes by up to two orders of magnitude, demon-
strating our approach’s scalability. The 5 mainstream, pub-
licly available datasets we use are: Gowalla, Yelp, Taobao14,
Taobao15 and Netflix.
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Gowalla

Methods Inc 1 Inc 2 Inc 3 Avg. Imp %

Fine Tune 0.1412 0.1637 0.2065 0.1705 0.00
LSP s 0.1512 0.1741 0.2097 0.1783 4.57

Uniform 0.1480 0.1653 0.2051 0.1728 1.34
Inv degree 0.1483 0.1680 0.2001 0.1738 1.93
GraphSAIL 0.1529 0.1823 0.2195 0.1849 8.44

GraphSAIL-PIW 0.1547 0.1825 0.2253 0.1875 9.97
SGCT 0.1588 0.1815 0.2207 0.1870 9.68

SGCT-PIW 0.1599 0.1892 0.2321 0.1937 13.6
LWC-KD 0.1639 0.1921 0.2368 0.1977 15.9

LWC-KD-PIW 0.1698 0.1978 0.2425 0.2033 19.3
Yelp

Fine Tune 0.0705 0.0638 0.0640 0.0661 0.00
LSP s 0.0722 0.0661 0.0644 0.0676 2.27

Uniform 0.0718 0.0635 0.0610 0.0654 -1.05
Inv degree 0.0727 0.0699 0.0605 0.0677 2.42
GraphSAIL 0.0674 0.0617 0.0625 0.0639 -3.33

GraphSAIL-PIW 0.0718 0.0638 0.0615 0.0657 -0.66
SGCT 0.0740 0.0656 0.0608 0.0668 1.06

SGCT-PIW 0.0735 0.0655 0.0632 0.0674 1.92
LWC-KD 0.0739 0.0661 0.0637 0.0679 2.72

LWC-KD-PIW 0.0760 0.0690 0.0651 0.0700 5.95
Taobao14

Fine Tune 0.0208 0.0112 0.0138 0.0153 0.00
LSP s 0.0213 0.0106 0.0138 0.0152 -0.65

Uniform 0.0195 0.0127 0.0148 0.0157 2.61
Inv degree 0.0228 0.0140 0.0159 0.0175 14.63
GraphSAIL 0.0222 0.0105 0.0139 0.0155 1.31

GraphSAIL-PIW 0.0206 0.0103 0.0129 0.0146 -4.58
SGCT 0.0240 0.0092 0.0148 0.0160 1.74

SGCT-PIW 0.0227 0.0104 0.0142 0.0158 3.05
LWC-KD 0.0254 0.0119 0.0156 0.0176 15.3

LWC-KD-PIW 0.0256 0.0118 0.0161 0.0178 16.3
Taobao15

Fine Tune 0.0933 0.0952 0.0965 0.0950 0.00
LSP s 0.0993 0.0952 0.0957 0.0968 1.86

Uniform 0.0988 0.0954 0.1004 0.0982 3.37
Inv degree 0.0991 0.0977 0.1000 0.0989 4.16
GraphSAIL 0.0959 0.0959 0.0972 0.0963 1.39

GraphSAIL-PIW 0.1024 0.0983 0.1018 0.1008 6.14
SGCT 0.1030 0.0983 0.0984 0.0999 5.16

SGCT-PIW 0.1040 0.0999 0.1027 0.1022 7.58
LWC-KD 0.1039 0.1022 0.1029 0.1030 8.42

LWC-KD-PIW 0.1044 0.1045 0.1052 0.1047 10.2
Netflix

Fine Tune 0.1092 0.1041 0.0977 0.1036 0.00
LSP s 0.1173 0.1136 0.1076 0.1128 8.88

Uniform 0.1018 0.1055 0.0800 0.0957 -7.63
Inv degree 0.1000 0.1050 0.0820 0.0957 -7.63
GraphSAIL 0.1163 0.1023 0.0968 0.1051 1.45

GraphSAIL-PIW 0.1142 0.1028 0.0986 0.1052 1.54
SGCT 0.1166 0.1161 0.1077 0.1135 9.56

SGCT-PIW 0.1185 0.1144 0.1098 0.1142 10.23
LWC-KD 0.1185 0.1170 0.1071 0.1142 10.23

LWC-KD-PIW 0.1185 0.1146 0.1087 0.1139 9.97

Table 2: Performance comparison (Recall@20) of all base-
lines and three recent knowledge distillation algorithms with
our proposed personalized adaptive weights design. The im-
provement ratio is with respect to fine-tune performance.

Base Model We use MGCCF (Sun et al. 2019) as our base
model in the incremental learning methods. It is a state-
of-art backbone model in the incremental recommendation
framework which not only incorporates multiple graphs in
the embedding learning process, but also considers the in-
trinsic difference between user nodes and item nodes when
performing graph convolution on the bipartite graph.

Baselines To demonstrate that our model’s strength, we
compare our algorithm with multiple baselines.
Fine Tune: Fine Tune uses solely the new data of each time
block to fine-tune the model that was trained using the pre-
vious time blocks.
LSP s (Yang et al. 2020): LSP is a recent state-art-of ap-
proach which applies knowledge distillation on Graph Con-
volution Network (GCN) models. It preserves local structure
from the teacher to student by minimizing the distances be-
tween distributions representing local topological semantics.
Uniform: This is a naive reservoir replay method. A subset
of old data is sampled and added to the new data.
Inv degree (Ahrabian et al. 2021): Inv degree is a state-of-
art reservoir replay method. The reservoir is based on graph
structure. The approach selects a fixed-size subset of user-
item pairs from historical data; each interaction’s selection
probability is proportional to the inverse degree of its user.
SOTA Graph Rec. Sys. Incremental Learning methods:
GraphSail (Xu et al. 2020), SGCT (Wang, Zhang, and
Coates 2021) and LWC-KD (Wang, Zhang, and Coates
2021) are state-of-the-art models which we improve upon
by integrating our approach. To demonstrate the strength of
our method we compare with the base models.

1 2 3 4 5 6 7 8 9 10
Rank

LWC-KD-PIW
 (ours)

LWC-KD
SGCT-PIW

(ours)
SGCT

Inv. Degree
GraphSAIL-PIW

 (ours)
LSP_s

GraphSAIL
Uniform

Fine Tune

Figure 3: Boxplot of ranks of the algorithms across the 5
datasets. The medians and means of the ranks are shown
by the vertical lines and the black triangles respectively;
whiskers extend to the minimum and maximum ranks.

Results and Discussion
Table 2 reports the performance of baselines and three distil-
lation algorithms with/without adaptive weights along with
standard reservoir replay methods. Please note that all the re-
sults reported are an average across three trails with different
random seeds. The results across all datasets of Table 2 are
summarized in Figure 3. We note that our adaptive weight
framework improves method performance in all cases, since
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Figure 4: Case study: (a) Model performance for: static users (20% of users whose interests shift the least) and dynamic users
(20% of users whose interests shift most). For both groups, GraphSAIL adapt outperforms fine-tune and GraphSAIL w/o
adaptive weights. We evaluate models by training on block t and testing on block t-1 in (b). GraphSAIL adapt outperforms
GraphSAIL for the static user group, while GraphSAIL performs better for the dynamic user group. This indicates that Graph-
SAIL adapt preserves more information for users with persistent preferences and forgets more for users with the most dynamic
preferences. Therefore, different levels of distillation help to improve the performance of the student model.

the baseline methods for LWC-KD, SGCT and GraphSAIL
improve their average and median rank when the adaptive
weights are incorporated. Our methods are routinely in the
top three algorithms for all datasets and often achieve the
best performance (see last column of Table 2). Besides the
relative rank, in terms of absolute performance gain, the
adaptive weights provide double digit percent performance
increase over fine tuning across a variety of datasets. In par-
ticular, the strongest performance of adaptive weights is ob-
served in traditional incremental learning datasets such as
Gowalla. In datasets such as Netflix most users have a very
high number of interactions (more than 100). As a result,
the base portion of the dataset provides a good reflection of
each user’s set of interests. Users are therefore less likely to
exhibit drastic changes of interest.

Comparison with full-batch training With Gowalla and
Taobao2014, we have trained using all previous blocks and
block t, and tested on block t+1 for each incremental block
t (i.e. full batch). The average recall@20 is 0.1963 for
Gowalla and 0.0191 for Taobao14. Though obtaining bet-
ter performance in Taobao2014, the full batch method takes
three times more time to train compared to LWC-KD-PIW.
Therefore, in a live deployment setting for a client-facing
recommender system, our system would be able to provide
daily updates, whereas full retraining would quickly become
computationally infeasible as new data accumulated.

Case Study
We have conducted a case study in order to more closely
examine how three models behave for two distinct groups
of users. The three models we study are fine-tune, Graph-
SAIL without adaptive weights and GraphSAIL with adap-
tive weights. We identify two types of users: (i) static users
who exhibit minimal interest shift; and dynamic users who
exhibit dramatic interest shift. Then we test the models on
the historical data (i.e., data from previous time block). This

evaluation on old data provides us with insight into how
much historical information the models preserve for each
group of users. We also check how well each group of users
performs by testing on the next time block. Therefore, we
can assess how preserving different amounts of information
for each user group affects the model performance on the
task of interest.

We observe that GraphSAIL with adaptive weights per-
forms best for both user groups (Figure 4 (a)). From evalua-
tion on historical data (Figure 4 (b)), we see that GraphSAIL
is less affected than fine-tune, indicating that it counters
the forgetting problem. GraphSAIL with adaptive weights
outperforms GraphSAIL without adaptive weights for static
users, while GraphSAIL without adaptive weights performs
better with dynamic users. This implies that GraphSAIL
with adaptive weights preserves more information for static
users and less for dynamic users. Therefore, we conclude
that adaptively distilling knowledge can help to improve
modelling of future user preferences.

Conclusion

In this paper, we have proposed a novel method for in-
cremental learning in graph-based recommender systems.
Our approach hinges on learning adaptive personalization
weights to tune the amount of knowledge distilled for each
user’s preferences during incremental learning. Our pro-
posed method is evaluated on multiple datasets with three
different incremental learning backbones and it consistently
outperforms standard non-adaptive techniques. Our case
study further supports our claim that the use of adaptive
weights allows the model to distill more information for
users with constant interests and to retain less information
for users that are expressing rapid change in interests. This
allows the model to adapt more quickly to changes of pref-
erences for users with evolving interests.
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