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Abstract

We propose a new online learning algorithm tailored to data
streams described by varying feature spaces (VFS), where
new features can emerge constantly, and old features may
stop to be observed over various time spans. Our proposed al-
gorithm, named Online Random Feature Forests for Feature
space Variabilities (ORF3V), provides a strategy to respect
such feature dynamics by generating, updating, pruning, as
well as online re-weighing an ensemble of what we call fea-
ture forests, which are generated and updated based on a com-
pressed and storage efficient representation for each observed
feature. We benchmark our algorithm on 12 datasets, in-
cluding one novel real-world dataset of government COVID-
19 responses collected through a crowd-sensing program in
Spain. The empirical results substantiate the viability and ef-
fectiveness of our ORF®V algorithm and its superior accuracy
performance over the state-of-the-art rival models.

Introduction

Data streams can nowadays be generated from real applica-
tions in high velocity, thanks to advances in and the ubiqg-
uity of sensing techniques (Gama and Gaber 2007; Nittel
2015; Shi and Abdel-Aty 2015; Pardo, Zamora-Martinez,
and Botella-Rocamora 2015). These data streams provide a
real-time description of our communities, cities, and natu-
ral and societal environments that constantly evolve. Online
Learning (OL) that enables to train decision-making models
on-the-fly in accordance with the evolving patterns of data,
thus leads to many powerful algorithms for streaming data
analytics (Aggarwal 2007; Shalev-Shwartz et al. 2011; Yu,
Neely, and Wei 2017; Leite, Costa, and Gomide 2013).

The initial focus of OL algorithms was dealing with an
incremental sample space, where the instances of training
data emerge one after another and are processed in a single
pass. All data instances are posited to reside in a fixed fea-
ture space. However, this assumption can be too restrictive
in practice. For example, consider a crowd-sensing scenario,
where mobile users commit their data collectively to train
an OL model that detects air pollution in local areas (Meng
et al. 2017; Pan et al. 2017). Fixing the set of features to
be used for the learning model prior is next to impossible
for two reasons. On the one hand, when new users join the
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sensing effort, their devices (e.g., cellphones, sensor kits)
may sense the ambience with upgraded or totally new sen-
sors, thereby generating new features; on the other hand,
any user can leave the sensing network (or some devices
fail to commit data due to networking issues) over differ-
ent time spans, making old features become unobservable.
Data streams generated from such scenarios are more likely
to be described by a varying feature space (VFS), where
new features emerge and old features vanish flexibly. Learn-
ing with VFS data streams has drawn extensive attention
recently (Zhang et al. 2016; Hou, Zhang, and Zhou 2017;
Beyazit, Alagurajah, and Wu 2019; He et al. 2019; Zhang
et al. 2020) because of its wide application prospects.

Unfortunately, most existing studies restrict their inter-
ests, for the sake of analytical simplicity, in the family of
linear classifiers, which can suffer from two limitations.
First, linear classifiers possess very limited learning capac-
ity and thus fail to generalize well on VFS data streams
with complex and non-linear classification boundaries. Sec-
ond, to restrict the dimension of feature space that incre-
mentally grows with newly emerging features, several stud-
ies proposed to learn linear classifiers on an extracted latent
space (Hou, Zhang, and Zhou 2021; He et al. 2021a; Lian
et al. 2022), which sacrifices model interpretability, a criti-
cal property for sensitive domains such as finance, medicare,
and security. Alas, no effort has been undertaken to build in-
terpretable and highly-capable online VFS learners.

Motivated by this, we propose a novel online learner tai-
lored to VFS data streams based on tree ensembles, termed
Online Random Feature Forests for Feature space Variabil-
ities (ORF3V). Specifically, each feature in ORF?V is inde-
pendently represented by a random feature forest, an ensem-
ble of shallow decision trees (i.e., decision stumps), where
each tree keeps track of the statistics and discriminant power
of a feature in an online fashion. To restrict the model size
with respect to VFS, pruning is conducted at both forest and
tree levels. In particular, the Hoeffding bound (Hoeffding
1994) is leveraged to determine when to drop the learned
forest of an unobserved feature with its statistics turning in-
sufficient. A randomized algorithm is used in each forest to
dynamically drop the oldest tree which may perceive out-
dated patterns from the instances seen before. Predictions
are made in a hierarchical manner, where each instance is
predicted as a weighted combination of its multiple fea-



ture forests, and each forest outputs a value by ensembling
its outputs of trees. This hierarchical ensembling results in
highly non-linear feature representations, while enjoying a
high model interpretability, as the impact of any feature in
making a prediction is explicitly determined by the weight
of the corresponding forest.

Specific contributions of this paper are as follows:

1) This is the first study using tree ensembles to learn
streaming data with a varying feature space. Unlike bag-
ging (e.g., random forests) that uses multiple features in
each tree, we aim to build an independent feature forest
for each newly emerging feature and make interpretable
predictions based on weighted combination of forests.

2) A novel algorithm (ORF?V) is devised to realize our

idea, and a new impurity metric is proposed to grow the

feature forests. To respect the feature space dynamics,
pruning operations are performed at both forest and tree
levels for a better delineation of streaming data.

3) Extensive experiments are carried out over both bench-
mark datasets and a real-world dataset of government
COVID-19 responses collected via crowd-sensing in
Spain. Our ORF3V algorithm achieves state-of-the-art

online classification accuracy, while being interpretable.

Related Work

We relate the proposed ORF?V approach to two research
directions: online learning in varying feature spaces, which
reflects the core problem we are aiming to solve, and tree en-
semble methods for online learning, which are the key build-
ing blocks of our approach.

Online Learning in Varying Feature Spaces

In online learning, a given learning algorithm tries to infer
a prediction model from sequentially appearing instances.
Online learning algorithms can be distinguished into first-
order and second-order online learning algorithms (Zhang
et al. 2016). First-order algorithms use first-order informa-
tion for the update, e.g. the Perceptron algorithm (Rosen-
blatt 1958; Freund and Schapire 1999) or Online Gradi-
ent Descent (Zinkevich 2003). Second-order algorithms aim
to make use of the underlying structure between features
(Zhang et al. 2014).

However, traditional online learning methods are not able
to learn from varying feature spaces since they assume the
feature space remains constant. To alleviate this restriction,
pioneer studies initially considered a monotonically increas-
ing feature space (Gomes et al. 2013; Zhang et al. 2015,
2016), with the crux lying in initializing the learning weights
of new features with an educated guess, such that the on-
line learner can enjoy a jump-start with faster convergence
over random initialization on new features. Later studies fur-
ther relaxed this setting into an arbitrarily varying feature
space (Hou, Zhang, and Zhou 2017; Hou and Zhou 2017;
Beyazit, Alagurajah, and Wu 2019; He et al. 2019; Zhang
et al. 2020; Hou et al. 2021; Hou, Zhang, and Zhou 2021;
He et al. 2021b), where new features can emerge and any
pre-existing features may stop to be observed at any time.
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Ensemble classification became the key method for these
approaches, whose core idea is to establish a relationship
among features, such that the learner can reconstruct the old
features to leverage their learned weights for better predic-
tion performance in cases where they are unobservable.

Unfortunately, all these methods prescribed linear clas-
sifiers and hence tend to yield inferior performance when
linearity does not hold . To respect data streams with more
complex patterns, recent studies (He et al. 2021a; Liu et al.
2022; Lian et al. 2022) proposed to capture non-linear fea-
ture interplays in a low-dimensional latent space. These
methods, however, inevitably sacrifice the interpretability of
the resultant models, as each latent variable in the learned
space entails information of multiple original features. As a
result, they are not applicable to sensitive domains such as
finance, medicare, and security, where model interpretability
is required.

Online Learning with Trees and Tree-Ensembles

Single tree and tree ensemble models provide a reason-
able balance between interpretability and predictive perfor-
mance. While single tree models, such as ID.3 (Quinlan
1986) and C4.5 (Quinlan 1993) have the advantage of be-
ing highly interpretable, they generally perform inferiorly
compared to ensembling tree methods, such as Random
Forests (Breiman 2001) or XGBoost (Chen and Guestrin
2016). However, neither of these approaches can be applied
in an online learning setting.

To deal with streaming data, pioneer study can be traced
back to the Hoeffding tree (Domingos and Hulten 2000),
where a single decision tree is grown by selecting the op-
timal splitting feature incrementally. The selected feature
maximizes an impurity metric and the number of samples
describing it suffices to support the decision, determined
by the Hoeffding bound. Later, various methods using Ho-
effding tree ensembles were proposed for a larger learn-
ing capacity, such as Ensembles of Restricted Hoeffding
Trees (Bifet et al. 2012), Adaptive Random Forests (Gomes
et al. 2017), and Dynamic Streaming Random Forest (Ab-
dulsalam, Skillicorn, and Martin 2008). However, inter-
pretability of such tree ensembles is compromised, as they
tend to develop multiple deep trees in a bagging fashion,
such that the impact of each feature for yielding the predic-
tions becomes hardly trackable. Moreover, as the Hoeffding
tree requires to store the observed data for each feature until
the optimal splitting decision is made, all these methods are
memory intensive in a varying feature space. None of them
adapts to feature space variabilities.

Our approach improves upon these online tree and tree
ensemble models in the sense that 1) it is interpretable at
any time, as it grows independent feature forests of which
each tree member is shallow and a learnable weight attach-
ing to each forest directly determines the importance of the
corresponding feature in making prediction to a particular
class, and 2) it does not incur memory overhead, as pruning
is applied to the feature forests dynamically, such that model
size does not grow linearly in the number of newly emerging
features.



The Proposed Approach

In this section, we first formulate the learning problem, and
give an overview of the the proposed algorithm. We then
describe our algorithm in more detail, including 1) the con-
struction, update, and pruning of feature forests, 2) the up-
date of the weight coefficients for feature forests ensem-
bling, and 3) its space and time complexity.

Problem Statement

Let {(x¢,9¢) | t = 1,2,...,T} denote an input sequence
over T time steps, where x; = [fi, f2,..., fa,]' € R%
is a d;-dimensional data instance observed at the ¢-th step,
accompanied by a label y; € {1,2,...,C} with C class
options. f; denotes the ¢-th emerged feature.

Without loss of generality, we let d; # d; for any two
steps ¢ # j in a varying feature space. Following the prior
studies (Beyazit, Alagurajah, and Wu 2019; He et al. 2019),
we define a universal feature space F; that consists of all
emerged features up to the ¢-th step, namely F; = Ule R%
A feature forest L; is initiated and updated for each feature
fi and thus the number of feature forests equates to the di-
mension of Fy. Each forest £; is associated with a weight
w;. At each time step ¢, a data instance x; is observed, and
our learner predicts its labels as follows,

dy

Ut = argmaxzwi P(c] fi),
ceC i=1

ey

where the probability that x; belongs to the c-th class ob-
serving the feature f; is calculated by feeding the value of
fi into its feature forest, namely P(c | f;) = L£;(f;). After
making prediction, the true label y; is revealed, and an in-
stantaneous loss is counted if y; # ¢;. Our goal is to learn
the feature forests {£;} Lg and their corresponding weights
{wz}li'l‘ such that over T" rounds the empirical prediction

risk R(T) = % S°7_ [ye # 9] is minimized.

Algorithm Roadmap

As conceptually elaborated in Eq. (1), the weight w; deter-
mines the importance of the i-th feature, and the feature for-
est L£;(f;) yields a distribution over C-classes. They jointly
result in an accurate prediction in the sense that 1) the feature
itself needs to be informative, with a large w;, and 2) the fea-
ture should biases a particular c-class, with a large £;(f;)[c].
The main idea of ORF?V is to store attribute information in
a compressed format, from which we can generate decision
stumps (Iba and Langley 1992) for each feature.

For each feature f; € Fj, a corresponding feature forest
L, of size J is generated by using an approximation of the
Gini impurity, based on the feature statistics. This is done
after we have seen a sufficient amount of instances, i.e. a
grace period. After the r-th instance that was seen, the fea-
ture forest is updated according to the update strategy s, i.e.
s = oldest or s = random, where the oldest or a ran-
dom decision stump is replaced in each feature forest re-
spectively. The features statistics used to generate and up-
date the feature forests are stored in a compressed format

4589

Algorithm 1: ORF?V
1: fort =1,2,..T do

2:  receive instance (x4, yt)

3:  update feature stats Dy, . according to (z, y¢)

4:  check for £; € L to be pruned

5. for all new feature f; € F; do

6: generate £; based on Dy, with sufficient instances
7:  end for

8:  for all feature f; € x; do

9: update weights for £; € L corresponding to f;
10:  end for

11:  if t mod r == 0 then
12: update £; € L according to Dy,
13:  endif

14: end for

Dy, . for each observed feature-class combination by lever-
aging the online capabilities of the ¢-digest algorithm (Dun-
ning and Ertl 2019). To promote sparsity in the model, a
pruning method based on the Hoeffding bound is proposed.
Hereby, it is determined if a feature is missing for a long
enough period to consider it vanished, as opposed to just
missing. Lastly, the weights w; for each feature f; impacting
the predictions are updated in an online manner. A high-level
description is shown in Algorithm 1.

Online Random Feature Forests

Forest Construction. For an instance x;, the feature for-
est L£; takes feature value f; and outputs a probability dis-
tribution P(x; € ¢ | f;), indicating the probability that x;
belongs to the c-th class when observing feature f;. To that
end, a prominent problem is how to choose the tree members
to form each forest, where its difficulty lies in the selection
of the splitting threshold for features with continuous values
in an online fashion.

At first glance, one may think to store a batch of feature
values and then apply Hoeffding bound to make the split de-
cision. Alas, this idea may not work well in a varying feature
space with new features constantly emerging, where stor-
ing data for each feature would soon consume all available
memory. Thus, it would be more memory-efficient if we can
grow the tree members in each forest without data storage. In
response, we propose a randomized approach to circumvent
the choice of optimal feature splitting thresholds. Specifi-
cally, we use decision stumps (Iba and Langley 1992; Oliver
and Hand 1994) as elments of the random forest, each of
which is a shallow, one-depth tree model splitting on a ran-
dom threshold. We use an approximated Gini impurity to
gauge the performance of the decision stumps, and dynam-
ically prune the underperforming tree members, replacing
them with newly grown ones.

Let S; denote a decision stump thresholding feature f; at
value X7. Let N, denote the number of instances class ¢
observed so far, and let N = 25:1 N, be the overall num-
ber of observed instances. The approximated Gini impurity
(AGI) is computed as the weighted Gini impurity of both



branches of the decision stump:

N N
AGI(S;) =1 — (B 9B + AQA) :

N N (@)

Here, Np and N4 are the estimated number of samples
where f; is below or above the threshold X7, respectively.
For online learning, the training samples are not present as
batch, and thus these numbers cannot be obtained directly.
Instead, they can be computed as the expectation of the num-
ber of samples below (or above) the threshold X7:

C

N =) P(fi< X' |¢)N,, 3)
c=1
C

Na=> P(fi= X7 |c¢)N.. 4)
c=1

Here, P(f; < X7 | ¢) and P(f; > X7 | ¢) express the prob-
ability that the feature f; is above (or below) a threshold X7,
given that the sample belongs to class c. These cumulative
distribution functions (CDFs) can be estimated in an online
fashion, as described in the next subsection, which allows
us to compute Np and N 4. The Gini impurity gz of one of
the branches of the decision stump are computed as follows
(similar computations apply for g4):

N
g8 =Y Plc| fi < X7)%,

c=1

&)

where P(c | f; < X7) is the class posterior for samples
where f; is below the threshold X7 of decision stump S;,
and can be computed using Bayes’ theorem:

P(fi < X7 |c) N,
Np '

Online Storage of Feature Statistics. The question left
in computing Eq. (2) is how to track the statistics of each
feature f; in an online fashion. Put it differently, how to ap-
proximate P(f; < X7 | ¢) and P(f; > X7 | ¢) when the
data instances are not available in a batch but presented in
a streaming fashion. To provide answer, we take advantage
from a recent advance, the ¢-digest (Dunning and Ertl 2019)
algorithm, which enables an efficient delineation of the fea-
ture statistics without storing data.

Specifically, t-digest is a data structure that sketches the
cumulative distribution function (CDF) of a feature using a
piece-wise clustering structure of the observed feature val-
ues. Let € be the quantile coverage of each cluster, with g
being the notional index of the maximal feature value ob-
served up to round ¢. Let Dy, . be the ¢-digest corresponding
to a combination of feature f; and class c. The CDF of Dy, .
can be retrieved by querying all disjoint clusters. The finer
the granularity that we allow each cluster to grow the more
accurately our desired probability P(f; < X7 | ¢) is ap-
proximated. Notably, tracking the feature statistics as such
enables our ORF?V to easily deal with a multi-class setting,
with new ¢-digests initialized to store the CDF correspond-
ing to any newly emerged classes.

Ple|fi<X) =

(6)
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Pruning of Feature Forests While one characteristic of
data streams with varying feature spaces is that new fea-
tures can emerge, another characteristic is that any pre-
existing features may become unobserved. In practice, as
data streaming in constantly, it is often uncertain if any un-
observed feature would re-emerge at a later time or vanish
completely. To decide, if a feature vanished completely we
propose to use the Hoeffding bound, while tracking the gen-
eral missing ratio of a feature as well as the ratio of missing
values over the last n instances seen by the algorithm. As the
feature vanishing for a long time span often tends to drift its
distribution, keeping its previously learned forest may yield
inferior performance than initializing a new forest to re-learn
this feature. This intuition motivates us to design a dynamic
threshold for the pruning of feature forests.

The Hoeffding bound (Hoeffding 1994) states that, with
probability 1 — 4, the true mean of a feature f; given its
range R is at least |E(f;) — €|, with e = \/R?In(1/§)/2n.
Assume that Q(f;) is the mean observed availability for f;
for all instances, while Qindow(fi) is the mean observed
availability for the specified window. Let

AQ = Q(fz) - Qwindow(fi) (7)
be the difference between the mean of the observed avail-
ability for all instances and the mean of the observed avail-
ability in the sliding window with the size n. For a given
d, the Hoeffding bound then guarantees that we have more
missing values than expected from the observed distribution
with a probability of 1 — 4. As such, we can remove the
feature forest £; and its corresponding weight w;, from the
ensemble £ and also delete the corresponding statistics to
promote sparsity, thereby limiting the model size if new fea-
tures constantly emerge.

Weight Updates of the Forest Ensemble

For each feature forest £;, we have a respective weight w;
in the ensemble, which is initialized with a value of one,
w; = 1. The weights are updated as follows:
20y = Ge] +wy ®)
! 1+a
Thus, if the prediction of the feature forest is correct, it will
increase, otherwise it will decrease. If a weight is below one,
it increases faster and decreases slower, while a weight that
is above one increases slower and decreases faster for correct
and wrong predictions respectively.

Individually updating the weights, i.e. increase for a cor-
rect prediction and decrease for a wrong prediction, for each
feature forest, ensures that predictive feature forests have
more impact on the final decision of the ensemble. Further-
more, the weight update function is bound, restricting fea-
ture forest that were formed on features that emerged ear-
lier than other features to gain too much impact. This allows
feature forests for features that emerge later, which are po-
tentially highly predictive, to catch up in terms of impact on
the final prediction.

Complexity Analysis
We present the high-level calculations for the space and time
complexity of the proposed ORF3V algorithm.



Space Complexity The ORF3V algorithm has two com-
ponents that require space to be allocated, i.e., the feature
forests and the ¢-digests. At time step ¢, |Fy| is the number
of features we have seen, as we have one corresponding fea-
ture forest for each feature and in each feature forest we have
J decision stumps the space complexity of feature forests
is O(|Fy| - J). However, since J is a small constant, space
complexity is linear in terms of feature forests. The second
component is the ¢-digests to store the feature statistics. The
t-digests are bound by the A\ parameter, leading to a constant
space complexity of O()\). ORF3V requires to have one t-
digest for every feature-class combination. Assuming that at
time step ¢, C'is the number of seen classes, the space com-
plexity for storing all ¢-digest for every feature-class combi-
nation is O(| F|- C-)). Since A is a constant, and the number
of classes is also usually a small, a linear space complexity
can be assumed to store the t-digests.

Time Complexity There are a total of five components
that influence the time complexity (Algorithm 1), i.e., updat-
ing the feature statistics, pruning of feature forests, generat-
ing feature forests, updating weights, and replacing decision
stumps. All five components are executed sequentially.

The first component is the update of the feature statistics.
For each update, we iterate over all features of the instance
x; and update the respective t-digests. As each instance only
has one class, one pass over the feature space suffices, re-
sulting in a complexity of O(|x;|) for the update step. The
second step is the pruning of feature forests when a feature
has vanished. It is checked for each £; € L if the feature
forests needs to be removed. The amount of feature forests
|£;| at time ¢ corresponds to a maximum amount of features
seen |Fy|, less if some of the feature forests have already
been pruned, therefore the time complexity for the pruning is
O(|Fy]). In the following step, the feature forests are gener-
ated. This is done for each new feature f; € F}, leading to a
complexity of O(|F}|). To update the weights, at time step ¢,
a prediction is made for every feature forest £;, where there
is a corresponding value in the instance space x;. Therefore,
the complexity of the weight updates is equal to the size of
the instances feature space O(|z¢|). The last component that
influences the complexity is the update for the feature for-
est, despite being executed only every r-th step, the com-
plexity at time ¢ is equal to the amount of features seen | Fy|.
Therefore, the complexity for updating the feature forests is
O(|F).

The overall complexity of these sequentially executed
steps is thus O (| Fy|+|EFy|+ | Fy |4 |xe| + | Fy|). As | Fy| > |2y,
we can shorten it to O(5 - |F|), which can be simplified to
O(|Fy|). Therefore, learning scales linearly with the number
of observed feature |Fy| at time step t.

Evaluation

This section presents empirical evidence to substantiate
the effectiveness of the ORF?V algorithm. We benchmark
twelve datasets with two types of feature space dynamics,
namely, trapezoidal data streams (TDS) and varying fea-
ture spaces (VFS). In the following, we describe the stud-
ied datasets and evaluation protocol, present the results, and
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finally extrapolate our research findings.

Experimental Setup

Datasets and Protocol. To validate the applicability of
our algorithm, we select ten datasets from the UCI data
repository! spanning a wide range of domains.To show that
our ORF3V algorithm can generalize to multi-class settings,
we choose three out of ten datasets with multiple classes.
Statistics of the studied datasets are presented in Table 1. We
follow previous studies to simulate the feature space dynam-
ics. For TDS (Zhang et al. 2016) in which later inputs tend to
carry incrementally more features, we split the UCI datasets
into ten chunks, where in the i-th chunk only the first 2% 10%
features would be retained (i.e., the first data batch will re-
tain the first 10% features and so forth). For VES (He et al.
2019) in which new features appear and old features fade
away over time arbitrarily, we randomly remove 75% fea-
tures in each arriving instance.

Two real-world datasets, IMDB (Maas et al. 2011)
and crowdsense, gathered from the crowdsensing platform
SmartCitizen (Camprodon et al. 2019), which naturally
manifest a varying feature space are employed in our eval-
uation. The learning task in IMDB is sentiment analysis,
where the inputs are movie reviews, each of which is a bag-
of-words, and the class labels are negative or positive sen-
timents. The feature space describing reviews is thus vary-
ing wherein each English word is deemed as one feature.
The crowdsense dataset is collected from a crowd-sensing
network, where the features are created from a variety of
environmental sensors (such as those gauging sound pres-
sure, eCO5 level, and eTVOC level) scattered across the
56 biggest cities in Spain. The data streams are collected
over 790 days during January 1st (2020) to February 28th
(2022), generating 152,798 data points, and in total 954 fea-
tures are making up the sensing effort. The feature space
is varying as we can observe that new sensing data are
continuously emerging while many old sensors stopped to
provide data. The learning task is to predict the govern-
ment’s restriction severity, based on the sensed crowdedness
of the regions. The ground truth labels can be retrieved from
the Oxford COVID-19 Government Response Tracker (Hale
et al. 2021), as the local governments responses influence
crowded regions. These responses yield eight government
response (GR) cases corresponding to public events can-
cellation, school closings, etc., the classes in each case are
given by the severity of the GR.

Other Models. We compare with the state-of-the-art on-
line learners tailored for TDS and VES, as follows.

e OLSF (Zhang et al. 2016) is the first work proposed to
deal with TDS. It employs linear classifier with the crux
lying in to cast the initialization of new features’ learning
coefficients as a margin-based optimization problem.

e OLVF (Beyazit, Alagurajah, and Wu 2019) extends the
TDS setting to VFS by learning a feature-space classifier,
which posits that the co-occurrence of unobservable and
new features can convey discriminant information.

"https://archive.ics.uci.edu/ml/index.php



Dataset #Samples | #Features || Dataset | #Samples | #Features
wbpc 198 34 magic04 19,020 10
ionosphere 351 35 imdb 25,000 7500
wdbc 569 31 a8a 32,561 123
wbc 699 10 Multi-Class (Below)
german 1,000 24 wine 178 13
svmguide3 1,234 21 frogs 7195 22
spambase 4,601 57 drybean 13611 16

Table 1: Statistics of the studied datasets. ‘wine’, ‘frogs’, and ‘drybean’ are with 3, 4, and 7 classes, respectively.
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Figure 1: Comparison of the CDFs approximated by the
t-Digest The lines represent the empirical CDFs and the x-
marks represent the CDFs approximated by the centroids of
clusters formed by ¢-Digest.

e OVEFM (He et al. 2021a) relaxes the restriction of OLVF
by establishing feature correlations, so that new features
enjoy an educated initialization (as OLSF does) and un-
observed features can be exploited via reconstruction.

Metric. On each dataset, the instances are presented to the
learning algorithms in a one-pass fashion. The accuracy of
any algorithm is gauged by cumulative error rate (CER):

T
1 "
CER = — ;uyt # il
where T' equates to the number of samples in the dataset, and
[-] counts one if its argument is true and zero otherwise.

Comparative Results

Tables 2 and 3, and Figures 1 and 2 present the performance
of our ORF3V and its three competitors. From the results,
we aim to answer research questions Q1-Q3 as follows.

Q1. Does our approach excel among the state-of-the-arts?

Comparing the benchmark dataset results as a macro average
shows ORF3V outperforms the second-best approach OLVF
in the TDS binary classification by 14.4%, and OVFM in the
TDS multiclass classification by 37.8%. In general, ORF3V
could win in six of the ten benchmark datasets in a TDS set-
ting. In the VFS binary classification setting, the second-best
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Figure 2: Comparing feature importance (decision tree) and
weights for ORF?V in varying feature space scenarios.

approach OVFM is outperformed by 17,6%, and in the VFS
multi-class classification OVFM is beaten by 31,7%. The
proposed approach ORF3V was the winner in six of the ten
benchmark datasets. In the first real-world dataset IMDB,
OVFM ran out of memory due to high dimensionality of
the IMDB data and its space requirement of |F;|3. Compar-
ing it to OLVF, we can observe that ORF3V makes 27,3%
less errors. In the second real-world dataset crowdsense,
ORF?V outperforms OVFM in all eight distinct government
response cases, binary as well as multi class, when the data
is kept in the original order. Considering the shuffled results,
which do not represent the actual problem, ORF?V is out-
performed by OVEM in four of the six GR cases for multi
class classification, but beats OVEM in every binary clas-
sification case. These results show the superiority over the
state-of-the-art rival models.

Q2. How efficiently does t-digest learn and keep track of
feature statistics in an online fashion?

Storing the feature statistics via ¢-digest lends ORF3V flex-
ibility as it tracks the CDF of a feature regardless of its data
type being either Boolean, ordinal, or continuous. The ques-
tion is, as in the regime of varying feature spaces, many fea-
tures may be described by a limited number of instances, in-
cluding those being newly emerged or vanished across time
spans. To investigate whether ¢-digest can work well in such
instance-scarce environment, we design an experiment by
selecting one features from the ‘wdbc’ dataset conditioned at



Trapezoidal Data Streams

Varying Feature Space

Dataset |  OLSF OLVF OVFM ORF’V |  OLVF OVFM ORF*V

ionosphere | .243+.001 .165+.001 .2324.001 .2274.013 | .225+.014 .301+.011  .290 +.020
german 3694.011 356 +.009 .267+.001 .303+.006 | .365+.003  .325+.005 .306 +.002
spambase | .212+.010 .252+.003 .489+.022 .268+.009 | .299+.005  .501+.020 .277 +.005
magic04 | .321+.003 .336+.004 .2854.004 .283+.007| .375+.001 .242+.003  .341+.002
svmguide3 | .307 +.021 .354+.025 .410+.009 .236+.004| .3014+.009  .491+.016 .243 +.004
wdbc 2204.001  .130+.001 .129+.011 .123+.015| .356+.012  .151+.001  .147 +.014
a8a 318 +.004 .353+.003 .262+.001 .230=+.002| .3814+.001 .225+.003 .239 +.001
IMDB | - - - | 0.392 4+ .002 Out-of-Memory .285 +.003
wine - - 668 £.005 .207 +.026 - 669 +£.007  .317 +.032
frogs - - 424+ .011 251 +.012 - 633+.022  .266 +.005
drybean - - 461 +.006 507 + .007 - 367 +.013 558 &.001

Table 2: Results of cumulative error rate (CER =+ standard deviation) on 11 datasets, the lower, the better, where random

shuffling has repeated 10 times for cross validation. The best results from each row are bold.

crowdsensegr1 crowdsenseg ra crowdsenseg rs crowdsensecg r4
OVFM ORF’V OVFM ORF?V OVFM ORF?V OVFM ORF’V
BC/O 252 022 191 022 100 018 098 022
BC/S || .309 £+ .011 | .083 +.001 || .106 & .001 |.084 + .002 || .159 & .004 | .083 +.001 || .101 £ .001 | .083 + .001
MC/O .261 .070 212 .096 - - .109 .085
MC/S || .3154.008 | .302 &+ .007 || .111 4+ .001 | .221 + .008 - - 127 +.003 | .227 £ .004
crowdsensec rs crowdsenseg re crowdsenseg r7 crowdsensec rs
OVFM ORF’V OVFM ORF?V OVFM ORF?V OVFM ORF’V
BC/O 193 .039 165 061 211 058 298 019
BC/S || .214 +.007 | .117 £.001 || .299 + .004 | .166 & .007 || .138 +.014 | .136 £+ .010 || .264 £+ .005 | .084 + .001
MC/O - - .180 .093 .198 .065 215 .056
MC/S - - .220 +.009 | .283 +.004 || .202+.011|.182+.011 || .287 +.010 | .315 £ .006

Table 3: CER on the crowd sensing COVID-19 Government Response datasets in the original data order/shuffled data order
(O/S) (repeated 10 times), and also as binary (no response vs. some response)/multi class classification problem (BC/MC). GR1
to G RS correspond to the eight cases of the government responses. GR3 and G R5 only contain two government responses.

the binary class yielding CDFs ranging within (0, 1000) and
(0, 4000) for positive and negative labels, respectively. We
note that prior studies (Beyazit, Alagurajah, and Wu 2019;
He et al. 2019, 2021b) were tailored for continuous features
within [0,1] value range and, due to their non-parametric na-
ture, cannot generalize to such huge value variations. We
plot the performance of ¢-digest in Figure 1, with its left and
right panels showing the scarce- and complete-instance set-
tings, respectively — the left plots the CDF approximated by
the t-digest after seeing only 50 instances, and the right plots
the approximated CDF with all instances observed. We ob-
serve that the centroids tie to the lines which represent the
true CDFs and are not drastically affected by the number of
instances describing the feature. This observation evidences
the estimation accuracy of ¢-digest and its scalability to a
varying feature space.

Q3. How interpretable are our tree ensembles of ORF3V?

To assess the interpretability of the proposed approach, we
generated a non-linear additive dataset (Ahmed M. Alaa
2019). On this data we learned an interpretable model (a
decision tree) and observed the feature importance, which
we compared to the weights of our approach learned on full
data, and simulated VFS data with 0.25, 0.5, and 0.75 re-
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moval ratios respectively, as shown in Figure 2. In our ap-
proach, weights close to 1 are to be interpreted as having a
low importance. It can be observed that the weights of the
models act analogously to the feature importance of the de-
cision tree, even in varying feature space scenarios.

Conclusion

In this paper, we proposed a new approach ORF?V to
learn from data streams with varying feature spaces. Our
ORF3V approach excels in four aspects, namely 1) learning-
capacity, as it constructs and updates a feature forest for each
newly emerging feature, thus captures an enriched represen-
tation information over linear competitors, 2) interpretabil-
ity, as each forest uses one feature only and its associated
weight coefficient can indicate the importance of that fea-
ture, 3) applicability, as it stores the feature statistics with
t-digest that does not presume the data type of a feature,and
4) scalability, as it prunes the outdated forests once a van-
ished feature may not re-emerge based on the Hoeffding
bound. Extensive experiments were carried out and the re-
sults substantiated the viability, effectiveness, and superior-
ity of ORF®V over its rival models.
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