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Abstract

Predicting motions of surrounding vehicles is critically im-
portant to help autonomous driving systems plan a safe path
and avoid collisions. Although recent social pooling based
LSTM models have achieved significant performance gains
by considering the motion interactions between vehicles close
to each other, vehicle trajectory prediction still remains as a
challenging research issue due to the dynamic and high-order
interactions in the real complex driving scenarios. To this
end, we propose a wave superposition inspired social pool-
ing (Wave-pooling for short) method for dynamically aggre-
gating the high-order interactions from both local and global
neighbor vehicles. Through modeling each vehicle as a wave
with the amplitude and phase, Wave-pooling can more effec-
tively represent the dynamic motion states of vehicles and
capture their high-order dynamic interactions by wave super-
position. By integrating Wave-pooling, an encoder-decoder
based learning framework named WSiP is also proposed.
Extensive experiments conducted on two public highway
datasets NGSIM and highD verify the effectiveness of WSiP
by comparison with current state-of-the-art baselines. More
importantly, the result of WSiP is more interpretable as the
interaction strength between vehicles can be intuitively re-
flected by their phase difference. The code of the work is
publicly available at https://github.com/Chopin0123/WSiP.

Introduction
Predicting trajectories of moving vehicles (also called agents
in this paper) is one of significant tasks in autonomous driv-
ing. During driving, an autonomous vehicle usually makes
decisions according to its surrounding traffic situations. For
example, as shown in Figure 1, vehicle A will first perceive
surrounding traffic environment, and then predict the pos-
sible motions of its neighboring vehicles (e.g. vehicle B).
This will help A plan a safe path for avoiding potential col-
lisions. Accurately predicting the trajectories of vehicles is
critically important to infer the intended motions of adja-
cent agents (Tang and Salakhutdinov 2019; Liu et al. 2021;
Wang, Cao, and Yu 2022).

Conventional models predict the motion of a single ve-
hicle, which are mostly based on statistical models such as
Kalman Filters (Kalman 1960), Hidden Markov Model (Firl
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Figure 1: Illustration of high-order interactions between ve-
hicles. Agents A and B both intend to merge to the left lane.
Agent C suddenly makes a braking operation, causing agent
B to be unable to change lanes. Thus the motion states of C
indirectly cause A to go straight ahead.

et al. 2012), and Gaussian Processes (Williams and Ras-
mussen 2006). These models regard vehicles as independent
motion entities governed by physical laws or controlled by
human drivers’ intentions. However, traffic agents are highly
interactive and will affect the motions of each other in real
driving scenarios, which is called social interaction (Alahi
et al. 2016; Mohamed et al. 2020). These models ignore
the complex social interactions and usually cause large pre-
diction bias. With the success of Long Short-Term mem-
ory (LSTM) networks in modeling non-linear times series
data, recent works have adopted them to predict trajecto-
ries. Alahi et al. (Alahi et al. 2016) propose a Social LSTM
model to predict pedestrian trajectories. Social LSTM for
the first time introduces social pooling, which models the so-
cial interactions between pedestrians through letting neigh-
boring pedestrians share the motion states. Following So-
cial LSTM, CS-LSTM (Deo and Trivedi 2018) uses con-
volutional social pooling layers for robustly modeling the
inter-dependencies in vehicle motions. Gupta et al. (Gupta
et al. 2018) further propose a GAN-based encoder-decoder
framework called Social GAN, which introduces a pooling
module built upon MLP and max pooling to model the inter-
actions among people in a scene.

Although social pooling based methods can better capture
the interactions among traffic agents and achieve significant
performance gains, they still suffer from the following three
limitations. First, existing social pooling methods are not ef-
fective to capture the dynamics of interactions among ve-
hicles. For example, as shown in Figure 1, agent A intends
to merge to the left lane. If agent B merges to the left lane
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first, A can change lanes safely. However, if B keeps driv-
ing straight ahead, A probably will merge to the left lane
later considering the high probability of collision with B.
The interactions between A and B are different in the two
cases. Existing social pooling strategies generally learn a
fixed interaction weight between A and B, and thus can-
not effectively capture their dynamic motion states. Second,
existing methods only focus on the interactions between the
target vehicle and its local neighbors. The high-order inter-
actions between the target vehicle and the ones far away are
ignored. For example, as shown in Figure 1, although agent
C is not close to A, it can still influence the future trajectory
of A because its sudden braking operation makes B unable
to merge to the left lane. Third, anticipation on the motion
states of nearby agents in the near future can also help pre-
dict the trajectory of the target agent. For example, if the
model can forecast that agent B will not change lanes with
a high probability, we can predict that A will probably keep
going straight. How to effectively utilize the anticipation on
the future motion states of nearby agents to help predict the
trajectory of the target agent is not fully explored, either.

To address the above limitations, we propose an encoder-
decoder based learning framework WSiP coupled with a
novel wave superposition inspired pooling (Wave-pooling)
method to more effectively capture the dynamic and high-
order interactions among vehicles. Specifically, WSiP con-
sists of a historical interaction modulation module, a fu-
ture trajectory simulation modulation module and a trajec-
tory prediction module. The historical modulation interac-
tion module models the high-order interactions among vehi-
cles, including the agents in both adjacent and non-adjacent
lanes. The future trajectory simulation module simulates a
short-term driving scenario by anticipating the future mo-
tions of the neighboring agents. The trajectory prediction
module generates the future trajectory of the target agent.
The first two modules use Wave-pooling to capture the inter-
dependencies among vehicles. Wave-pooling is motivated
by Wave-MLP (Tang et al. 2022), which for the first time
models each token of an image as a wave to better cap-
ture their semantic correlations. The amplitude represents
the content of each token, while the phase modulates the
relationship between tokens. Inspired by Wave-MLP, Wave-
pooling models each vehicle in a scene as a wave with a
particular amplitude and phase. The amplitude reflects the
dynamics of each agent, and the phase modulates the inter-
action between agents. The dynamic interactions between
agents can be reflected by the superposition of their corre-
sponding waves. The primary contributions of this work are
summarized as follows.

• We for the first time model the social interactions be-
tween vehicles as a wave superposition process and pro-
pose Wave-pooling mechanism to dynamically aggregate
the interactions between agents.

• An encoder-decoder based learning framework WSiP is
proposed, which contains a historical interaction modu-
lation module, a future trajectory simulation module and
a trajectory prediction module to more accurately predict
the vehicle trajectories.

• Extensively evaluations over two real datasets verify the
effectiveness of our proposal by comparison with SOTA
baselines. The result also shows WSiP is more inter-
pretable as the phase difference can intuitively reflect the
interaction strength between the agents.

Related Work
The problem of predicting trajectories has been exten-
sively studied. Existing traditional methods are mostly
based on Kalman Filters (Kalman 1960), Logistic regres-
sion (Klingelschmitt et al. 2014), Support Vector Ma-
chine (SVM) (Aoude et al. 2010), Hidden Markov Model
(HMM) (Firl et al. 2012) and Bayesian Networks (Lefèvre,
Laugier, and Ibañez-Guzmán 2011), etc. They regard vehi-
cles as independent motion entities. For complex interactive
situations they may lead to incorrect estimations of poten-
tial threats due to non-consideration of interactions between
traffic agents.

Recently, deep learning models such as RNNs and LSTM
have been introduced to address the problem of trajectory
prediction (Wang et al. 2017; Nawaz et al. 2020). Altché
and de La Fortelle (Altché and de La Fortelle 2017) use
LSTM to predict longitudinal velocities of vehicles on the
highway with the information of local neighbors around the
target vehicle. GAIL-GRU (Kuefler et al. 2017) combines
the physics-based model and GRU to model human driving
behaviors on highways. Some approaches (Kim et al. 2017;
Park et al. 2018) generate future locations on the occupancy
grid map based on the encoder-decoder framework. One ma-
jor limitation of RNN and LSTM based models above is that
they ignore the interactions between agents.

Agent interactions can be categorized into agent-agent in-
teraction and agent-scene interaction. The agent-scene inter-
action models how agents interact with static scenes, such as
road structures. The high definition (HD) maps are essential
for agent-scene interaction modeling (Gao et al. 2020; Liang
et al. 2020). Our work focuses on agent-agent interaction. To
achieve accurate predictions, the model is required to cap-
ture the social interaction between agents. The Social Force
model (Helbing and Molnar 1995) is a pioneer work, which
predicts pedestrian motions by using a system of forces de-
scribing social interactions. There are also some interaction-
aware methods based on Dynamic Bayesian Networks (Aga-
mennoni, Nieto, and Nebot 2011; Liebner et al. 2012). How-
ever, capturing inter-dependencies of agents involves a large
number of latent variables. Therefore, these traditional mod-
els could only be used for simple interaction scenarios (e.g.
sparse vehicles on roads). Social LSTM (Alahi et al. 2016)
is a seminal work introducing social pooling, which shares
hidden states between neighboring LSTMs based on social
tensor so that it can automatically learn some typical interac-
tions in crowds. Afterwards, a series of studies follow the so-
cial pooling mechanism. CS-LSTM (Deo and Trivedi 2018)
and PiP (Song et al. 2020) apply convolutional and max
pooling layers for modeling the spatial interactions. Social
GAN (Gupta et al. 2018) proposes a novel pooling strategy
enabling the network to learn social norms in a purely data-
driven approach. However, these pooling methods are still
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Figure 2: Upper: The superposition of two waves: (a) con-
structive interference, (b) destructive interference, and (c)
the general case. Lower: The interactions between the tar-
get agent B and other agents.

not effective to capture the dynamics of interactions in real
driving scenarios.

Problem Definition and Preliminaries
Problem Definition
We formulate the trajectory prediction problem as a se-
quence generation problem which generates future locations
of the target vehicle over a future time horizon Tf accord-
ing to the historical trajectories of surrounding vehicles and
the target itself in the past Th time steps. We denote the
historical trajectory of a vehicle agent ai at time step t as
Xi =

{
Xt−Th

i , . . . , Xt−1
i , Xt

i

}
, where Xt

i = (xt
i, y

t
i)

is a 2D coordinate pair. Assuming there are N vehicles in
a scene, the input to our model are coordinate sequences
X = {X1,X2, . . . ,Xtar, . . . ,XN}. Our goal is to predict
the discrete future positions of the target vehicle Ytar ={
Y t+1
tar , Y t+2

tar , . . . , Y
t+Tf

tar

}
, where Y t

i is also a 2D coordi-
nate pair.

Preliminaries
When two or more waves cross at a point, it follows the prin-
ciple of wave superposition. That is, the displacement of the
resultant wave at some point is the vector sum of the indi-
vidual displacements produced by each of the waves at that
point. Motivated by Wave-MLP, the wave-like representa-
tion can be formulated as

z̃j = |zj | ⊙ eiθj , j = 1, 2, · · · , n, (1)

where i is the imaginary unit, and ⊙ is the element-wise
multiplication. |zj | denotes amplitude and θj denotes phase.
The superposition of two waves z̃i and z̃j is modulated by
their phases. Supposing z̃r is the resultant wave of z̃i and
z̃j , the amplitude |zr| of z̃r can be calculated as

|zr|=
√
|zi|2+ |zj |2 +2 |zi| ⊙ |zj | ⊙ cos (θj − θi). (2)

Wave interference is a typical example following this prin-
ciple. The superposition result is intuitively shown in Fig-
ure 2. Constructive interference (Figure 2(a)) occurs when

two waves z̃i and z̃j have the same displacement in the
same direction at any point, i.e. θi = θj + 2m ∗ π,m ∈
[0,±1,±2, · · · ]. Destructive interference (Figure 2(b)) oc-
curs when two waves are displaced in opposite directions
at any point, i.e. θi = θj + (2 ∗m− 1) ∗ π,m ∈
[0,±1,±2, · · · ]. In short, whether superposition amplitude
is enhanced or weakened depends on phase difference.

According to quantum mechanics, all matter exhibits
wave-like behaviors and generates matter waves (Thomson
and Reid 1927). Wave-MLP (Tang et al. 2022) makes the
first attempt to represent each token in an image as a wave
with both amplitude and phase information. The phase mod-
ulates the aggregating process of different tokens according
to their semantic content. Inspired by Wave-MLP, we at-
tempt to represent each vehicle in a scene as a wave with the
amplitude and phase. As shown in the lower part of Figure
2, agent A is closest to the target. They may have the highest
degree of interactions, which could be regarded as construc-
tive interference (Figure 2(a)). Agent C is far away from
the target, so it may have less influence on the target. The
interactions between the target and agents like B are more
general, which is similar to the situation in Figure 2(c). We
expect the phase of a vehicle to dynamically modulate the
interactions between agents similar to wave superposition.

Methodology
The model framework is depicted in Figure 3. WSiP is
based on an encoder-decoder framework, which contains
three modules, historical interaction modulation module,
future trajectory simulation module and trajectory predic-
tion module. The first two modules (encoder) capture the
inter-dependencies of agents for historical and future time
horizons respectively. The trajectory prediction module (de-
coder) generates the distribution of future locations of the
target agent. Next we will introduce three modules in detail.

Historical Interaction Modulation Module
This module consists of historical trajectory encoder and
Wave-pooling. We first encode historical trajectories to
learn the motion states of agents. Following previous meth-
ods (Deo and Trivedi 2018; Song et al. 2020), we assume
neighbors of the target vehicle are within ± 90 feet in the
longitude direction and within the four adjacent lanes cen-
tered on the target vehicle as shown in the left part of Fig-
ure 3. The historical trajectory encoder will encode trajec-
tory sequences of the target and its neighbors. MLP is first
applied to convert these sequences into the motion embed-
dings, which are then passed through LSTM networks. For
agent ai, its final hidden state of LSTM hi is expected to re-
flect its historical motion states. Next, these hidden states
form a target-centric social tensor according to their spa-
tial locations. Additionally, the hidden state of the target is
passed through a fully connected layer to obtain dynamics
encoding dtar. Note that LSTM weights are shared across
all the vehicles.

Then we apply Wave-pooling to learn inter-dependencies
of vehicles. We represent each agent in a scene as a wave
with the amplitude and phase. For agent ai, the amplitude
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Figure 3: The framework of WSiP, which contains historical interaction modulation module, future trajectory simulation module
and trajectory prediction module. Historical interaction modulation module and future trajectory simulation module adopt
Wave-pooling to capture the historical and future inter-dependencies of agents separately. The trajectory prediction module
outputs a multi-modal distribution of the future locations for the target agent.

embedding zi is obtained by feeding its final hidden state hi

to a plain fully connected layer (Plain-FC). Therefore, am-
plitude could represent the dynamics of the vehicle. Phase is
used to modulate the aggregation of information from neigh-
boring agents. In order to obtain the phase θi according to
motion states of agent ai, we also apply Plain-FC to learn
phase embedding. Thus, the phase θi adjusts dynamically
according to the motion states of an agent. The amplitude
and phase embeddings of agent ai are calculated by

zi = Plain-FC (hi,W
z) = W zhi, (3)

θi = Plain-FC
(
hi,W

θ
)
= W θhi, (4)

where W z and W θ are learnable weights. In MLP-based
vision architecture (Tolstikhin et al. 2021; Touvron et al.
2021), token mixing layer allows communication from dif-
ferent tokens and aggregates information of tokens. We de-
scribe token mixing operation in this work as Agent-FC,
which aggregates different vehicle interactions. Suppose
there are n vehicle waves denoted as Z̃ = [z̃1, z̃2, · · · , z̃n].
Agent-FC operation can be written as:

oj = Agent-FC
(
Z̃,W t

)
j
=

∑
k

W t
jk⊙z̃k,

j = 1, 2, · · ·n,
(5)

where W t is learnable weights, ⊙ is the element-wise mul-
tiplication and j indicates the j-th output representation. In
the extreme case, Agent-FC can be regarded as depth-wise
convolutions of a full receptive field and parameter shar-
ing (Tolstikhin et al. 2021). We employ Agent-FC to ag-
gregate wave-like representations of all agents in a scene as

shown in Figure 3. With the wave function unfolded by Eu-
ler’s formula and the common quantum measurement meth-
ods, the output of Agent-FC can be calculated as follows

oj =
∑
k

W t
jkzk ⊙ cosθk +W i

jkzk ⊙ sin θk,

j = 1, 2, · · · , n.
(6)

where W t and W i are both learnable weights. oj is the j-
th output. In practice, zi ⊙ cosθi is first concatenated with
zi⊙sin θi and then fed to the Agent-FC. Different agents in-
teract with each other with both the amplitude and phase in-
formation through Agent-FC. otar is the social context con-
taining the interaction information between the target and
other agents.

Future Trajectory Simulation Module
Future motion states of agents are highly correlated. Antic-
ipation on the motion states of nearby agents in the near
future and modeling their interactions can help predict the
trajectory of the target. PiP (Song et al. 2020) addresses this
issue by employing the fully convolutional network for cap-
turing future inter-dependencies between agents. However,
it utilizes future trajectory information, which is unavailable
in real-world driving scenarios.

In fact, when driving on highways, maneuver changes of
vehicles are far less frequent than driving on urban streets.
The work (Deo and Trivedi 2018) has pointed out that the
vehicle maneuvers could be classified by lateral and longitu-
dinal maneuvers. Lateral maneuvers consist of lane-keeping,
left and right lane changes. Longitudinal maneuvers include
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normal driving and braking. Based on our data analysis on
the dataset NGSIM US-101 and I-80 (Halkias and Colyar
2006), we observe that more than 96% of track records indi-
cate corresponding vehicles are keeping their lanes straight
and no more than 20% shows vehicles performed braking
operation. Therefore, we can use some simple models to pre-
dict a rough future trajectory of each neighbor. For example,
by observing an agent braking and slowing down, we can
roughly predict it probably will not change lanes in the fu-
ture. We use this coarse-grained prediction of neighbors to
help more accurately predict the trajectories of the target.
Kalman Filter (KF for short in Figure 3) is employed here
to predict the future locations of local neighbors. We define
local neighbors as agents within ± 60 feet in the longitude
direction and within the two adjacent lanes centered on the
target (e.g. vehicles framed by blue box in Figure 3). With
the estimated trajectories of local neighbors, we simulate a
future driving scenario for the target. Simulated trajectories
are encoded by the simulated trajectory encoder in Figure 3
to obtain the final hidden states. LSTMs here have different
parameters from LSTMs in the historical trajectory encoder
as they belong to different time horizons.

Next, as shown in the middle upper part of Figure 3, So-
cial context otar obtained in the historical interaction mod-
ulation module and final hidden states of local neighbors fill
up a social tensor according to their spatial location. Wave-
pooling is applied once again for aggregating all the infor-
mation accessible within the social tensor. Finally, the output
of Wave-pooling o

′

tar is a social context which covers both
historical and future social information.

Trajectory Prediction Module
Influenced by various factors, such as weather, road condi-
tions and drivers’ emotions, future motions of an agent have
multiple possibilities. Therefore, trajectory prediction tends
to be inherently multi-modal. To address this issue, our tra-
jectory prediction decoder is built upon the work (Deo and
Trivedi 2018) to produce multi-modal distributions based on
6 maneuver classes M = {mi | i = 1, 2, . . . , 6} including 3
lateral classes (lane-keeping, left and right lane changes) and
2 longitudinal classes (normal driving and braking). More-
over, it estimates the probability of each maneuver class, de-
noted as P (mi). Social context o

′

tar is first concatenated
with dynamics encoding dtar to form a trajectory encoding
Ttar. As shown in the right part of Figure 3, Ttar will be fed
to a pair of fully connected layers followed by two soft-max
layers to output the lateral and longitudinal maneuver proba-
bilities P (mi | X ) respectively. X is the historical trajecto-
ries of agents in a scene. We concatenate Ttar with maneuver
encoding of 6 classes respectively. The maneuver encoding
of each class contains one-hot vectors of corresponding lat-
eral and longitudinal maneuver class. Concatenated embed-
ding will be decoded through LSTMs for generating the pa-
rameters of a bivariate Gaussian distribution. The predicted
locations Y t

i at time step t are given by

Y t
i ∼ N

(
µt
i, σ

t
i , ρ

t
i

)
, (7)

where µt
i and σt

i are the means and variances of future lo-
cations respectively, and ρti is the correlation coefficient. We

denote Θ as parameters of Gaussian distribution. Then, the
posterior probability of the target’s future trajectories could
be estimated by

P(Y | X ) =
∑
i

PΘ (Y | mi,X ) P (mi | X ) , (8)

We would like to minimize the negative log likelihood loss L
of the true trajectories under the true maneuver class mtrue

of targets. The final loss function is as follows,

L = − log (PΘ (Y | mtrue,X ) P (mtrue | X )) . (9)

Implementation Details
A 13 × 5 spatial grid is defined around the target, where each
column corresponds to a single lane, and the rows are sep-
arated by a distance of 15 feet. MLP that embeds historical
trajectories is composed of a fully connected layer with size
32 and ReLU as the activation function. Both encoder and
decoder in our model are based on LSTM. The dimension
of the hidden state for encoder LSTM is 64 and for decoder
LSTM is 128. The model is implemented using Pytorch and
trained in an end-to-end manner using Adam with a learning
rate 0.001.

Experiments
Dataset
We use two public datasets NGSIM (Halkias and Colyar
2006) and highD (Krajewski et al. 2018) for evaluaiton.
NGSIM (Halkias et al. 2016) contains 2 freeway trajectory
datasets US-101 and I-80. Each dataset of NGSIM con-
tains 45 minutes of vehicle trajectory data recorded at 10Hz.
highD (Krajewski et al. 2018) is a vehicle trajectory dataset
recorded on German highways. It is collected at six differ-
ent locations and includes more than 110,500 vehicles. We
split the whole dataset into training, validation and testing
sets. 70% of the data are used for training, 10% for evalu-
ation and 20% for testing. We split each of the trajectories
into 8s segments consisting of 3s of past and 5s of future
trajectories.

Evaluation Metrics and Baselines
We evaluate the result in terms of RMSE over a predic-
tion horizon of 5s. For multi-modal methods, we select
the predicted trajectory corresponding to the maneuver with
the highest probability. The RMSE at each time step t can

be calculated by RMSE(t) =

√
1
N

∑N
i=1

(
Y t
i − Ŷ t

i

)2

,

where N is the total number of test instances. Y t
i and Ŷ t

i
are the ground-truth and predicted coordinates of agent ai at
time step t, respectively.

RMSE is limited for measuring the performance of multi-
modal methods since it tends to average all the predicted
results. To address this issue, we also adopt the negative log-
likelihood (NLL) of the true trajectories under the predictive
distributions fitted by the models following CS-LSTM (Deo
and Trivedi 2018).

We compare our model with the following baselines.
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Dataset Time Metric(RMSE/NLL)

CV V-SLTM S-LSTM CS-LSTM S-GAN PiP-noPlan WSiP(ours)

NGSIM

1s 0.73/3.72 0.68/2.14 0.59/2.10 0.58/1.96 0.57/- 0.57/1.83 0.56/1.77
2s 1.78/5.37 1.66/3.81 1.29/3.66 1.27/3.46 1.32/- 1.24/3.41 1.23/3.30
3s 3.13/6.40 2.96/4.76 2.13/4.61 2.11/4.32 2.22/- 2.05/4.30 2.05/4.17
4s 4.78/7.16 4.56/5.42 3.21/5.37 3.19/4.95 3.26/- 3.07/4.94 3.08/4.80
5s 6.68/7.76 5.44/6.03 4.55/5.99 4.53/5.48 4.41/- 4.34/5.49 4.34/5.32

highD

1s 0.33/1.94 0.22/0.55 0.21/0.46 0.24/0.43 0.30/- 0.21/0.36 0.20/0.31
2s 0.78/3.09 0.65/2.65 0.65/2.55 0.68/2.54 0.78/- 0.62/2.41 0.60/2.31
3s 1.62/4.85 1.32/3.94 1.31/3.81 1.26/3.72 1.46/- 1.26/3.60 1.21/3.51
4s 2.43/6.12 2.22/4.87 2.16/4.67 2.15/4.51 2.34/- 2.14/4.40 2.07/4.32
5s 3.67/7.03 3.43/5.59 3.29/5.35 3.31/5.13 3.41/- 3.27/5.03 3.14/4.95

Table 1: Comparison results between baselines and our method on NGSIM and highD datasets. We report two error metrics
RMSE and NLL for 5s prediction horizon.

(a) RMSE of NGSIM (b) NLL of NGSIM (c) RMSE of highD (d) NLL of highD

Figure 4: Comparison between WSiP and the variants for ablation study.

• CV: Constant Velocity based on the second order Kalman
Filter is used as the representative baseline of traditional
methods.

• V-LSTM: Vanilla LSTM uses a single LSTM to encode
historical trajectories of the target vehicle without con-
sidering the interaction with surrounding agents.

• S-LSTM: Social LSTM (Alahi et al. 2016) uses fully con-
nected layers and generates the uni-modal distribution of
the future locations.

• CS-LSTM: Convolutional Social LSTM (Deo and Trivedi
2018) uses the convolutional social pooling and also gen-
erates multi-modal trajectory predictions.

• S-GAN: Social GAN (Gupta et al. 2018) trains a GAN
based adversarial learning framework to generate diverse
trajectories for multi-agent in a spatial-centric manner.

• PiP-noPlan: PiP (Song et al. 2020) uses the convolu-
tional social pooling and a fully convolutional network to
generate muiti-modal trajectory predictions. We remove
the planning coupled module (PiP-noPlan) as our base-
line because the future motions of the controllable ego
vehicle is unavailable in real-world driving scenarios.

To study whether each module of WSiP is useful, we also
compare WSiP with the following variants.
• WSiP-noSimu: It is a variant of WSiP by removing the

future trajectory simulation module.
• WSiP-noPhase: We use WSiP-noPhase which aggregates

interactions among agents without the phase information
to evaluate the effectiveness of Wave-pooling.

• WSiP-Projection: We use WSiP-Projection which treats
the final hidden states of agents as their phase infor-
mation to verify Plain-FC can capture different motion
states and learn better phase information for aggregation.

Result
We compare our method against baselines on two metrics
RMSE and NLL, as shown in Table 1. It shows that CV
and V-LSTM perform worst in all the baselines because they
simply use the target vehicle’s historical trajectories without
the consideration of the interactions of neighbors. Both S-
LSTM and CS-LSTM perform much better than CV and V-
LSTM, which indicates considering the inter-dependencies
between vehicles can truly improve the performance of tra-
jectory prediction. S-GAN samples trajectories rather than
generating distributions, and it selects a sample with the
minimal error. Therefore, it does not have the NLL result. By
fusing the encoding among different agents, PiP-noPlan per-
forms better than other baselines, which suggests that con-
sidering future motion states of other agents is also help-
ful. WSiP achieves the best results in terms of two metrics
in most cases with only one exception (RMSE on NGSIM
dataset when the time is 4s). Specifically, in terms of RMSE
on dataset highD, WSiP outperforms PiP-noPlan by 4% and
S-GAN by 8% when the prediction time horizon is 5s. This
verifies Wave-pooling can better model the interactions be-
tween agents, and the future trajectory simulation module
can anticipate the future motion states of neighbors.
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(a) Keeping straight (b) Merging to the left lane (c) Merging to the right lane

Figure 5: Visualization of three driving scenarios. Upper: heatmaps showing the cosine similarity of the target and neighbors.
Lower: three example cases predicted by S-LSTM, CS-LSTM and WSiP.

Ablation Study
We next investigate the effect of each part of our model
to the performance. Figure 4 shows the error increase in
terms of RMSE and NLL of the three variants and CS-LSTM
compared with WSiP. Higher curve values mean the perfor-
mance of the corresponding model is worse than WSiP. One
can see that WSiP-noSimu obviously performs worse than
other variants due to its non-consideration of future motions
of neighboring agents. Note that WSiP-noSimu still out-
performs CS-LSTM, implying the proposed Wave-pooling
can effectively capture the interactions between agents and
it is superior to other social pooling strategies. Phase is
used to modulate the interactions between agents. With-
out using phase embedding, the prediction error of WSiP-
noPhase model is higher than WSiP. This verifies the phase
is helpful in aggregating information from neighbors. WSiP-
Projection directly uses the final hidden states of agents as
their phase embedding. Although WSiP-Projection is su-
perior to other variants, it still performs worse than WSiP
which uses Plain-FC to obtain phase embedding accord-
ing to motion states of agents. It suggests that Plain-FC
could learn better representations for aggregating informa-
tion from neighbors. This result verifies that wave-pooling
and future trajectory simulation module are both indispens-
able to boosting the model performance.

Case Study for Interpretability Analysis
We visualize the prediction results of several cases in Figure
5 to further show the effectiveness of WSiP and its inter-
pretability. We select three driving scenarios including the
target keeping straight, merging to the left lane and merg-
ing to the right lane. According to Eq. 2, the phase differ-
ence affects the interaction aggregation process. A smaller
phase difference between two agents means a higher corre-
lation and stronger interaction. We show the cosine similar-
ity between phase embeddings of the target and neighboring

agents with heatmaps in the upper part of Figure 5. Darker
color means higher cosine similarity. From the heatmaps in
Figure 5, one can see that in general the distance between the
target and its neighbors is positively correlated to their phase
similarity, which indicates strong social interactions usually
happen between close neighboring agents. This is consistent
with our intuition. However, some agents on non-adjacent
lanes (e.g. agents framed by red boxes in the upper part of
Figure 5) may also be highly correlated to the target due to
their high-order interactions, which is largely ignored by ex-
isting works. As shown in Figure 5(a), S-LSTM, CS-LSTM
and WSiP all make accurate predictions that the target will
keep going straight. Figure 5(b) shows the target merges to
the left lane. S-LSTM wrongly predicts that it will keep go-
ing straight because it is not a multi-modal prediction model
and thus fails to predict the possible multiple trajectories.
Both CS-LSTM and WSiP predict the target will merge to
the left lane. WSiP has smaller error and the direction of
predicted trajectory is closer to the ground truth. Figure 5(c)
shows the target merges to the right lane. Both CS-LSTM
and WSiP make correct predictions, but the predicted trajec-
tory of WSiP is closer to the ground truth.

Conclusion

This paper proposes a wave superposition inspired pool-
ing method WSiP under an encoder-decoder learning frame-
work for vehicle trajectory prediction. WSiP uses Wave-
pooling for capturing the high-order dynamic interactions
among vehicles. Wave-pooling novelly represents each ve-
hicle as a wave with the amplitude and phase. The phase
modulates the interactions among vehicles according to their
motion states. WSiP anticipates the future motion states of
neighboring vehicles through future trajectory simulation to
help predict the trajectory of the target. Experimental results
on two real datasets verify the effectiveness of WSiP.
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