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Abstract

With the prevalence of smart mobile devices and location-
based services, uncovering social relationships from human
mobility data is of great value in real-world spatio-temporal
applications ranging from friend recommendation, advertise-
ment targeting to transportation scheduling. While a handful
of sophisticated graph embedding techniques are developed
for social relationship inference, they are significantly limited
to the sparse and noisy nature of user mobility data, as they
all ignore the essential problem of the existence of a large
amount of noisy data unrelated to social activities in such
mobility data. In this work, we present Social Relationship
Inference Network (SRINet), a novel Graph Neural Net-
work (GNN) framework, to improve inference performance
by learning to remove noisy data. Specifically, we first con-
struct a multiplex user meeting graph to model the spatial-
temporal interactions among users in different semantic con-
texts. Our proposed SRINet tactfully combines the repre-
sentation learning ability of Graph Convolutional Networks
(GCNs) with the power of removing noisy edges of graph
structure learning, which can learn effective user embeddings
on the multiplex user meeting graph in a semi-supervised
manner. Extensive experiments on three real-world datasets
demonstrate the superiority of SRINet against state-of-the-
art techniques in inferring social relationships from user mo-
bility data. The source code of our method is available at
https://github.com/qinguangming1999/SRINet.

Introduction

The advance in positioning technologies and the prevalence
of location-based online services such as Uber, Location-
Based Social Networks (LBSNs) such as Foursquare, and
geo-tagged social media such as Twitter have generated
massive human mobility data (Noulas et al. 2011). These
mobility data provide us with the opportunity to deeply ana-
lyze human behaviors in different scenarios. Understanding
the underlying human mobility patterns has been shown to
benefit various spatio-temporal applications, e.g., POI rec-
ommendation, urban planning, business site selection, traffic
scheduling, and many more (Dai et al. 2021b, 2022, 2021a;
Chen et al. 2022). To be specific, uncovering social relation-
ships among users is crucial for many real-world problems,
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such as friend recommendation (Yang et al. 2022), adver-
tisement targeting (Wang et al. 2011), and ride-sharing (Cici
et al. 2014). Intuitively, there are certain correlations be-
tween social relationships and human mobility data (Cho,
Mpyers, and Leskovec 2011). Using the correlations, several
works (Eagle, Pentland, and Lazer 2009; Wang, Li, and Lee
2014; Pham, Shahabi, and Liu 2013, 2016) have been con-
ducted to try to infer friendships between users from human
mobility trajectory data.

Despite the effectiveness of existing social relationship in-
ference methods (Wang, Li, and Lee 2014; Pham, Shahabi,
and Liu 2013, 2016), most of them are based on meeting
frequency and only focus on pairwise relationship inference
individually. They work poorly for inactive users since they
fail to solve the data sparsity challenge of inactive users.
Recently, graph embedding (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016; Liu et al. 2020) and graph
convolutional networks (GCNs) (Kipf and Welling 2017;
Velickovi€ et al. 2018; Hamilton, Ying, and Leskovec 2017;
Liu et al. 2021; Yu et al. 2022) have been developed for
learning node representations in graph-structured data. A
line of works based on network embedding and GCNs have
been proposed, which no longer require hand-crafted fea-
tures, but treat users as nodes and model the meeting events
between users as a homogeneous graph (Yu, Wang, and Li
2018) or a heterogeneous graph (Backes et al. 2017; Wu
et al. 2019). They leverage network embedding or GCNs to
learn representations of nodes (users), which take into ac-
count the relation propagation among users and even con-
sider the rich semantic information, and thus improving pre-
diction performance. More recently, LBSN2Vec++ (Yang
et al. 2022) and MSC-LBSN (Huynh et al. 2022) are pro-
posed for friendship prediction based on an LBSN hetero-
geneous hypergraph consisting of four different data do-
mains, i.e., spatial, temporal, semantic and social domains.
LBSN2Vec++ learns node embeddings from both friend-
ship homogeneous edges and check-in heterogeneous hy-
peredges sampled from the LBSN heterogeneous hyper-
graph by a random-walk-with-stay scheme, while MSC-
LBSN learns from friendship edges, check-in hyperedges,
and node personas at the same time, and uses these to de-
vise multiple representations for each user that respect their
multiple roles in a social context.



Although state-of-the-art works learn correlations be-
tween users in various contexts by designing complex graph
embedding approaches to improve performance, they all ig-
nore the essential problem: does all human mobility data re-
flect social activities among users? The answer is obviously
not. For example, if a user goes shopping individually in su-
permarket, this check-in record does not reflect any social
relationship. But in such a large public place, many users
may check in, resulting in a mass of records being mistaken
for social activities. On the other hand, the large amount of
check-in records that are not related to social activities se-
riously hurt model inference performance (Yu, Wang, and
Li 2018). Therefore, for social relationship inference, it is
not necessary to use all human mobility data. However, how
to weed out these irrelevant check-ins (noisy data) from all
mobility data remains a significant challenge.

To tackle the aforementioned challenge, we develop
a GNN model for social relationship inference, named
SRINet, which is an iterative graph structure learning frame-
work that can continuously remove noisy edges produced
by social-irrelevant check-in records from the constructed
multiplex user meeting graph. Specifically, we first con-
struct a multiplex user meeting graph to model the spatio-
temporal interactions among mobile users. To learn effec-
tive user representations, our SRINet effectively integrates
GCNs and graph structure learning, which introduces graph
sparsification constraint to learn topology filters to weed out
noisy edges from the multiplex user meeting graph. Experi-
mental results on three real-life mobility datasets show that
our model significantly outperforms several strong baselines
(8.32% ROCAUC and 10.19% PRAUC gains on average) in
social relationship inference task.

To summarize, we make the following contributions:

* We propose a novel method SRINet to improve social
relationship inference performance by combining GCNs
with graph structure learning to eliminate noisy data in
user mobility data.

e We design a multiplex graph structure learning frame-
work by applying graph sparsification constraint on the
multiplex user meeting graph for better user representa-
tion learning.

* We conduct extensive evaluations on three real-life mo-
bility datasets. Experimental results show that our model
significantly outperforms state-of-the-art baselines by
5.35%~12.07% and 7.93%~16.34% improvements in
terms of ROCAUC and PRAUC.

Related Work

In literature, there are a number of studies on how to infer
social relationships using human mobility trajectories. Ea-
gle, Pentland, and Lazer (2009) attempt to discover the cor-
relation between meeting events and social relationships us-
ing mobile phone data. Li et al. (2011) find that the meeting
time could indicate different types of relationships, e.g., col-
leagues meeting during the daytime vs. friends meeting at
night. Pham, Shahabi, and Liu (2013) propose an entropy-
based model (EBM) that considers the diversity of meeting
events and location entropy in friendship inference, which is
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further extended in (Pham, Shahabi, and Liu 2016) by incor-
porating location semantics and stay duration. Wang, Li, and
Lee (2014) develop a unified framework (PGT) that takes
personal background, global background, and temporal fac-
tor into consideration. Hsieh, Yan, and Li (2015); Hsieh and
Li (2019) use graph features (e.g., Jaccard and Katz) com-
puted from a co-location graph to measure relationships for
user pairs. However, all methods above make pairwise rela-
tionship inference independently.

Following the recent advances in graph embedding tech-
niques (Grover and Leskovec 2016; Perozzi, Al-Rfou, and
Skiena 2014), several embedding frameworks (Backes et al.
2017; Yu, Wang, and Li 2018; Zhou et al. 2018) have
been proposed for mobility relationship inference. Backes
et al. (2017) first apply graph embedding into social rela-
tionship inference. Specifically, they employ random walk
based embedding on a user-location bipartite graph to in-
fer social links. Yu, Wang, and Li (2018) propose a graph
embedding method based on hierarchical walk sampling
on a user meeting graph for mobility relationship infer-
ence. Wu et al. (2019) first apply GCNs (Kipf and Welling
2017) to learn user embeddings on a user mobility heteroge-
neous graph that incorporates user-user, user-location, and
location-location relations. These methods leverage graph
embedding techniques to enable the propagation of relation-
ships, thus improving model inference performance.

In addition, a few recent works are proposed to study the
impact of mobility and social relationships on each other us-
ing LBSN data. Yang et al. (2019) propose a hypergraph em-
bedding approach (LBSN2Vec) for automatic feature learn-
ing from the LBSN heterogeneous hypergraph, which is ex-
tended to LBSN2Vec++ (Yang et al. 2022) that further con-
siders the heterogeneous nature of the LBSN hypergraph.
Zhang, Lai, and Wang (2020) devise a multi-view match-
ing network to learn three view-specific representations (i.e.,
social, spatial, and temporal factors) and fuse them for fi-
nal link inference. Recently, Huynh et al. (2022) develop an
embedding technique that utilises multiple representations
to capture all of the high-order, dynamic and multi-role con-
texts in the LBSN hypergraph data for both friend sugges-
tion and POI recommendation. These approaches enhance
hypergraph embedding techniques, but they all ignore the
fact that there are a large number of noisy edges that are
not related to social relationships in the constructed graph,
which severely limits the performance of existing models.

Our model goes beyond the state of the art by developing
a graph structure learning framework that can remove noisy
edges generated by social-irrelevant check-ins from the user
meeting graph to effectively learn node representations that
are beneficial for revealing social relationships.

Problem Definition
LetU = {ul,u2, ..

Definition 1 (Check-in Record). A check-in record is a
triple (u,t,p) that represents user u visiting POI p at time
t. Here, p is a uniquely identified venue in the form of
(pid, category, L), where p;q is the POI identifier; category
denotes its category, and { is the geographical coordinates

., U, } denote the collection of all users.
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Figure 1: The overview of the proposed framework

of the POI (i.e., longitude and latitude).

Definition 2 (Mobility Trajectory). The mobility trajectory
Ofa user u is a (<U'a t17p1>a <U,t2,p2>, s <uatnapn>) Of
check-in records generated by user u in chronological order,
denoted by T'r,,.

Given the above definitions, we formally define our stud-
ied problem in this work as follows:

Problem (Mobility Relationship Inference). Given a set of
users U and their mobility trajectories, our goal is to learn
an inference model F(u;,u;) — ¢ for each pair of users,
where § € {0,1}, and §j = 1 indicates that they are friends,
otherwise, they are not.

In general, mobility relationships among mobile users are
commonly learned from their spatial-temporal interactions.
In literature, the interaction behavior, i.e., a meeting event, is
usually defined as (Yu, Wang, and Li 2018):

Definition 3 (Meeting event). Given a time threshold T, user
u; and user u; are considered to have a meeting event if
they checked in at the same place within 7, i.e., I(u;,t,p) €
Try,;, (uj, t',p') € Try; such thatp = p" and |t —t'| < 7.

Definition 4 (Meeting Frequency). The meeting frequency
between users u; and u; is the number of all meeting events
between them. We denote it as m;_;.

Methodology

In this section, we present the details of our graph neural
network model SRINet (as shown in Figure 1). It consists
of three key components: (1) multiplex user meeting graph
modeling, (2) graph structure learning network, and (3)
model learning. First, we construct a multiplex user meet-
ing graph to model meeting events among all users and in-
corporate meeting location semantics. Second, we present
the graph structure learning network to learn topology fil-
ters with graph sparsification constraint. Finally, we intro-
duce the joint learning objective function combining semi-
supervised learning and regularization constraints to guide
model learning.

4580

Multiplex User Meeting Graph Modeling

To infer social relationships, many works model the users’
mobility data into a complex heterogeneous graph, includ-
ing user-user, user-location, and location-location, and even
construct a heterogeneous hypergraph in state-of-the-art
works (Yang et al. 2022; Huynh et al. 2022), incorporat-
ing time and activity categories. Nevertheless, the essence
of discovering potential friend relationships from user mo-
bility data lies in the interactions between users, therefore,
inspired by (Yu, Wang, and Li 2018), we adopt the user
meeting graph, denoted by G = {V, £}, where V is the col-
lection of all mobile users, and £ is the collection of edges
corresponding to meeting events between users.

To capture the influence of meeting location seman-
tics on friend relationship reference, we further construct
the semantics aware multiplex user meeting graph G =
{V,{&1,&,...,&Rr|}}- Ris the collection of semantic cat-
egories. As illustrated in Figure 1, multiplex user meeting
graph is a heterogeneous graph that contains only one type
of user node and multiple types of edges, and each type of
edge corresponds to a meeting location semantics, i.e., POI
category. Specifically, for each pair of u; and u;, each edge
e; ; € & represents the mobility relationship between them
with respect to category r, and its weight is defined by their
meeting frequency at POIs with category r. Therefore, the
number of types of edges in the user meeting graph is de-
termined by the number of POI categories, and each layer
represents the interaction of all users at POIs of that cate-
gory. For convenience, hereinafter, the user graph refers to
the user meeting graph.

Graph Structure Learning Network

As analyzed above, performing representation learning di-
rectly on the constructed user graph cannot achieve the de-
sired effect, because the user graph contains a large num-
ber of noisy edges, which seriously disturb the propagation
of relationships. Therefore, if noisy edges (e.g., occasional
meeting events) can be removed from the user graph, the
graph will be able to more accurately represent the social in-
teractions between users, and thus the learned user represen-



tations will be able to more effectively predict friendships
among users.

To this end, inspired by recent works on graph struc-
ture learning (Luo et al. 2021; Jin et al. 2020; Zhao et al.
2021), we propose the SRINet framework to learn a clean
user graph on human mobility data for social relation-
ship reference. SRINet framework is a GNN model that
integrates topology structure learning and representation
learning, which is compatible with existing GCNs, such
as GCN (Kipf and Welling 2017), GAT (Velickovi¢ et al.
2018), etc. Additionally, the proposed SRINet is an end-
to-end learning network that can be jointly optimized with
GCNs in a semi-supervised manner.

Topology Filter Learning. The goal of the topology
learning network is to learn a filter weeding out irrelevant
edges for GCN layer. We first present topology filter learn-
ing on a single-layer user graph.

We introduce a binary mask matrix, i.e., topology filter,
M® € {0,1}V*IVI for the I-th GCN layer, where M’
indicates whether there should be an edge between users 1
and u; (0 means should not, i.e., noisy edge). Therefore, the
filtered adjacency matrix is A = A ® M®), where A is
the adjacency matrix of the user graph, and ® is the element-
wise product. The topology filters for all layers are learned
with graph sparsificaton constraint introduced below.

Graph Sparsification Constraint. One potential way to
remove noisy edges from adjacency matrix A is to regular-
ize matrix M) with £, norm, i.e., penalize the number of
non-zero entities in M(®) for each layer, to enforce the filter
matrix with the property of sparsity:

L
S IO =Y Y
=1

I=1e;;€E

ey

where L is the number of layers of GCNs.

Since the nondifferentiability and combinatorial nature of
2I€1 possible states of M), optimizing this penalty (i.e.,
£y regularization) is computationally intractable (Louizos,
Welling, and Kingma 2017). To optimize the ¢y regu-

larization, each binary number M( . can be considered
to be drawn from a Bernoulli dlstrlfnutlon parameterized

D e, Mgl]) ~ Bern(rw (l)) Therefore, optimiz-

©,°
ing {g norm for M) can be reformulated as penalizing
267 LeeT (LOU.IZOS Welling, and Kingma 2017; Luo
et al. 2021)

The value of 77( ) can be regarded as a measure of the
quality of the correspondmg edge in the user graph. A small

value of 7r( ) means that the edge e;,; 1s likely to be noise
and then should be removed in the following GCN layer.
Now the regularization of the reformulated form is contin-
uous, and various gradient estimators such as the REIN-
FORCE (Williams 1992) could be employed, but they suffer
from high variance or biased gradients (Mnih and Rezende
2016; Bengio, Léonard, and Courville 2013; Gal, Hron, and
Kendall 2017). To efficiently optimize the ¢y norm with gra-
dient methods, we employ the continuous cumulative dis-

by 7,
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tribution and the reparameterization trick (Rezende, Mo-
hamed, and Wierstra 2014; Kingma, Salimans, and Welling

2015), and thus we can reformulate Z€7€ £ Wfl]) as an ex-
pectation over a parameter-free noise distribution p(e) and

a deterministic and differentiable transformation f(-,-) pa-
rameterized by aﬁlj and (V)
M) = f(all), D), e ~ p(e). @)

To learn the noisy edges, we adopt a parameterized deep
neural network f, " to compute aEl; from node hidden rep-

resentations: a(l) fe(ll) (hz(-l), h§l)). To further obtain M, we
apply a hard- 51gm01d on the concrete distribution (Jang, Gu,
and Poole 2016; Maddison, Mnih, and Teh 2016; Louizos,
Welling, and Kingma 2017). Specifically, we fist sample s(l)-
from a binary concrete distribution with the location a(l)

(l)- = o((loge — log(1 — ¢) +a )/T) e~U(0,1), (3)

where T is the temperature, o(-) is the Sigmoid function,
and U(+, -) is the Uniform distribution.

The binary concrete is a smooth approximation to
Bernoulli random variables, which allows for gradient-based
optimization through the reparameterization trick. The tem-
perature 1" controls the degree of approximation. With 7' =
0 we can recover the original Bernoulli distribution, whereas
with 0 < T' < 1 we can obtain a probability density that con-
centrates its mass near the endpoints (i.e., 0 and 1). To make
the probability of a noise edge to be exactly zero, we can
stretch this distribution to the range (y,7) with v < 0 and
1 > 1 and then apply a hard-sigmoid. We use the following

estimator for ME?

FONING!
Sii=s8,,m=—7)+7 @4

Eventually, the ¢y regularization in Eq. (1) can be ex-
pressed as (Louizos, Welling, and Kingma 2017):

O — [U)
M; % = min(1, max(0, 3; 7)), 5

Z 1 —P(z) 0‘91))

ei,j€E
> Gl -rion
ee n

P. ) (016;) is the cumulative distribution function of 5;

®)

“-%
)

()

Notlce that low-rank constraint (i.e., nuclear norm regu-
larization) is another potential implementation of structural
topology learning. But low-rank constraint is more efficient
for matrices that contain a lot of redundant and correlated
information, such as image data. Since most users have few
check-ins in collected mobility data, that is, the number of
check-ins follows a long-tail distribution (Yu, Wang, and Li
2018), the user meeting graph is a relatively sparse matrix
where social interactions are partially visible and contain a
lot of noise. We experimentally verified that low-rank con-
straint has no obvious effect on removing noise edges in the
scenario of this work but hurts mode performance, hence we
do not use low-rank constraint in our model.



Multiplex Graph Learning

Let H" be the output of the last GCN layer (i.e., node repre-
sentations) in graph structure learning network for the user
graph consisting of edges of type r (i.e., &,):
H = GNN(A,,H?), (6)
where A, denotes the adjacency matrix of &,, H©® can be
the user attribute matrix, or identity matrix, and GN N is the
graph structure learning network described above.
Then, we fuse the node representations corresponding to
all categories of user graphs to capture the influence of dif-
ferent meeting semantics:

IR

1 .
H=—— H". 7
W; )

Model Learning

In this section, we present the objective function to train our
model to learn user representations for friendship inference.
Specifically, we train our SRINet in a semi-supervised learn-
ing manner.

We adopt the following binary cross-entropy loss function
through negative sampling to optimize model parameters:

‘csemi = - Z 10g0‘(< H;r7HJ >)

(u,v)eQ
2

- )
logo(— < H; ,Hj >),
(@.3")e

where H; is the representation of user u;. T denotes the vec-
tor transposition and o (+) is the sigmoid function. <, > can
be any vector similarity measure function (e.g., dot product
used in this work). In addition, €2 is the set of positive user
pair sampled from training set. 27 is the set of negative user
pairs sampled from all pairs of users who have not met and
are not included in the training set.
The final loss function to train our model is defined as:

L= Esemi + WLS, (9)

where w is used to control the contribution of graph sparsi-
fication constraint to the overall loss.

Experiments

In this section, we evaluate our proposed model on three
real-world mobility datasets. The following research ques-
tions (RQs) are used to guide our experiments:

¢ RQ1. How does our proposed model perform in social
relationship inference on real-world datasets compared
to existing methods?

¢ RQ2. How does our SRINet perform on sparse data of
inactive users in comparison to state-of-the-art baselines?

* RQ3. How does SRINet perform with different param-
eter settings (e.g., training set ratio, hyperparameters w,
and dimension d)?
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Dataset | Gowalla | Brightkite | Foursquare

City Austin | SFand LA NYC
#users 7,355 6,393 13,692
#check-ins | 207,278 | 223,549 251,323
#locations 5,115 20,596 25,395
#friends 35,696 20,660 21,431

Table 1: Statistics of the datasets.

Datasets

We use three publicly available real-world mobility datasets,
i.e., Gowalla, Brightkite (Cho, Myers, and Leskovec 2011),
and Foursquare (Yang et al. 2019), to evaluate the perfor-
mance of models. Following previous works (Yu, Wang, and
Li 2018; Wu et al. 2019; Yang et al. 2022; Huynh et al.
2022), we focus on four cities with most check-ins in our
experiments: Austin in Gowalla dataset, San Francisco (SF)
and Los Angeles (LA) in Brightkite dataset, and New York
City (NYC) in Foursquare dataset. Since POI categories are
not available in Gowalla and Brightkite, we collect the POI
categories from public Foursquare API, and perform POI
category matching as in (Yu, Wang, and Li 2018). Table 1
shows the basic statistics of three datasets.

It is worth noting that previous works (Wang, Li, and Lee
2014; Pham, Shahabi, and Liu 2016, Zhang, Lai, and Wang
2020; Huynh et al. 2022) all discard the sparse data of in-
active users, while we do not remove any user mobility data
in this work.

Baselines
We compare our SRINet against the following baselines:

* DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) — per-
forms random walks on network and uses skip-gram
model to learn node representation.

* node2vec (Grover and Leskovec 2016) — extends Deep-
Walk by proposing a biased random walk sampling
method with the balance between depth-first search and
breadth-first search.

* GCN (Kipf and Welling 2017) — is the most represen-
tative one that performs convolutional operations over
graph neighboring nodes for information aggregation.

* emb-cat (Yu, Wang, and Li 2018) — applies skip-gram
based model on user graph with a hierarchical walk sam-
pling scheme to learn node embeddings.

* Heter-GCN (Wu et al. 2019) — applies GCN on user mo-
bility heterogeneous graph to learn node embeddings.

* MVMN (Zhang, Lai, and Wang 2020) — learns view-
specific representations from social, spatial, and temporal
views, and fuses them for final link inference.

* LBSN2Vec++ (Yang et al. 2019, 2022) — learns node em-
beddings based on n-wise node proximity of sampled hy-
peredges from LBSN heterogeneous hypergraph.

* MSC-LBSN (Huynh et al. 2022) — is a multi-context
embedding method to learn multiple representations for
each user that respect their multiple roles in LBSN het-
erogeneous hypergraph.



Method Gowalla Brightkite Foursquare
ROCAUC | PRAUC | ROCAUC | PRAUC | ROCAUC | PRAUC
DeepWalk 0.6035 0.6172 0.5963 0.6130 0.6137 0.6039
node2vec 0.6212 0.6159 0.6133 0.6014 0.6257 0.6211
GCN 0.6275 0.6318 0.6167 0.6312 0.6276 0.6153
emb-cat 0.6405 0.6337 0.6515 0.6426 0.6359 0.6496
Heter-GCN 0.7753 0.7867 0.7596 0.7481 0.7562 0.7633
MVMN 0.7612 0.7831 0.7456 0.7434 0.7573 0.7648
LBSN2Vec++ 0.7521 0.7472 0.7286 0.7188 0.7352 0.7269
MSC-LBSN 0.7892 0.8054 0.7705 0.7628 0.7736 0.7721
SRINet-GS 0.7776 0.7815 0.7693 0.7763 0.7762 0.7613
SRINet-ML 0.8189 0.8432 0.7952 0.8216 0.8032 0.8156
SRINet (GCN) 0.8296 0.8602 0.8091 0.8308 0.8163 0.8297
SRINet (GAT) 0.8315 0.8693 0.8166 0.8362 0.8290 0.8336

Table 2: Performance comparison of all models on three real-world datasets.

Evaluation Metrics and Experiment Settings

In our evaluation, we use the Area Under the ROC Curve
(ROCAUC) and the Area Under the Precision-Recall Curve
(PRAUC) to quantify the performance of different methods.
For social relationship inference, the pairwise cosine sim-
ilarity of the learned user presentations in each method is
used to compute a score that indicates the probability of two
users being friends.

In our experiments, we use 25% friendships in social net-
works on each dataset as training set. Then we randomly
sample another 5% friendship for validating, and use the re-
maining 70% for testing.

For baseline implementations, we use the released source
code by their authors for evaluation, and the parameters of
all baselines are tuned to be optimal. For our SRINet, we set
user embedding dimension d to 512 unless stated otherwise,
the number of convolution layers L to 2, tune learning rate
from 0.0001 to 0.01, dropout to 0.01, and weight-decay to
0.0001, use early stopping mechanism, and set patience to
10 to avoid overfitting. The coefficient w is set to 0.003 for
three datasets. To capture more potential meeting events, we
set 7 to 2 hours.

Experiment Results

Overall Performance (RQ1). The overall performance of
all methods on three datasets is reported in Table 2, where
the best two are shown in bold and the best among base-
lines is underlined. SRINet (GCN) and SRINet (GAT) are
our model variants using GCN (Kipf and Welling 2017) and
GAT (Velickovi¢ et al. 2018) as the GCN layer in SRINet
respectively. SRINet-ML and SRINet-GS are two variants
of our SRINet (GCN). Specifically, SRINet-ML does not
consider POI categories, i.e., only a single-layer user meet-
ing graph as input. SRINet-GS removes graph sparsification
constraint, i.e., weight w is set to 0 in L.

From the results in Table 2, we can observe that SRINet
achieves the best performance in terms of both ROCAUC
and PRAUC on three mobility datasets. This is because our
model is the first to consider the essential problem of poor
performance of existing methods in discovering social re-
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lations from user mobility data — there are a large num-
ber of check-in records that are not related to social activ-
ities in human mobility data, resulting in a large number
of noise edges in either user meeting graph or user mo-
bility heterogeneous graph. Our designed graph structure
learning framework effectively removes the noise edges in
the constructed user meeting graph, thereby improving the
model performance, which verifies that the essential prob-
lem we proposed does exist. Although state-of-the-art meth-
ods (e.g., MSC-LBSN) improve the performance of friend-
ship prediction by designing more sophisticated sampling
methods and/or node representation learning methods, they
all ignore this essential problem and avoid the impact of
this essential problem on their models by discarding the
sparse data of inactive users. Specifically, results in Table 2
indicate that our SRINet (GAT) achieves average gains of
8.32% ROCAUC and 10.19% PRAUC in comparison to the
best-performed baseline across all datasets. Considering that
the performance gain in social relationship inference by the
recent work (i.e., MSC-LBSN) is usually around 2-3% in
both ROCAUC and PRAUC, this performance improvement
achieved by our SRINet is significant.

Additionally, our variant SRINet-ML still outperforms all
baseline methods, which further illustrates the superiority of
our proposed solution — it still works well on a simple user
meeting graph using the classic GCN. Our SRINet further
outperforms the variant SRINet-ML demonstrating the ef-
fect of our proposed multiplex user graph model for captur-
ing the influence of meeting semantics on friendship infer-
ence. Furthermore, SRINet-GS performs much worse than
SRINet (GCN) on all datasets, which reflects the crucial
role of our designed graph sparsification constraint module
in removing noisy edges. The comparison between SRINet
(GCN) and SRINet (GAT) highlights that our model is com-
patible with different GCN models.

Performance w.r.t. Meeting Frequency (RQ2). To val-
idate the effectiveness of our SRINet on sparse mobility
data of inactive users, we report the performance of SRINet
(GCN) and several stronger baselines on user pairs with low
meeting frequency on three mobility datasets. Experimental
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Figure 3: Hyperparameter impact of SRINet w.r.z. training set ratio, coefficient w, dimension d, and time threshold 7.

results are shown in Figure 2, where the percentage on the
horizontal axis indicates the proportion of the user pairs with
that meeting frequency to all the user pairs who have met in
each dataset. For example, 88% user pairs have a meeting
frequency equal to 1 and 94% user pairs have a meeting fre-
quency less than or equal to 2 on Gowalla. Notice that, in
this experiment, we use PRAUC to evaluate model perfor-
mance because precision-recall curves are better in evaluat-
ing performance with class imbalance, while ROC curves
can be deceptive in this case (Davis and Goadrich 2006;
Yang, Lichtenwalter, and Chawla 2015).

As shown in Figure 2, our SRINet significantly outper-
forms the strong baselines in all tested cases. Specifically,
for user pairs who meet only once (i.e., #frequency=1),
SRINet improves state-of-the-art MSC-LBSN by 9.87%,
9.09%, and 8.94% on Gowalla, Brightkite, and Foursquare,
respectively. It is very difficult to predict the relationships
for user pairs with low meeting frequency, because firstly,
the number of such user pairs is very large, secondly, most of
them are participated by inactive users, and thirdly, most of
the edges are generated by occasional meeting events (e.g.,
checking in at a heavily visited public place). As verified
in (Wu et al. 2019), the convolutional property of GCNs ef-
fectively models relationship propagation, thereby improv-
ing inference performance for such low-meeting frequency
cases. However, the presence of a large number of noisy
edges disturbs normal relation propagation, while our at-
tempt to remove them significantly improves inference per-
formance. This experiment suggests the rationality of our
designed model, which effectively combines the relationship
propagation ability of GNNs with the power of removing
noisy edges of graph structure learning.

Parameter Sensitivity (RQ3). We also evaluate the sensi-
tivity of SRINet w.r.t. different settings of training set ratio,
hyperparameter w, embedding dimension d, and time thresh-
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old 7. Figure 3 shows the experimental results of SRINet
(GCN) on three datasets. We find that the performance of
SRINet increases as the training set ratio increases, in par-
ticular, when the training set ratio grows from 5% to 25%,
there is a large increase in performance, and as the training
set continues to increase, the performance increases slowly.
This is in line with expectations, and our model can achieve
desired performance when only about 25% training set ra-
tio is required. Figure 3(b) illustrates the performance of
SRINet with respect to coefficient w for regularizer L. As
expected, the performance of our model first increases and
then drops as coefficient w increases. This also verifies that
graph sparsification constraint contributes to the model per-
formance improvement. From Figure 3(c), we can see that
the performance of SRINet first rises and then decreases
slightly as dimension d increases, and achieves the best per-
formance when d = 512. Finally, we investigate the im-
pact of time threshold 7 on our model. As shown in Fig-
ure 3(d), the model performance reaches its best at ¢ = 2
hours, while the performance decreases for smaller or larger
time intervals. The reason is that most social events gener-
ally last around two hours, and a smaller time interval may
miss some meeting events, while a larger time interval brings
more noise edges, both of which affect the performance.

Conclusion

In this paper, we present a novel graph structure learning
framework, SRINet, for inferring social relationships from
user mobility data. Our SRINet effectively learns user repre-
sentations for friendship inference by integrating the repre-
sentation learning ability of GNNs with the denoising power
of graph structure learning. Experiments on three real-world
mobility datasets show that our model significantly outper-
forms state-of-the-art baselines. In-depth analysis offers re-
sults of parameter sensitivity and sparse data evaluation.
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