
Efficient Embeddings of Logical Variables
for Query Answering over Incomplete Knowledge Graphs

Dingmin Wang1*, Yeyuan Chen2∗, Bernardo Cuenca Grau1∗

1Department of Computer Science, University of Oxford, UK
2The School of Computer Science and Technology, Xi’an Jiaotong University, China

dingmin.wang@cs.ox.ac.uk, yychen9961@gmail.com, bernardo.cuenca.grau@cs.ox.ac.uk

Abstract

The problem of answering complex First-order Logic queries
over incomplete knowledge graphs is receiving growing at-
tention in the literature. A promising recent approach to this
problem has been to exploit neural link predictors, which
can be effective in identifying individual missing triples in
the incomplete graph, in order to efficiently answer com-
plex queries. A crucial advantage of this approach over other
methods is that it does not require example answers to com-
plex queries for training, as it relies only on the availability of
a trained link predictor for the knowledge graph at hand. This
approach, however, can be computationally expensive during
inference, and cannot deal with queries involving negation.
In this paper, we propose a novel approach that addresses all
of these limitations. Experiments on established benchmark
datasets demonstrate that our approach offers superior per-
formance while significantly reducing inference times.

Introduction
Knowledge graphs (KGs) are graph-structured knowledge
bases where nodes and edges represent entities of interest
and their relations (Hogan et al. 2021; Heist et al. 2020).
Formally, a KG can be seen as a set of triples (or logical
facts) and can be represented in standard formats such as
the Resource Description Framework (RDF). KGs are in-
creasingly been used in a wide range of applications, such
as Web search, question answering in digital assistants, rec-
ommender system, scientific discovery, or data integration
(Li et al. 2020; Xu et al. 2020; Noy et al. 2019). Many large-
scale KGs used in applications, however, are highly incom-
plete; as a result, knowledge graph completion—the prob-
lem of completing a KG with missing facts that are likely to
hold in the domain of interest—has received a great deal of
attention in recent years (Rossi et al. 2021).

Link predictors are ML models that can predict whether
individual missing facts hold in an incomplete KG. These
models can be very effective for KG completion tasks. They
typically work by first learning vector representations of the
entities and relations in the KG during training, and then
exploiting these embeddings to predict individual facts.

*All authors make equal contributions to this paper.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In recent years, however, there has been growing inter-
est in going beyond the prediction of simple logical facts
and tackle the more general problem of answering complex
FOL queries over incomplete KGs. Roughly speaking, given
a query Q(x) with answer variables x and a KG K, the goal
is to compute the answers to Q(x) with respect to the (un-
known) completion K∗ of K. One possible solution to this
problem is to exploit the availability of a neural link predic-
tor to first compute the complete KG K∗ and then evaluate
Q(x) directly over K∗ using standard query answering tech-
nology in data management. This solution, however, can be
problematic in practice as it may require an unmanageable
number of link prediction tests and may involve the materi-
alisation of a large number of facts in the KG.

As a result, research has focused on techniques for an-
swering queries without the need of completing the graph
first. Query embedding methods, such as box embeddings
(Ren, Hu, and Leskovec 2020), beta embeddings (Ren and
Leskovec 2020), and cone embeddings (Zhang et al. 2021),
compute vector embeddings for the queries and then treat
query answering as a nearest-neighbor search problem in the
latent space. Training such models is, however, problematic,
as they can only deal with query patterns seen during train-
ing, and hence training typically requires the availability of
answers to a wide variety of queries.

To address this limitation, Arakelyan et al. proposed the
CQD model, which relies only on the availability of vector
embeddings provided by a trained neural link predictor and
hence does not require example answers to complex queries
for training (Arakelyan et al. 2021). This approach, however,
also comes with a number of limitations. First, it is restricted
to a subclass of positive existential queries—FOL queries
constructed using only conjunction, disjunction and existen-
tial quantification; thus, it cannot handle queries involving
other important constructs such as negation. Second, CQD
relies on a computationally expensive combinatorial optimi-
sation problem to search for likely query answers using the
embeddings provided by the neural link predictor; this can
lead to slow inference times and limit the applicability of
CQD to scenarios with low latency requirements.

In this paper, we propose a novel approach to query an-
swering over incomplete KGs that addresses these limita-
tions. Our approach extends the query language of CQD to
support negation while at the same time significantly reduc-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4652

ing the computational resources needed for both the training
and inference stages. Furthermore, similarly to CQD and in
contrast to query embedding methods, our approach relies
solely on the availability of a trained neural link predictor
and hence does not require example answers to complex
queries for training. We have implemented our approach in
a system called Var2Vec. Our extensive experiments on
three standard benchmark datasets show that Var2Vec can
deliver superior performance while significantly improving
both training and inference times.1

Background
Knowledge Graphs. A knowledge graph K over a vo-
cabulary consisting of pairwise disjoint sets of entities E
and relations R is a finite set of triples ⟨e1, r, e2⟩ where
e1, e2 ∈ E and r ∈ R. A triple ⟨e1, r, e2⟩ is equivalent to
a fact r(e1, e2), and hence a KG K can also be equivalently
seen a FOL knowledge base consisting of a finite set of facts.
Queries. We consider the subclass of FOL queries defined
next. Consider a vocabulary consisting of entities E and re-
lations R, and let V be a set of variables pair-wise disjoint
with E and R. A term is either an entity in E or a variable in
V . An atom is a formula r(t1, t2) where r ∈ R and each ti
is a term. A literal is an atom or the negation of an atom. The
subclass of FOL formulas φ that we consider is then induc-
tively defined according to the following grammar, where l
is a literal and x is a variable:

φ ::= l | φ ∧ φ | φ ∨ φ | ∃x.φ. (1)

Variable occurrences in the scope of a quantifier are bound,
whereas other variable occurrences are free. A query is a for-
mula with a single free variable, called the answer variable.

Note that we consider an extension of the class of monadic
positive existential queries (i.e., FOL queries with a single
answer variable constructed using only conjunction, disjunc-
tion and existential quantification) where, in addition, we al-
low for a restricted form of negation occurring only in front
of atoms. This is in contrast to previous works, in which
queries were typically restricted to monadic positive exis-
tential queries in disjunctive normal form.

The dependency graph of a query Q(x) is a directed graph
where the nodes are the terms occurring in the query and
where there is a directed edge from term t1 to term t2 when-
ever an atom of the form r(t1, t2) occurs as a sub-formula
in the query. Following the literature, we restrict ourselves
to queries where the dependency graph is connected and
acyclic, and where the answer variable is the single sink
node and each source node in the graph is an entity (and
thus not a variable). In what follows, we will refer to the
FOL queries satisfying all the aforementioned syntactic re-
strictions as admissible. To the best of our knowledge, the
class of admissible queries covers all types of queries sup-
ported by existing embedding-based query answering ap-
proaches in the literature, as well as all types of queries in
existing benchmarks. An example admissible query and its
corresponding dependency graph are shown in Figure 1.

1Code available at https://github.com/wdimmy/Var2Vec.

Q(x) = ∃y.
(
located(Europe, y) ∧ ¬held(WorldCup, y)

∧ president(y, x)
)

Europe
y

located

WorldCup held

x
President

Figure 1: Formalisation of the query ‘list the presidents of
European countries that have never held the World Cup’
and the corresponding dependency graph. The sink node
corresponding to the answer variable is depicted in green,
whereas the source nodes (also called anchor nodes in the
literature) are entities depicted in purple.

The semantics of query answering is standard. We say that
an entity e ∈ E is an answer to query Q(x) with respect to a
KG K if K |= Q(e), and we denote the set of answers to Q
with respect to K as JQKK.
Neural Link Predictors. In the context of this paper, we de-
fine a neural link predictor M for a finite vocabulary of enti-
ties E and relations R as a pair ⟨encM, decM⟩ consisting of
an encoding function encM and a decoding function decM,
respectively. The encoding function maps each entity e ∈ E
to a k-dimensional real-valued vector and each relation r ∈
R to a k′-dimensional real-valued vector, where k and k′ are
hyper-parameters of the model representing the dimensions
of entity and relation embeddings, respectively. In turn, the
decoding function decM is a function mapping each triple of
vectors in Rk×Rk′×Rk to a real value between 0 and 1. The
vector components in the encoding of each entity and rela-
tion of the vocabulary constitute the learnable parameters of
the model, whereas the decoding function is used to assign
to each possible fact r(e1, e2) in the vocabulary a probability
decM(encM(e1), encM(r), encM(e2)).

t-norms and t-conorms. Triangular norms (or t-norms) are
generalisations of the logical conjunction operator that are
typically adopted in fuzzy logics (Hájek 2013; Gupta and Qi
1991). Formally, a t-norm is a binary operation ⊤ on [0, 1]
satisfying the following properties:
• ⊤(x, y) = ⊤(y, x) (commutativity);
• ⊤(x,⊤(y, z)) = ⊤(⊤(x, y), z) (associativity);
• y ≤ z → ⊤(x, y) ≤ ⊤(x, z) (monotonicity); and
• ⊤(x, 1) = x (neutral element 1).

Examples used in practice include the Gödel t-norm
⊤(x, y) = min(x, y), the product t-norm ⊤(x, y) = x · y
and the Lukasiewicz t-norm ⊤(x, y) = max(x+ y − 1, 0).

The notion of a t-cornorms is dual to that of a t-norm
and is used to generalise logical disjunction. Formally, a t-
conorm is a binary operation ⊥ on [0, 1] satisfying the afore-
mentioned communatitivy, associativity and monotonicity
properties and where the neutral element is 0 instead of 1
(that is, ⊥(x, 0) = x). Examples of t-conorms used in prac-
tice are the Gödel t-conorm ⊥(x, y) = max(x, y), the prod-

4653

e1 y1

e2 y2

y3

x

r1

r
2

r3

r 4

r
5

y1 = W · [e1 : r1]

y2 = W·[y1:r2]+W·[e2:r3]
2

y3 = W · [y2 : r4]

Figure 2: An example about how each intermediate vari-
able (y1, y2 and y3) node embedding in a complex logic
query is calculated. Note that source nodes e1 and e2 and
all relation nodes (r1,r2,r3,r4 and r5) could be obtained di-
rectly from the trained neural link prediction model.

uct t-conorm ⊥(x, y) = x+ y − x · y and the Lukasiewicz
t-conorm ⊥(x, y) = min(x+ y, 1).

Method
In this section, we present our approach Var2Vec to query
answering over incomplete KGs. Our model relies on the
availability of a trained neural link predictor M for a fi-
nite vocabulary of entities E and relations R; it is compati-
ble with most transductive link prediction methods proposed
in the literature, such as TransE (Bordes et al. 2013), Dist-
Mult (Yang et al. 2015), ComplEx (Trouillon et al. 2016),
RotaE (Sun et al. 2018), and QuatE (Zhang et al. 2019).
Indeed, the only requirement is that M can provide vector
embeddings for each entity and relation in the vocabulary
as well as a probability for each candidate fact. Then, given
any admissible query Q(x) and any KG K mentioning only
relations from R and entities of E , our model estimates the
set of answers to Q(x) with respect to the completion K∗ of
facts predicted to hold by M.

At training time, we first train M in the usual way (or take
a pre-trained link predictor instead); then, using the embed-
dings provided by M, we train a weight matrix W that will
be used to generate vector embeddings for the existentially
quantified variables of any admissible input query at infer-
ence time.2 The training of W is described in Section .

At inference time, we first traverse the input query Q(x)
to generate, using W and M, vector embeddings for each
existentially quantified variable; this is described in Section
. Subsequently, as described in Section , we score each entity
e in E to provide a likelihood of Q(e) being true in K∗; this
allows us to rank the possible answers to the query.

Learning the Weight Matrix
Although a trained neural link predictor M can calculate a
score for any fact r(e1, e2) over its vocabulary, it cannot pro-
vide a score for atoms involving variables, such as r(e1, y)
or r(y1, y2), unless we first embed these variables as vectors.

To this end, we propose to train and exploit a weight ma-
trix W ∈ R(k+k′)×k, where k and k′ are the dimensions of
the entity embeddings and the relation embeddings in M,
respectively. For instance, given an atom r(e, y), the embed-
ding of variable y is y = W ·

[
encM(e) : encM(r)

]
, where[

:
]

is the vector concatenation operation.

2Here and in the rest of the paper we omit bias terms for clarity.

Given a set of training facts of the form r(e1, e2), with
e1, e2 ∈ E and r ∈ R, we minimise a L2-norm loss given
next, where the elements of W are the only parameters:

L = ||(W ·
[
encM(e1) : encM(r)

]
)− encM(e2))||2. (2)

Intuitively, W is trained to transform the embeddings of the
first argument of a training fact and the fact’s relation into
the embedding of the fact’s second argument. Note that, to
train W, we only require a set of training facts, which could
be the same facts used to train M; this is in contrast to query
embedding models such as GQE (Hamilton et al. 2018),
Query2Box (Ren, Hu, and Leskovec 2020), BetaE (Ren and
Leskovec 2020) and ConE (Zhang et al. 2021), which usu-
ally require large amounts of training queries and answers in
order to achieve good performance.

Generating Variable Embeddings
Given an admissible query Q(x), a trained neural link pre-
dictor M, and a trained weight matrix W, we can generate
vector embeddings for all existentially quantified variables
in Q(x). To this end, we traverse the query as described next
where GQ is the dependency graph of Q(x). First, we mark
the source terms t of GQ as visited; these are entities be-
cause the query is admissible, and hence we can obtain their
embedding t = encM(t); we also obtain the embedding of
all relations r in the query as r = encM(r). Then, we re-
peat the following process until all existentially quantified
variables in Q(x) are marked as visited.
• Iterate through each unvisited existentially quantified

variable y such that each atom in Q(x) involving y is of
the form ri(ti, y) where each such t1, . . . , tn is an entity
or an existentially quantified variable marked as visited.
– compute the embedding y of y as

y =

∑n
i=1 W · [ti : ri]

n
(3)

where ti and ri are the embeddings of term ti (which is
available at this stage due to admissibility of the query)
and the relation ri, respectively.

– Mark y as visited.
Example 0.1. Consider the admissible query

Q(x) = ∃y1∃y2∃y3.(r1(e1, y1) ∧ r3(e2, y2)∧
r2(y1, y2) ∧ r4(y2, y3) ∧ r5(y3, x)).

It’s dependency graph is provided in Figure 2. We start by
computing the embeddings e1 and e2 of entities e1 and e2
and the embeddings r1, . . . r5 of relations r1, . . . , r5 using
the link predictor M. We then process variable y1 and ob-
tain its embedding y1 as W · [e1 : r1]. The next variable to
process is y2 and we obtain its embedding y2 as the aver-
age of W · [e2 : r3] and W · [y1 : r2]. Finally, we can now
obtain the embedding y3 of variable y3 as W · [y2 : r4].

The process is clearly linear in the size of the query as
each atom is considered only once. Note also that, to obtain
variable embeddings at this stage, we do not define a special
treatment of negation or disjunction as the query is traversed
according to its dependency graph only.

4654

Scoring for Query-Entity Pairs
Once we have obtained vector embeddings for all entities
and existentially quantified variables mentioned in the input
query Q(x), we can exploit the decoding function decM to
compute a score for each entity e ∈ E estimating the likeli-
hood of Q(e) being true in the completion K∗. For each en-
tity e, the computation of the score is performed inductively
on the structure of Q(e). Formally, let us fix a t-norm func-
tion ⊤ and a t-conorm function ⊥. Then, the scoring func-
tion σ maps each admissible FOL sentence φ constructed
according to the grammar in Equation (1) over the relevant
vocabulary to a real-valued score σ(φ) ∈ [0, 1] as given
next, where for a term t (constant or existentially quanti-
fied variable) and relation r occurring in φ, we use t and r
to respectively denote their vector embedding computed as
described in Section .

• if φ is an atom of the form r(t1, t2), for t1 and t2 terms,
then σ(φ) = decM(t1, r, t2);

• if φ is a negative literal of the form ¬r(t1, t2), then
σ(φ) = 1− σ(r(t1, t2));

• if φ = φ1 ∧ φ2, then σ(φ) = ⊤(σ(φ1), σ(φ2));
• if φ = φ1 ∨ φ2, then σ(φ) = ⊥(σ(φ1), σ(φ2)); and
• if φ is of the form ∃t.φ1, then σ(φ) = σ(φ1).

Note that the computation of the score for a given entity
is linear in the size of the query; furthermore, answering the
query requires a score computation for each entity in the KG.
Once, all scores have been computed, the possible answers
can be ranked before they are returned to the user.

Experiments
We have implemented our Var2Vec model and evaluated
its performance against state-of-the-art baselines.

In this section, we describe the results of our evaluation
on a suite of an established benchmark for query answering
over incomplete KGs.

Datasets and Queries We consider the query answering
benchmark proposed in (Ren, Hu, and Leskovec 2020). The
benchmark provides three standard KGs commonly used in
the KG completion literature: FB15k (Bordes et al. 2013),
FB15k-237 (Toutanova and Chen 2015), and a subset of the
NELL995 KG (Xiong, Hoang, and Wang 2017). The bench-
mark splits the facts in each KG into training, validation and
testing subsets, where the training subset is contained in the
validation subset and the validation subset is in turn con-
tained in the testing subset. Given a query Q and a bench-
mark KG K, let us denote with JQKtrain

K , JQKval
K and JQKtest

K
(where JQKtrain

K ⊆ JQKval
K ⊆ JQKtest

K) the set of answers to Q
with respect to the training, validation, and testing subsets of
K, respectively. We evaluate on JQKtrain

K \ JQKval
K at the vali-

dation stage and the reported results are calculated based on
JQKval

K \ JQKtest
K at the testing stage.

We consider the 14 query patterns shown in Figure 3,
where 9 of them correspond to queries without negation
considered in (Ren, Hu, and Leskovec 2020), and the re-
maining 5 query patterns involving negation were later pro-
posed in (Ren and Leskovec 2020). Query pattern 1p is

KG
Training Validation Test

1p others 1p others 1p others

FB15k 273,710 273,710 59,097 8,000 67,016 8,000

FB15k-237 149,689 149,689 20,101 5,000 22,812 5,000

NELL995 107,982 107,982 16,927 4,000 17,034 4,000

Table 1: Number of training, validation, and test queries gen-
erated for different query patterns.

the simplest pattern and it corresponds to facts, whereas
the remaining patterns represent increasingly complex query
structures. The queries used for training, validation, and test-
ing are obtained by instantiating each query pattern multiple
times for each benchmark KG; this is done by choosing suit-
able relations and entities from the KG. Table 1 summarises
the number of instantiations of each query pattern and each
KG provided by the benchmark.

Method Supported Operators

GQE (Hamilton et al. 2018) ∃,∧
Query2Box (Ren, Hu, and Leskovec 2020) ∃,∧,∨
BetaE (Ren and Leskovec 2020) ∃,∧,∨,¬
MLP (Amayuelas et al. 2021) ∃,∧,∨,¬
ConE (Zhang et al. 2021) ∃,∧,∨,¬
CQD (Arakelyan et al. 2021) ∃,∧,∨
FuzzQE (Chen, Hu, and Sun 2022) ∃,∧,∨,¬
Var2Vec ∃,∧,∨,¬

Table 2: Considered baselines and our approach Var2Vec.

Baselines We compare Var2Vec against the state-of-the-
art baselines indicated in Table 2. To perform the experi-
ments, we used the code for the relevant baseline provided
by the authors; the only exception was FuzzQZ (Chen, Hu,
and Sun 2022), where we reported the results provided in
their paper since the code for the system is not publicly
available. All baselines support only admissible queries as
described in the preliminaries; however, GQE, Query2Box
and CQD are restricted to admissible queries without nega-
tion. We did not include the beam search scheme of CQD
scheme as a baseline in our experiments since, as show in
Figure 4, it is computationally too expensive; for example,
a single 12GB Titan X GPU returned a memory error for
a 5000-batch query inference on NELL995; as a result, we
used only the continuous optimisation scheme of CQD.

It is worth reiterating that both our approach and CQD
require only facts (i.e., queries of pattern 1p) for training,
whereas training for the remaining baselines also requires
the complex queries and their answers in the benchmark.

Model Details For each dataset, we pretained a link pre-
dictor (ComplexE) only using the 1p queries from their

4655

Negation-free Query Patterns.

1p 2p 3p 2i 3i ip pi up 2u

2in 3in inp pni pin

Query patterns with negation.

Entity Quantified Variable Answer Variable Intersection Union Negation

Figure 3: Query patterns considered in the experiments. In the naming of query structures, p, i, u and n stand for Projection,
Intersection, Union and Negation, respectively.

training dataset. The number of training epochs was 100 and
the embedding size of both the entity and the relation was
2000. The dimension of W was 4000 × 2000. We used the
Adam Optimizer (Kingma and Ba 2014) with learning rates
lr=0.1/0.01/0.001 to optimize W and used the best one on
the validation set. The batch size was 1000. In our experi-
ments, by default, we use product T-norm (⊥(x, y) = x · y)
and product T-conorm (⊤(x, y) = x+ y − x · y).

Evaluation Metrics Following prior work (Ren, Hu, and
Leskovec 2020; Ren and Leskovec 2020), we adopted the
Mean Reciprocal Rank (MRR) metric for our evaluation,
which is calculated as given next for a test query Q and a
test KG K, where ranke denotes the rank of entity e as a
query answer amongst all entities in the KG:

MRR(Q) =
1

|JQKtest
K \JQKval

K |
∑

e∈JQKtest
K \JQKval

K

1

ranke
.

Main Results. Table 3 summarises the results of our eval-
uation on all three benchmark KGs, where Avge (respec-
tively, Avgn) represents the average MRR for all queries
in the benchmark corresponding to negation-free patterns
(respectively, queries corresponding to patterns with nega-
tion). Overall, the performance of our approach is highly
competitive. Compared with GQE, Query2Box and BetaE,
our method achieves an average improvement on MRR of
37.7%, 22.9% and 46.2% respectively for queries without
negation, and also outperforms significantly all of these ap-
proaches for queries with negation. Our approach also out-
performs ConE and MLP both for queries with and with-
out negation, especially for complex query patterns such as
ip and pi, which are patterns unseen during training for all
models; this suggests that our approach generalises better to
new query patterns than the baselines. Compared to CQD,
our approach also displays better average performance for
all three benchmark KGs. Finally, we compared our ap-
proach to FuzzQE, which also exploits the availability of a

neural link predictor; we observe that our approach also out-
performs FuzzQE in most cases, with the only exception of
queries with negation on NELL995.

Figure 4 provides training and average inference times
for all the evaluated approaches on FB15k. We can see that
our approach can be trained and applied very efficiently. In
particular, our approach is 12/46 times faster than CQD-
CO/CQD-Beam during inference and significantly faster
than embedding-based models during training.

0

20

40

60

80

Tr
ai

ni
ng

Ti
m

e
(h

)

0

50

100

150

200

In
fe

re
nc

e
Ti

m
e

(m
s)

Figure 4: Training and inference times on FB15k. Inference
time refers to the average time per query. From left (brown)
to right (blue), it represents GQE, Query2Box, BetaE, MLP,
ConE, CQD-CO, CQD-Beam and Var2Vec, respectively.

Ablation Studies. We first analysed the influence of the
chosen link predictor on our results. Our system uses Com-
plexEx by default. If we choose DisMult instead, we can
observe in Table 4 a slight decrease in performance. This is
unsurprising given that ComplexEx ourperforms DistMult
in link prediction tasks over the benchmark KGs.

We also analysed the influence of the choice of t-norm
and t-conorms, which play an important role in computing
the scores for query answers. Our system uses product t-
norms and t-conorms by default, and we also experimented
with Gödel t-norms and t-conorms. Table 5 shows that us-
ing product t-norms and t-conorms leads to superior perfor-
mance on all benchmark KGs.

Finally, we explored the possibility of replacing the
weight matrix W with a fully-connected neural network

4656

Method Avge Avgn 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

NELL995

GQE 18.6 – 32.8 11.9 9.6 27.5 35.2 14.4 18.4 8.5 8.8 – – – – –
Q2B 22.9 – 42.2 14.0 11.2 33.3 44.5 16.8 22.4 11.3 10.3 – – – – –
CQD-CO 28.8 – 60.8 18.3 13.2 41.0 41.5 22.5 30.3 17.6 13.7 – – – – –
BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 14.3 24.1 12.2 8.5 5.1 7.8 10.0 3.1 3.5
ConE 27.2 6.4 53.1 16.1 13.9 40.0 50.8 17.5 26.3 15.3 11.3 5.7 8.1 10.8 3.5 3.9
MLP 25.0 6.0 52.7 15.4 14.0 36.4 45.4 15.8 22.1 13.2 10.0 5.1 8.0 10.0 3.6 3.6
FuzzQE 27.1 7.3 57.6 17.2 13.3 38.2 41.5 27.0 19.4 16.9 12.7 9.1 8.3 8.9 4.4 5.6
Var2Vec 30.1 7.5 60.8 18.0 11.9 42.2 52.2 22.7 30.9 19.2 12.2 6.8 8.8 10.6 5.4 5.9

FB15k-237

GQE 16.3 – 35.0 7.2 5.3 23.3 34.6 10.7 16.5 8.2 5.7 – – – – –
Q2B 20.1 – 40.6 9.4 6.8 29.5 42.3 12.6 21.2 11.3 7.6 – – – – –
CQD-CO 21.8 - 46.7 9.5 6.3 31.2 40.6 23.6 16.0 14.5 8.2 – – – – –
BetaE 20.9 5.4 39.0 10.9 10.0 28.8 42.5 12.6 22.4 12.4 9.7 5.1 7.9 7.4 3.6 3.4
ConE 23.2 5.9 42.3 12.7 10.7 32.6 46.9 13.6 25.2 14.2 10.6 5.4 8.6 7.8 4.0 3.6
MLP 22.1 6.7 41.4 11.7 9.9 32.1 44.6 13.0 24.5 12.6 9.3 6.4 10.6 8.0 4.6 4.4
FuzzQE 21.8 6.6 44.0 10.8 8.6 32.3 41.4 22.7 15.1 13.5 8.7 7.7 9.5 7.0 4.1 4.7
Var2Vec 23.4 6.4 46.7 10.8 8.4 33.5 46.5 16.3 22.5 16.6 8.8 5.4 10.5 6.2 4.4 5.3

FB15k

GQE 28.0 – 54.6 15.3 10.8 39.7 51.4 19.1 27.6 22.1 11.6 – – – – –
Q2B 38.0 – 68.0 21.0 14.2 55.1 66.5 26.1 39.4 35.1 16.7 – – – – –
CQD-CO 48.6 – 89.4 27.5 15.0 76.9 80.8 35.1 46.4 42.7 23.5 – – – – –
BetaE 41.6 11.8 65.1 25.7 24.7 55.8 66.5 28.1 43.9 40.1 25.2 14.3 14.7 11.5 6.5 12.4
ConE 49.7 14.8 73.2 33.7 29.0 64.6 73.6 35.5 50.9 55.3 31.4 17.9 18.7 12.5 9.8 15.1
MLP 41.6 13.9 66.9 29.3 24.4 56.1 66.2 26.7 44.8 33.5 26.4 16.0 17.3 13.2 8.3 14.6
FuzzyQE∗ – – – – – – – – – – – – – – – –
Var2Vec 51.0 18.9 89.4 26.0 16.6 79.0 82.6 34.2 46.0 62.8 22.1 23.6 31.4 9.8 9.8 19.7

* The original paper of FuzzyQE does not report the result on the FB15k dataset.

Table 3: MRR results (%) of baselines and our model on benchmark queries grouped by query pattern. Avge and Avgn denote
the average MRR on queries with and without negation, respectively.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up

NELL995

DisMult 28.1 58.6 13.9 10.3 40.7 51.0 18.9 28.9 18.7 11.5
ComplexE 30.1 60.8 18.0 11.9 42.2 52.2 22.7 30.9 19.2 12.8

FB15k-237

DisMult 21.6 45.4 8.0 6.6 31.5 44.0 13.2 21.0 16.2 8.1
ComplexE 23.2 46.7 10.3 7.1 33.5 46.5 16.3 22.5 16.6 8.8

FB15k

DisMult 41.8 73.4 17.6 15.4 60.5 68.8 30.1 39.5 50.5 20.5
ComplexE 51.0 89.4 26.0 16.6 79.0 82.6 34.2 46.0 62.8 22.1

Table 4: MRR results (%) with DisMult and ComplexE .

equipped with ReLU activations. We considered architec-
tures with one and two hidden layers in which ReLU is ap-
plied following matrix application in each hidden layer. The
results we obtained on the FB15k KG are summarised in
Table 6. We can observe that, as the number of layers in-
creases, the training times increase significantly but the per-
formance of the model does not show a noticeable improve-
ment. These results thus speak in favour of using a simple

weight matrix instead of a more complex neural architecture
for computing variable embeddings.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up

NELL995

MM 25.9 60.8 18.0 7.1 39.7 46.4 15.8 13.8 19.9 11.3
PP 30.1 60.8 18.0 11.9 42.2 52.2 22.7 30.9 19.2 12.8

FB15k-237

MM 19.4 46.7 8.8 6.9 30.9 39.6 11.5 6.7 17.2 6.5
PP 23.2 46.7 10.3 7.1 33.5 46.5 16.3 22.5 16.6 8.8

FB15k

MM 45 89.4 16.8 11.4 80.5 84.1 21.8 10.5 74.1 16.4
PP 51.0 89.4 26.0 16.6 79.0 82.6 34.2 46.0 62.8 22.1

Table 5: MRR results (%) with different T-norms. MM rep-
resents the Min-Max Gödel combination and PP for the
Product-Product combination.

Case Study. In this section we discuss the variable embed-
dings obtained by our approach. We chose as a case study the
test query in the NELL995 benchmark listing ”all countries

4657

Setting Time Avg 1p 2p 3p 2i 3i ip pi 2u up

Matrix 86m 51.0 89.4 26.0 16.6 79.0 82.6 34.2 46.0 62.8 22.1

2-layer 248m 50.4 89.8 26.3 16.6 77.8 79.6 34.5 44.5 61.7 22.8

3-layer 539m 51.0 90.9 25.4 16.3 80.5 83.0 35.1 44.2 63.0 20.8

Table 6: MRR results (%) with different neural layers on
FB15K. Times indicate training times.

where an official language of the country is used for teaching
Divinity at universities”. This is a conjunctive query written
as follows, with Divinity an entity NELL995:

Q(x) = ∃y1∃y2.(CourseOf (Divinity , y1)∧
TeachLanguage(y1, y2) ∧OfficialLanguage(y2, x))

An answer to this query can be obtained by matching the an-
swer variable x to US and the existentially quantified vari-
ables y1 and y2 to Harvard University and English , re-
spectively. Intuitively, we would expect the embedding of
variables y1 and y2 obtained as described in Section to be
close to the embeddings for university entities and language
entities, respectively.

Figure 5: Visualisation of entity and variable embeddings
for the case study. Th black and yellow points represents the
embedding of variable y1 and y2, respectively; and the pur-
ple and green clusters denote the embeddings of university
entities and language entities, respectively.

To verify this intuition, we have performed a Principal
Component Analysis (PCA) (Abdi and Williams 2010) on
the embeddings. The results are depicted in Figure 5. Go-
ing from left to right, the first cluster of points represents the
embeddings of University entities (in purple) and the embed-
ding of variable y1 (in black), whereas the second cluster
of points represent embeddings of language entities (green
points) and the embedding of y2 (yellow point). We can ob-
serve that variable embeddings show strong correspondence
with the embedding of their representative entities in terms
of their relative positions in Figure 5. This illustrates that the
learnt weight matrix W is able to adequately embed vari-
ables in queries with joins.

Related Work
Knowledge graph completion is the problem of completing
a KG with missing facts that are likely to hold in the do-
main of interest. Neural link predictors are models capable
of scoring the likelihood of a particular fact and/or rank-
ing the most likely answers to an atomic query of the form
Q(x) = r(e, x) or Q(x) = r(x, e) for r a relation and e
an entity in the KG. Knowledge graph completion has re-
ceived a great deal of attention in recent years and a wide
range of neural link predictors have been proposed. Promi-
nent examples include TransE (Bordes et al. 2013), Dist-
Mult (Yang et al. 2015), ComplEx (Trouillon et al. 2016),
and RotaE (Sun et al. 2018). We refer the readers to (Rossi
et al. 2021) for a more detailed discussion about these mod-
els. It is worth mentioning, however, that the neural link pre-
dictors that are compatible with our approach are transduc-
tive—that is, they score individual facts by first learning em-
beddings for entities and relations in the KG and as a result
they can only make predictions for entities seen during train-
ing. In recent years, however, there has also been increasing
interest on inductive link predictors, which are able to make
predictions for KGs involving arbitrary entities (Hao et al.
2020; Teru, Denis, and Hamilton 2020; Liu et al. 2021).

In this paper, we focus on the query answering problem
over incomplete KGs, which generalises link prediction to
FOL queries that go beyond simple facts. This problem is
receiving increasing attention, and prominent approaches
include GQE (Hamilton et al. 2018), Query2box (Ren,
Hu, and Leskovec 2020), BetaE (Ren and Leskovec 2020),
MLP (Amayuelas et al. 2021) and ConE (Zhang et al. 2021).
Specifically, GQE is one of the earliest approaches support-
ing only admissible conjunctive queries. Query2Box fur-
ther supports disjunction by representing queries as a box
in a latent space; box embeddings, however, cannot sup-
port negation since the complement of a box in the Eu-
clidean space is no longer a box. Beta embeddings (Ren
and Leskovec 2020) were later proposed so address this
limitation and support admissible queries involving all four
Boolean operations. Subsequent approaches, such as ConE
and MLP, improved model performance by introducing in-
creasingly complex architectures; these query embedding-
based approaches are, however, data hungry and usually
require millions of training queries to achieve a satisfying
performance. CQD (Arakelyan et al. 2021) exploits trained
neural link predictors together with fuzzy logic operators to
avoid the need for complex queries during training. CQD re-
quires only facts for training and displays improved out-of-
distribution generalisation. CQD, however, does not support
negation and has low inference efficiency.

Conclusion
We have presented a novel approach to query answering over
incomplete KGs that addresses some of the key limitations
in prior work. First, we support admissible queries involv-
ing all Boolean operators. Second, we require only facts for
training, and training can be performed very efficiently. Fi-
nally, our approach displays superior accuracy while at the
same time significantly reducing inference times.

4658

Acknowledgments
This work was supported in whole or in part by the EPSRC
projects OASIS (EP/S032347/1), ConCuR (EP/V050869/1)
and UK FIRES (EP/S019111/1), the SIRIUS Centre for
Scalable Data Access, and Samsung Research UK. For the
purpose of Open Access, the authors have applied a CC BY
public copyright licence to any Author Accepted Manuscript
(AAM) version arising from this submission. The authors
would like to thank Shuai Zhang, Qi Liu, and Yue Zhang for
their insightful discussions and support.

References
Abdi, H.; and Williams, L. J. 2010. Principal component
analysis. Wiley interdisciplinary reviews: computational
statistics, 2(4): 433–459.
Amayuelas, A.; Zhang, S.; Rao, X. S.; and Zhang, C. 2021.
Neural Methods for Logical Reasoning over Knowledge
Graphs. In International Conference on Learning Repre-
sentations (ICLR).
Arakelyan, E.; Daza, D.; Minervini, P.; and Cochez, M.
2021. Complex Query Answering with Neural Link Pre-
dictors. In International Conference on Learning Represen-
tations (ICLR).
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. Advances in Neural Information Pro-
cessing Systems (NeurIPS).
Chen, X.; Hu, Z.; and Sun, Y. 2022. Fuzzy Logic Based
Logical Query Answering on Knowledge Graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 36, 3939–3948.
Gupta, M. M.; and Qi, J. 1991. Theory of T-norms and fuzzy
inference methods. Fuzzy sets and systems, 40(3): 431–450.
Hájek, P. 2013. Metamathematics of fuzzy logic, volume 4.
Springer Science & Business Media.
Hamilton, W. L.; Bajaj, P.; Zitnik, M.; Jurafsky, D.; and
Leskovec, J. 2018. Embedding Logical Queries on Knowl-
edge Graphs. In Advances in Neural Information Processing
Systems (NeurIPS), 2030–2041.
Hao, Y.; Cao, X.; Fang, Y.; Xie, X.; and Wang, S. 2020. In-
ductive Link Prediction for Nodes Having Only Attribute
Information. In International Joint Conference on Artificial
Intelligence (IJCAI), 1209–1215.
Heist, N.; Hertling, S.; Ringler, D.; and Paulheim, H. 2020.
Knowledge Graphs on the Web-An Overview. Knowledge
Graphs for eXplainable Artificial Intelligence, 3–22.
Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo,
G. d.; Gutierrez, C.; Kirrane, S.; Gayo, J. E. L.; Navigli, R.;
Neumaier, S.; et al. 2021. Knowledge graphs. Synthesis
Lectures on Data, Semantics, and Knowledge, 12(2): 1–257.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Li, F.-L.; Chen, H.; Xu, G.; Qiu, T.; Ji, F.; Zhang, J.; and
Chen, H. 2020. AliMeKG: Domain knowledge graph con-
struction and application in e-commerce. In ACM Interna-
tional Conference on Information and Knowledge Manage-
ment (CKIM), 2581–2588.

Liu, S.; Grau, B. C.; Horrocks, I.; and Kostylev, E. V. 2021.
INDIGO: GNN-Based Inductive Knowledge Graph Com-
pletion Using Pair-Wise Encoding. In Advances in Neural
Information Processing Systems (NeurIPS).
Noy, N.; Gao, Y.; Jain, A.; Narayanan, A.; Patterson, A.; and
Taylor, J. 2019. Industry-scale Knowledge Graphs: Lessons
and Challenges: Five diverse technology companies show
how it’s done. Queue, 17(2): 48–75.
Ren, H.; Hu, W.; and Leskovec, J. 2020. Query2box: Rea-
soning over Knowledge Graphs in Vector Space Using Box
Embeddings. In International Conference on Learning Rep-
resentations (ICLR).
Ren, H.; and Leskovec, J. 2020. Beta embeddings for
multi-hop logical reasoning in knowledge graphs. Advances
in Neural Information Processing Systems (NeurIPS), 33:
19716–19726.
Rossi, A.; Barbosa, D.; Firmani, D.; Matinata, A.; and Meri-
aldo, P. 2021. Knowledge graph embedding for link predic-
tion: A comparative analysis. Acm Transactions on Knowl-
edge Discovery from Data (TKDD), 15(2): 1–49.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2018. Ro-
tatE: Knowledge Graph Embedding by Relational Rotation
in Complex Space. In International Conference on Learning
Representations (ICLR).
Teru, K.; Denis, E.; and Hamilton, W. 2020. Inductive re-
lation prediction by subgraph reasoning. In International
Conference on Machine Learning (ICML), 9448–9457.
Toutanova, K.; and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd Workshop on Continuous Vector Space Mod-
els and their Compositionality, 57–66. Beijing, China: As-
sociation for Computational Linguistics.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In International Conference on Machine Learn-
ing (ICML), 2071–2080. PMLR.
Xiong, W.; Hoang, T.; and Wang, W. Y. 2017. DeepPath:
A Reinforcement Learning Method for Knowledge Graph
Reasoning. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), 564–573.
Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; and Achan,
K. 2020. Product knowledge graph embedding for e-
commerce. In International Conference on Web Search and
Data Mining (WSDM), 672–680.
Yang, B.; Yih, S. W.-t.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding Entities and Relations for Learning and Infer-
ence in Knowledge Bases. In International Conference on
Learning Representations (ICLR).
Zhang, S.; Tay, Y.; Yao, L.; and Liu, Q. 2019. Quaternion
knowledge graph embeddings. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 32.
Zhang, Z.; Wang, J.; Chen, J.; Ji, S.; and Wu, F. 2021. Cone:
Cone embeddings for multi-hop reasoning over knowledge
graphs. Advances in Neural Information Processing Systems
(NeurIPS).

4659

