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Abstract
Cross-domain graph anomaly detection (CD-GAD) describes
the problem of detecting anomalous nodes in an unlabelled
target graph using auxiliary, related source graphs with la-
belled anomalous and normal nodes. Although it presents a
promising approach to address the notoriously high false pos-
itive issue in anomaly detection, little work has been done
in this line of research. There are numerous domain adapta-
tion methods in the literature, but it is difficult to adapt them
for GAD due to the unknown distributions of the anomalies
and the complex node relations embedded in graph data. To
this end, we introduce a novel domain adaptation approach,
namely Anomaly-aware Contrastive alignmenT (ACT), for
GAD. ACT is designed to jointly optimise: (i) unsupervised
contrastive learning of normal representations of nodes in
the target graph, and (ii) anomaly-aware one-class alignment
that aligns these contrastive node representations and the rep-
resentations of labelled normal nodes in the source graph,
while enforcing significant deviation of the representations
of the normal nodes from the labelled anomalous nodes in the
source graph. In doing so, ACT effectively transfers anomaly-
informed knowledge from the source graph to learn the com-
plex node relations of the normal class for GAD on the target
graph without any specification of the anomaly distributions.
Extensive experiments on eight CD-GAD settings demon-
strate that our approach ACT achieves substantially improved
detection performance over 10 state-of-the-art GAD methods.
Code is available at https://github.com/QZ-WANG/ACT.

Introduction
Detection of nodes that deviate significantly from the major-
ity of nodes in a graph is a key task in graph anomaly de-
tection (GAD). It has drawn wide research attention due to
its numerous applications in a range of domains such as in-
trusion detection in cybersecurity, fraud detection in fintech
and malicious user account detection in social network anal-
ysis. There are many shallow and deep methods (Akoglu,
Tong, and Koutra 2015; Pang et al. 2021) that are specifically
designed, or can be adapted for GAD. However, they are
fully unsupervised approaches and often have notoriously
high false positives due to the lack of knowledge about the
anomalies of interest.

*Corresponding author: Guansong Pang (gspang@smu.edu.sg).
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: t-SNE visualisation of a CD-GAD dataset before
(a) and after (b) our anomaly-aware contrastive alignment.
Compared to (a) where the two domains show clear discrep-
ancies in different aspects like anomaly distribution, in (b)
our domain alignment approach effectively aligns the nor-
mal class, while pushing away the anomalous nodes in both
source and target domains from the normal class.

We instead explore cross-domain (CD) anomaly detection
approaches to address this long-standing issue. CD-GAD
describes the problem of detecting anomalous nodes in an
unlabelled target graph using auxiliary, related source graphs
with labelled anomalous and normal nodes. The ground
truth information in the source graph can provide important
knowledge of true anomalies for GAD on the target graph
when such supervision information from the source domain
can be properly adapted to the target domain. The detection
models can then be trained in an anomaly-informed fashion
on the target graph, resulting in GAD models with substan-
tially improved anomaly-discriminative capability, and thus
greatly reducing the detection errors. Although such CD ap-
proaches can be a promising solution, little work has been
done in this line of research.

There are numerous unsupervised domain adaptation
(UDA) methods in the literature (Wilson and Cook 2020),
but it is difficult to adapt them for GAD due to some unique
challenges in GAD. The first challenge is that the distribu-
tion of different anomalies can vary within a dataset and
across different datasets, and thus, the anomaly distribu-
tion often remains unknown in a target dataset. This chal-
lenges the popular assumption in UDA that the source and
target domains have similar conditional probability distri-
butions. Secondly, graph data contains complex node rela-
tions due to its topological structure and node attribute se-
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mantics, leading to substantial discrepancies in graph struc-
tures (e.g., node degree distribution and graph density) and
attribute spaces (e.g., feature dimensionality size) across dif-
ferent graph datasets (see Figure 1(a) for an example). These
significant domain gaps in the raw input render many UDA
methods ineffective, since they require more homogeneous
raw input to effectively adapt the domain knowledge (e.g.,
pre-trained feature representation models can be directly ap-
plied to both source and target domains to extract relevant
initial latent representations).

To address these two challenges, we introduce a novel
domain adaptation approach, namely Anomaly-aware Con-
trastive alignmenT (ACT), for GAD. ACT is designed to
jointly optimise: (i) unsupervised contrastive learning of
normal representations of nodes in the target graph, and (ii)
anomaly-aware one-class alignment that aligns these con-
trastive node representations and the representations of la-
belled normal nodes in the source graph data, while enforc-
ing significant deviation of the representations of the nor-
mal nodes from the labelled anomalous nodes in the source
graph. In doing so, ACT effectively transfers anomaly-
informed knowledge from the source graph to enable the
learning of the complex node relations of the normal class
for GAD on the target graph without any specification of the
anomaly distributions, as illustrated in Figure 1(b). We also
show that after our domain alignment, self-labelling-based
deviation learning can be leveraged on the domain-adapted
representations of the target graph to refine the detection
models for better detection performance.

In summary, our main contributions are as follows:

• We propose a novel approach, named anomaly-aware
contrastive alignment (ACT), for CD-GAD. It syn-
thesises anomaly-aware one-class alignment and unsu-
pervised contrastive graph learning to learn anomaly-
informed detection models on target graph data, substan-
tially reducing the notoriously high false positives due to
the lack of knowledge about true anomalies.

• We propose the use of self-labelling-based deviation
learning on the target graph after the domain alignment
to further refine our detection model, resulting in signifi-
cantly enhanced detection performance.

• Large-scale empirical evaluation of ACT and 10 state-of-
the-art (SOTA) competing methods is performed on eight
real-world CD-GAD datasets to justify the superiority of
ACT. These results also establish important performance
benchmarks in this under-explored area.

Related Work
Graph Anomaly Detection
GAD methods typically adopt unsupervised learning due to
the scarcity of labelled anomalies (Ma et al. 2021). Earlier
non-deep-learning-based methods employ various measures
(Gao et al. 2010; Perozzi and Akoglu 2016; Peng et al. 2018;
Li et al. 2017) to identify anomalies. Recent GAD methods
predominantly use Graph Neural Networks (GNNs) due to
their strong learning capacity and are shown to be more ef-
fective. Ding et al. (2019) and Chen et al. (2020) employed

graph auto-encoders to define anomaly scores using recon-
struction error. Contrastive learning (Liu et al. 2021), ad-
versarial learning (Chen et al. 2020), and other represen-
tation learning approaches (Zhao et al. 2020; Bandyopad-
hyay, Vivek, and Murty 2020; Wang et al. 2022) have been
explored for GAD. However, they are unsupervised meth-
ods and focused on single-domain GAD. Limited work has
been done on CD-GAD. Two most related studies are (Ding
et al. 2021, 2022). Ding et al. (2021) adapts a meta-learning
approach to address the problem, while Ding et al. (2022)
combine a graph autoencoder and adversarial learning for
CD-GAD. However, they suffer from limitations such as pa-
rameter sharing of cross-domain feature learners and unsta-
ble performance in the domain alignment.

Unsupervised Domain Adaptation
UDA aims to leverage labelled source data to improve simi-
lar tasks in an unlabelled domain. A popular approach is to
reduce domain discrepancies, measured by some predefined
metrics such as MMD (Gretton et al. 2006; Long et al. 2016)
and Wasserstein Distance (Shen et al. 2018; Lee et al. 2019).
Adversarial learning is also widely used by UDA methods
(Ganin and Lempitsky 2015; Tzeng et al. 2015, 2017; Bous-
malis et al. 2017; Hoffman et al. 2018; Saito et al. 2018a;
Xiao and Zhang 2021), which learns domain-invariant rep-
resentations in a competing training scheme. Some recent
methods focus on class-wise alignment (Xie et al. 2018;
Saito et al. 2018b). These approaches have been recently
adapted to graph data, e.g., by adversarial graph learning
(Zhang et al. 2019; Wu et al. 2020; Wu, Pan, and Zhu 2022)
or graph proximity preserved representation learning (Shen
et al. 2020). Nevertheless, these methods are primarily de-
signed for CD settings with class-balanced data and rela-
tively small domain discrepancy, rendering them inapplica-
ble for GAD.

ACT: The Proposed Approach
Problem Statement
We consider unsupervised CD-GAD on attributed graphs.
Let G = (V, E ,X) be an attributed graph with n nodes,
where V , E , and X ∈ Rn×d are its node set, edge set and fea-
ture matrix, respectively. In the unsupervised CD setting, in
addition to a target graph Gt = (Vt, Et,Xt ∈ Rnt×dt) with
ns nodes without any class labels, a labelled source graph
Gs = (Vs, Es,Xs) is also available, which contains ns nodes
with their features Xs ∈ Rns×ds and their normal/anomaly
labels Ys ∈ Rns×1. Our task is to leverage both Gs and Gt to
develop an anomaly scoring function φt, such that:

φt(Gt, vj)� φt(Gt, vi) ∀(vj ∈ Vout
t ) ∧ (vi ∈ V in

t ), (1)

where V in
t and Vout

t are respective normal and anomalous
node sets, satisfying V in

t ∪ Vout
t = Vt and V in

t ∩ Vout
t = ∅.

We focus on neural-network-based anomaly scoring func-
tions φ(·; Θ) : X → R, which can be seen as a combination
of a feature representation learner ψ(·; Θf ) : X → Z and a
anomaly scoring function η(·; Θg) : Z → R, where X is the
input space, Z ∈ RM is the intermediate node representa-
tion space and Θ = {Θf ,Θg} are the learnable parameters
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Figure 2: Overview of our proposed approach ACT.

of φ. Then we aim to learn the following anomaly scoring
mapping:

φt(Gt, v; Θ) = ηt(ψt(Gt, v; Θt
f ); Θt

g), (2)

with the support from ψs and ηs trained on the labelled
source graph data. Two main challenges here include the un-
known anomaly distribution in the target data, and the com-
plex discrepancies in graph structures and semantic attribute
spaces among different graphs.

Overview of ACT
To address the above two challenges, we propose the ap-
proach Anomaly-aware Contrastive alignmenT (ACT). The
key idea is to adapt the anomaly-discriminative knowledge
from a labelled source graph to learn anomaly-informed de-
tection models on the target graph, reducing the high de-
tection error rates in unsupervised detection models that are
lacking knowledge about the anomalies of interest.

As illustrated in Figure 2, ACT learns such anomaly-
informed models on the unlabelled target graph using two
major components. It first performs a joint optimisation of
anomaly-aware one-class domain alignment and unsuper-
vised contrastive node representation learning on the target
graph, resulting in an expressive node representation map-
ping ψ∗t that is domain-adapted for GAD on the target graph.

In the second phase, ACT performs self-labelling-based
deviation learning, in which an off-the-shelf anomaly de-
tector is used on top of the domain-adapted representation
space ψ∗t to identify pseudo anomalies that are subsequently
employed to learn an anomaly scoring neural network on the
target graph via a deviation loss.

After domain alignment, the source-domain-based
anomaly scoring network ηs can also be used to produce
the pseudo anomalies for the subsequent deviation learning,
but it is generally less effective than using the off-the-shelf
anomaly detector on ψt (see Suppl. Material). Thus, the
latter approach is used by default.

Joint Learning of Contrastive Representations and
Anomaly-Aware Alignment
We aim to achieve anomaly-aware one-class domain align-
ment in the presence of a large domain gap in graph struc-
ture, node attribute semantics, and anomaly distributions.
Many UDA methods exploit pretrained representation learn-
ers or parameter sharing to initialise target node represen-
tations so that they are reasonably aligned with their cor-
responding source classes. However, this does not apply to
graph data due to high discrepancies across different graphs.

To address this challenge, we introduce a batch-sampling-
based joint learning approach to perform an optimal-
transport-based domain alignment Ldom with unsupervised
contrastive graph learning Lcon by optimising the following
loss function:

Ljoint(Zs,Zt) = Ldom(Zs,Zt) + Lcon(Zt), (3)

where Zs = ψs(Gs,Bs; Θs
f ) and Zt = ψt(Gt,Bt; Θt

f ) are
the respective node representations of a sampled source node
batch Bs and a target node batch Bt. Below we introduce
each term of Eq. (3) in detail.

Unsupervised Contrastive Learning of Normal Repre-
sentations of Nodes on the Target Graph Our unsuper-
vised contrastive learning aims to (i) achieve initial represen-
tations of regular patterns embedded in the majority of nodes
(i.e., normal representations of nodes) on the target graph
and (ii) correct misalignment of node representations during
the joint learning. To this end, we adopt a topology-based
contrastive loss based on the common graph homophily phe-
nomenon – similar nodes are more likely to attach to each
other than dissimilar ones – to learn the representation of tar-
get nodes. The phenomenon of homophily is assumed to be
widely applied to most nodes of a graph. Thus, we use this
property to define normal nodes as the ones that are consis-
tent with their neighbourhood, and the nodes that violate the
assumption are considered to be abnormal otherwise. Ac-
cordingly, we use this property to devise the unsupervised
contrastive learning loss as:

Lcon(Zt) =− log (σ(Zut
>Zvt ))

−Q · Evn∼Pn(v) log (σ(−Zut
>Zvnt )),

(4)

where Zt = ψt(Gt,Bt; Θt
f ) are the representations of a tar-

get node batch Bt, parameterised by Θt
f ; Bt consists of the

target nodes Bu
t , their positive examples Bv

t that occur in
the first-order neighbourhood of u, and their negative exam-
ples Bvn

t sampled from non-neighbour node set Pn; Zut , Zvt ,
and Zvnt ] are the representations of Bu

t , Bv
t and Bvn

t , re-
spectively; Zt = [Zut ,Z

v
t ,Z

vn
t ] is the concatenation of the

three representations. By minimising Eq. 4, the target node
representation mapping ψt is enforced to learn the regular-
ity representations of the nodes, which can also help correct
possible misalignment of the target nodes when jointly opti-
mising with the following domain alignment.

Anomaly-aware One-class Domain Alignment Since
the target anomaly distribution can be substantially dissim-
ilar to the source anomaly class, we propose to focus on
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aligning the normal class between the two domains, with the
anomaly class information in the source graph to support
this one-class alignment.

The choice of domain discrepancy description is cru-
cial for the alignment. The probability-based measures and
adversarial-learning-based approaches are two popular so-
lutions (Wilson and Cook 2020). In our case, the former ap-
proach is more appropriate than the latter one as the adver-
sarial learning can be easily affected by the two main chal-
lenges mentioned above. The Wasserstein metric has been
shown to be more promising among all probability-based
discrepancy measures because it considers the underlying
geometry of the probability space. It can provide reason-
able measures in extreme cases, such as distributions that do
not share support (Lee et al. 2019) or provide stable gradi-
ents for points that lie in low probability regions (Shen et al.
2018). Thus, we use the Wasserstein distance to measure the
domain discrepancy of the normal class in the feature repre-
sentation space of the two domains in an unsupervised way,
while at the same time having anomaly-aware normal class
representation learning in the source domain. In particular,
we define the one-class alignment loss as:

Ldom(Zs,Zt) = Wp(Zs,Zt), (5)

where Wp is the Wasserstein distance and defined as:

Wp(Ps,Pt) = inf
γ∈Π

{((
E

zs∼Ps,zt∼Pt

d(zs, zt)
p
) 1

p

)}
,

(6)
where Ωs and Ωt are two domains on a metric space Ω,
which are respectively related to two different probability
distributions Ps and Pt; γ ∈ π is the set of all probabilis-
tic coupling between Ωs and Ωt; and d(zs, zt)

p specifies the
cost of moving any zs ∈ Ωs to zt ∈ Ωt. We use the Sinkhorn
(Cuturi 2013) approximation of 2-Wasserstein distance for
efficient estimation of the distance d.

Meanwhile, to leverage the anomaly information to learn
normal class representations in the source domain without
enforcing any assumptions on the anomaly distribution, we
use a loss function, called deviation loss (Pang, Shen, and
van den Hengel 2019). It enforces the clustering of normal
nodes in the representation space w.r.t. a given prior, while
making that of the anomalous nodes significantly deviate
from the representations of normal nodes. Specifically, the
loss adapted to our problem is given as follows:

L(zv,Zs, µ, σ) =(1− y)|dev(zv,Zs, µ, σ)|+
y ×max(0, a− dev(zv,Zs, µ, σ)),

(7)

where Zs = ψs(Gs,Bs; Θs
f ) are the feature representations

of nodes in the source graph; y = 1 if v is an anomalous
node and y = 0 otherwise; zv ∈ Zs; a is a confidence
interval-based margin; and dev(zv,Zs, µ, σ) is a Z-Score-
based deviation function:

dev(zv,Zs, µ, σ) =
ηs(zv,Zs; Θs

g)− µ
σ

, (8)

where µ and σ are two hyperparameters from a Gaussian
priorN (µ, σ2). Following (Pang, Shen, and van den Hengel

2019), µ = 0, σ = 1 and a = 5 are used in our implemen-
tation. Eq. (7) is minimised via the same mini-batch gradi-
ent descent approach as in the original paper. Note that the
Gaussian prior in the deviation loss is made on the normal
class rather than the anomaly class, so there is no specifica-
tion of the anomaly distribution.

During training, a simultaneous optimisation ofLcon(Zt),
Ldom(Zs,Zt) and L(zv,Zs, µ, σ) can lead to unstable per-
formance. In our implementation, we first learn Zs by min-
imising L(zv,Zs, µ, σ)), and then we fix Zs and perform
alternating optimisation of Lcon(Zt) and Ldom(Zs,Zt).

Self-Labelling-Based Deviation Learning

After the one-class alignment above, we obtain the domain-
adapted representation space ψ∗t of the target graph and
the source-domain-based anomaly scoring network ηs. Even
though joint learning achieves good alignments, mismatches
may still exist, which may be caused by the uncertain ini-
tial state in ψt and the large initial discrepancy between the
source and target graph distributions. Thus, directly using
ηs to perform anomaly detection on the target graph can
also be unstable. To mitigate such effects, we propose the
use of self-labelling-based deviation learning on the target
graph. The self labelling is used to refine the learned prior
knowledge of anomalies by focusing on nodes with high pre-
diction confidence in each class to generalise the heuristics
of their corresponding class distributions. Inspired by (Pang
et al. 2018), we apply Cantelli’s Inequality based threshold-
ing method for self labelling, which is used to obtain a set of
pseudo anomalies Oout via:

Oout = {v|sGt(v) > meansGt
+α× stdsGt

, ∀v ∈ Gt}, (9)

where sGt = M(Gt, ψ∗t ) is a score vector that contains
the anomaly scores of all nodes yielded by an off-the-shelf
anomaly detectorM on the representation space ψ∗t ; sGt(v)
returns the anomaly score of the node v ∈ Gt; meansGt

and
stdsGt

are the mean and standard deviation of all the scores
in sGt ; α > 0 is a user-defined hyperparameter.

In addition to pseudo anomaly detection, to perform de-
viation learning as in Eq. 7, we also need a set of pseudo
normal nodes in the target graph. Unlike pseudo anomaly
identification, the identification of pseudo normal nodes is
trivial, since the majority of nodes are assumed to be nor-
mal. We simply select the bottom q percentile p1−q ranked
nodes w.r.t. sGt as the pseudo normal nodes; and the final
GAD performance is insensitive to q. After that, we use the
pseudo labelled samples to re-learn the ψt by minimising the
deviation loss in Eq. (7) with Zs replaced with the pseudo
anomalous and normal target nodes. In doing so, it can
largely reduce the effect of potential misaligned node repre-
sentations in the domain alignment, since the self labelling
helps effectively reduce the false positives. This optimisa-
tion accordingly produces the target-domain-based anomaly
scoring network ηt, which is used together with the newly
learned ψt to perform anomaly detection on the target graph.
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Method CD-GAD Dataset
RES→ HTL NYC→ HTL HTL→ RES NYC→ RES RES→ NYC HTL→ NYC AMZ→ NYC NYC→ AMZ Average

A
U

C
-R

O
C

DGI+LOF 0.778±0.009 0.850±0.026 0.612±0.015 0.728±0.015 0.742±0.016
DGI+IF 0.667±0.009 0.843±0.017 0.844±0.007 0.537±0.015 0.723±0.009
ANOM 0.186±0.002 0.417±0.009 0.536±0.001 0.496±0.003 0.409±0.004
DOM 0.694±0.000 0.767±0.000 0.692±0.000 0.867±0.000 0.755±0.000

ADONE 0.738±0.035 0.477±0.024 0.623±0.036 0.847±0.052 0.671±0.037
GAAN 0.644±0.010 0.668±0.041 0.406±0.006 0.861±0.015 0.645±0.018
COLA 0.485±0.034 0.555±0.063 0.811±0.006 0.496±0.003 0.587±0.027

ADDA 0.624±0.064 0.589±0.109 0.787±0.144 0.726±0.345 0.750±0.076 0.750±0.062 0.697±0.126 0.640±0.051 0.684±0.118
CMDR (s) 0.690±0.009 N/A 0.774±0.007 N/A N/A N/A 0.699±0.006 0.859±0.007 0.756±0.007
CMDR (u) 0.699±0.009 0.707±0.009 0.763±0.024 0.780±0.017 0.694±0.006 0.693±0.002 0.695±0.001 0.848±0.009 0.751±0.012

ACT 0.804±0.006 0.792±0.018 0.892±0.015 0.948±0.014 0.831±0.005 0.830±0.005 0.830±0.002 0.925±0.004 0.868±0.009

A
U

C
-P

R

DGI+LOF 0.247±0.016 0.269±0.036 0.133±0.006 0.097±0.008 0.186±0.017
DGI+IF 0.194±0.013 0.296±0.031 0.366+0.014 0.042±0.003 0.226±0.009
ANOM 0.053±0.000 0.040±0.001 0.091±0.001 0.037±0.000 0.055±0.001
DOM 0.216±0.000 0.264±0.000 0.145±0.000 0.252±0.000 0.219±0.000

ADONE 0.244±0.029 0.183±0.031 0.155±0.029 0.259±0.076 0.210±0.041
GAAN 0.152±0.006 0.089±0.017 0.039±0.001 0.203±0.035 0.121±0.015
COLA 0.082±0.009 0.109±0.011 0.128±0.003 0.037±0.000 0.089±0.006

ADDA 0.227±0.028 0.171±0.062 0.260±0.126 0.254±0.140 0.254±0.140 0.181±0.021 0.239±0.110 0.051±0.002 0.177±0.057
CMDR (s) 0.210±0.007 N/A 0.268±0.006 N/A N/A N/A 0.145±0.001 0.242±0.019 0.216±0.008
CMDR (u) 0.216±0.008 0.207±0.009 0.253±0.025 0.267±0.015 0.144±0.003 0.144±0.002 0.145±0.001 0.220±0.024 0.209±0.014

ACT 0.287±0.006 0.284±0.010 0.330±0.018 0.477±0.065 0.249±0.012 0.241±0.009 0.243±0.003 0.497±0.020 0.358±0.002

Table 1: AUC-ROC and AUC-PR (±std) comparison. ‘N/A’ indicates that CMDR (s) cannot work on datasets with different
numbers of node attributes in the two domains. The boldfaced and underlined are the best and second-best results, respectively.

Experiments
Datasets
Eight CD-GAD settings based on four real-world GAD
datasets, including YelpHotel (HTL), YelpRes (RES), Yelp-
NYC (NYC) and Amazon (AMZ)1, are created as follows,
with each setting having two related datasets as the source
and target domains.

YelpHotel (HTL) 
 YelpRes (RES). These two datasets
are Yelp online review graphs in the Chicago area for ac-
commodation and dining businesses. A node represents a
reviewer and an edge indicates two reviewers have reviewed
the same business. Reviewers with filtered reviews by Yelp
anti-fraud filters are regarded as anomalies. Each of the
datasets can serve as either source or target domain. The pri-
mary domain shift here is the course of business.

YelpNYC (NYC)
 Amazon (AMZ). These are also re-
view graphs. YelpNYC is collected from New York City
for dining businesses, while Amazon is for E-commerce re-
views. Anomalies are users with multiple reviews identified
using crowd-sourcing efforts. The domain gap here is greater
than HTL 
 RES as these two datasets are less co-related.

YelpRes (RES) 
 YelpNYC (NYC). The primary domain
shift here is geographical location, as both graphs are for
dining business reviews. This pair presents additional sig-
nificant challenges due to their heterogeneous feature spaces
and a large difference in graph size.

YelpHotel (HTL) 
 YelpNYC (NYC). It is similar to RES

 NYC, however, with more substantial domain gaps in
not only geographical locations but also their business types
(dining venues vs. accommodation).

1Statistics of each dataset are given in Suppl. Material

Competing Methods and Evaluation Metrics
We consider 10 SOTA competing methods from two related
lines of research: unsupervised GAD and CD methods. Two
unsupervised GAD methods are based on the combination
of LOF (Breunig et al. 2000) and iForest (IF) (Liu, Ting,
and Zhou 2008) and node embedding via Deep Graph Info-
max (DGI) (Veličković et al. 2018). Further, we also include
five recent unsupervised GAD methods : ANOMALOUS
(ANOM) (Peng et al. 2018), DOMINANT (DOM) (Ding
et al. 2019), AdONE (Bandyopadhyay, Vivek, and Murty
2020), GGAN (Chen et al. 2020) and COLA (Liu et al.
2021). They are included to examine whether ACT can ben-
efit from the source domain information for unsupervised
GAD on the target domain. For CD methods, we choose
COMMANDER (Ding et al. 2022) (CMDR for short) and
ADDA – a popular general domain adaptation method (Wil-
son and Cook 2020). As the original CMDR, termed CMDR
(s), adopts a shared representation learner for both domains,
we derive a variant of CMDR, termed CMDR (u), that can
work in two domains with different feature spaces by learn-
ing separate graph representation learners for each domain.

We employ two popular, complementary performance
metrics for AD, the Area Under Receiver Operating Char-
acteristic Curve (AUC-ROC) and the Area Under Precision-
Recall Curve (AUC-PR), which are holistic metrics that
quantify the performance of an AD model across a wide
range of decision thresholds. Larger AUC-ROC (or AUC-
PR) indicates better performance.

Implementation Details
Our model ACT is implemented with a three-layer Graph-
SAGE (Hamilton, Ying, and Leskovec 2017) within which
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256 and 64 hidden dimensions are chosen for ψs and ψt re-
spectively. The source model is trained for 50 epochs using
a learning rate of 10−3. The domain alignment is performed
for 50 epochs using a learning rate of 10−4. The same learn-
ing rate is also used in self-labelling-based deviation learn-
ing, wherein IF is used as the off-the-shelf detectorM. The
optimisation is done in mini-batches of 128 target (centre)
nodes using the ADAM optimiser (Kingma and Ba 2014) .
We use the sample size of 25 and 10 for the two hidden lay-
ers during message passing. In self labelling, α = 2.5 and
q = 25 are used by default. These neural network settings
and training methods are used throughout all the settings of
our experiments. All the results are averaged over five inde-
pendent runs using random seeds. The model settings and
training of the competing methods are based on default/rec-
ommended choices of their authors.

Detection Performance on Real-World Datasets
We compare ACT with 10 SOTA competing methods on
eight real-world CD settings, with the results shown in Ta-
ble 1, where ‘A→ B’ represents the use of a source dataset
A for GAD on a target dataset B; and unsupervised anomaly
detectors use only the target data.
Overall Performance ACT performs stably across all eight
settings and substantially outperforms all competing meth-
ods by at least 11% and 13% in average AUC-ROC and
AUC-PR, respectively. In particular, benefiting from the
anomaly-aware alignment and self-labelling-based devia-
tion learning, ACT demonstrates consistent superiority over
the competing CD methods on all eight datasets. Unsuper-
vised detectors work well only on very selective datasets
where their definition of anomaly fits well with the under-
lying anomaly distribution, e.g., the method IF on NYC, and
they become unstable and ineffective otherwise. By con-
trast, ACT learns anomaly-informed models with the rele-
vant anomaly supervision from the source data, and thus, it
can perform stably and work well across the datasets.
Semantic Domain Gap For CD-GAD, using different
source graphs results in similar performance in most cases.
However, in some cases, one source can be more informative
than the others, e.g., the results of ACT on NYC→ RES vs.
HTL→ RES, indicating a closer domain gap between NYC
and RES than that between HTL and RES.
Heterogeneous Structure/Attribute Inputs ACT can ef-
fectively handle scenarios where the source and the target
have a large difference in graph structure and/or node at-
tribute dimension, such as NYC→ HTL and NYC→ RES.
By contrast, ADDA and CMDR (u) fail to work effectively
in such cases (CMDR (s) is inapplicable as it requires a
shared feature learner on the two domains).

Effectiveness of Utilising Source Domain Data
This subsection provides an in-depth empirical investigation
of the importance of source data to CD-GAD by answering
two key questions below.
How much source domain data is required by ACT to
outperform SOTA unsupervised detectors? To answer
this question, we evaluate the performance of ACT on four
representative datasets of different data complexities using

A
U
C
-R
O
C

A
U
C
-P
R

Percentage of Labelled Source Data Used

Figure 3: Efficiency of ACT utilising labelled source data,
with best CD/unsupervised models as baselines.

RES→ HTL HTL→ RES NYC→ RES NYC→ AMZ

A
U

C
-R

O
C

ANOM∗ 0.434±0.025 0.594±0.051 0.434±0.006
DOM∗ 0.737±0.005 0.914±0.008 0.912±0.002

ADONE∗ 0.674±0.059 0.825±0.057 0.775±0.089
GGAN∗ 0.664±0.010 0.851±0.014 0.855±0.027
COLA∗ 0.522±0.028 0.683±0.070 0.730±0.012

Ours 0.804±0.006 0.892±0.015 0.948±0.014 0.925±0.004

A
U

C
-P

R
ANOM∗ 0.098±0.009 0.126±0.015 0.038±0.002
DOM∗ 0.277±0.004 0.366±0.013 0.383±0.006

ADONE∗ 0.243±0.034 0.288±0.026 0.195±0.140
GGAN∗ 0.247±0.011 0.296±0.016 0.297±0.051
COLA∗ 0.163±0.043 0.224±0.017 0.096±0.010

Ours 0.287±0.006 0.330±0.018 0.477±0.065 0.497±0.020

Table 2: Self-labelling deviation learning on our ACT-based
domain-adapted feature space vs. the original feature space.
METHOD∗ means the use of METHOD to perform self la-
belling in the original feature space and then performs ex-
actly the same deviation learning as in ACT using Eq. (7).

five percentages of labelled source nodes: 0.5%, 5%, 25%,
50% and 100% (the rest of the nodes are treated as unla-
belled data during training). The results are illustrated in
Figure 3, with CMDR (s) and the best unsupervised result
per dataset as baselines. It is impressive that even when a
very small percentage (e.g., 0.5% or 5%) of labelled source
data is used, ACT can perform better, or on par with, these
strong baselines, demonstrating strong capability in unleash-
ing the relevant information hidden in the source data. This
capability is further verified by the increasing AUC-ROC
and AUC-PR of ACT when the amount of source data used
increases. Nevertheless, caution is required when the la-
belled source data is too small (e.g., 0.5% labelled source
data corresponds to 21 nodes to 105 nodes for the four
datasets), since ACT can perform unstably in such cases.

In addition to the domain alignment component, another
major factor in the superior performance of ACT here is the
self-labelling deviation learning (see our Ablation Study).
Therefore, the second question below is investigated.
Can we just perform self-labelling deviation learning on
the target domain directly, without using any source do-
main data? The answer is clearly negative. This can be
observed by our empirical results in Table 2, where ACT
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AUC-ROC AUC-PR
Lcon Ldom Ljoint Lcon Ldom Ljoint

RES→ HTL 0.485 0.610 0.608 0.099 0.216 0.216
NYC→ HTL 0.534 0.609 0.682 0.125 0.211 0.246
HTL→ RES 0.552 0.862 0.880 0.069 0.308 0.296
NYC→ RES 0.596 0.662 0.961 0.316 0.160 0.444
HTL→ NYC 0.615 0.671 0.773 0.179 0.145 0.171
RES→ NYC 0.437 0.675 0.753 0.096 0.143 0.163
AMZ→ NYC 0.578 0.578 0.617 0.101 0.134 0.154
NYC→ AMZ 0.389 0.640 0.880 0.033 0.078 0.587

Average 0.523 0.663 0.790 0.127 0.179 0.338

Table 3: Anomaly-aware contrastive alignment vs. separate
contrastive learning/anomaly-aware alignment.

is compared with five deviation-learning-enhanced unsuper-
vised competing methods on four representative settings that
cover adaptations between graphs of similar/different sizes
and attributes. The results show that although self-labelling
deviation learning helps achieve performance improvements
on several datasets compared to the results of the original
five unsupervised methods in Table 1, ACT still outperforms
these five enhanced baselines by substantial margins in both
AUC-ROC and AUC-PR. These results indicate that there is
crucial anomaly knowledge adapted from the source data in
the domain alignment stage in ACT; such knowledge cannot
be obtained by working on only the target data.

Ablation Study
Joint Contrastive Graph Representation Learning and
Anomaly-aware Alignment We first evaluate the impor-
tance of synthesising contrastive learning on the target graph
and anomaly-aware domain alignment (Ljoint) in ACT, com-
pared to the use of the individual contrastive learning (Lcon)
or anomaly-aware alignment (Ldom). The results are re-
ported in Table 3, which shows that the joint learning en-
ables significantly better adaptation of anomaly knowledge
in the source domain to the target domain, substantially out-
performing the use of Lcon or Ldom across the eight set-
tings. Ljoint outperforms the two ACT variants by at least
12% and 14% in average AUC-ROC and AUC-PR respec-
tively. The joint learning is advantageous because the con-
trastive learning models the regular patterns of the nodes in
the target graph (i.e., learning the representations of normal
nodes), while the anomaly-aware domain alignment allows
the use of labelled anomaly and normal nodes in the source
data to improve the normal representations in the target data.
Optimising these two objectives independently fails to work
effectively due to their strong reliance on each other.
Self-labelling-based Deviation Learning We then evaluate
the importance of the self-labelling-based deviation learning
component in ACT, with two variants of ACT, ηs and ACT-
IF. ηs directly uses the source-domain-based anomaly detec-
tor ηs, while ACT-IF uses IF on the domain-adapted feature
representation space of the target data to detect anomalies;
both of which are done after the anomaly-aware contrastive
alignment, but they do not involve the deviation learning.

Table 4 shows the comparison results, from which we can
observe that the self-labelling-based deviation learning com-

AUC-ROC AUC-PR
ηs ACT-IF ACT ηs ACT-IF ACT

RES→ HTL 0.608 0.740 0.804 0.216 0.261 0.287
NYC→ HTL 0.682 0.744 0.792 0.246 0.257 0.284
HTL→ RES 0.880 0.843 0.892 0.296 0.262 0.330
NYC→ RES 0.961 0.955 0.948 0.444 0.427 0.477
HTL→ NYC 0.773 0.781 0.831 0.171 0.166 0.249
RES→ NYC 0.753 0.748 0.830 0.163 0.158 0.241
AMZ→ NYC 0.617 0.792 0.830 0.154 0.191 0.243
NYC→ AMZ 0.880 0.821 0.925 0.587 0.556 0.497

Average 0.790 0.785 0.868 0.338 0.333 0.358

Table 4: Self-labelling deviation learning in ACT vs.
domain-adapted anomaly detector ηs and unsupervised de-
tector IF on the adapted target feature space.

α

Figure 4: Sensitivity test results w.r.t. α.

ponent in ACT largely outperforms ηs and ACT-IF, achiev-
ing average improvement by at least 8% in AUC-ROC and
2% in AUC-PR. The improvement can be attributed to the
capability of the self labelling in identifying true anomalies
in the target data with high confidence predictions, which en-
hances the representation learning of the normal and anoma-
lous nodes in the subsequent deviation learning. The large
improvement in AUC-ROC and relatively small improve-
ment in AUC-PR indicate that ACT is more effective in re-
ducing false positives than increasing true positives.

Anomaly Thresholding Sensitivity
This section studies the sensitivity of ACT w.r.t. the anomaly
thresholding hyperparameter α in Eq. (9), which determines
the characteristics of the pseudo anomalies (e.g., the number
and quality). The results with varying α settings are reported
in Figure 4. In general, ACT maintains stable performance
across the value range of α in [2.0, 3.0], suggesting its good
stability on datasets with different characteristics.

Conclusion
In this paper, we present Anomaly-aware Contrastive align-
menT (ACT) for CD-GAD, which connects an optimal-
transport-based discrepancy measure and graph-structure-
based contrastive loss to leverage prior AD knowledge from
a source graph as a joint learning scheme. The resulting
model achieves anomaly-aware one-class alignment under
severe data imbalance and different source and target dis-
tributions. A self-labelling approach to deviation learning is
further proposed to refine the learned source of AD knowl-
edge. These two components result in significant GAD im-
provement on various real-world cross domains. In our fu-
ture work, we plan to explore the use of multiple source
graphs under the ACT framework.
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