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The authors of this paper (Mao et al. 2023) acknowl-
edge that although it referred to an earlier paper already
presented and published in ICML-21 (Errica, Bacciu, and
Micheli 2021), it insufficiently acknowledged the extent to
which it incorporated and made extensive use of techniques
therein. The authors wish to apologize for this omission. The
main novel contributions of this paper are:
• Accurately estimating packages’ travel time distribution

by analyzing influencing factors in the travel routes and
logistics networks.

• Extending graph data to incorporate influencing factors
within the logistics network.

• Integrating mutual correlations in sequence data to esti-
mate multimodal travel time distribution.

This clarification is the culmination of a thorough review
by the AAAI publications committee, who commissioned
two independent reviewers whose expert advice contributed
to the decision making process.
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Abstract

In the logistics network, accurately estimating packages’
Travel Time Distribution (TTD) given the routes greatly ben-
efits both consumers and platforms. Although recent works
perform well in predicting an expected time or a time distri-
bution in a road network, they could not be well applied to
estimate TTD in logistics networks. Because TTD prediction
in the logistics network requires modeling packages’ multi-
modal TTD (MTTD, i.e., there can be more than one likely
output with a given input) while leveraging the complex cor-
relations in the logistics network. To this end, this work opens
appealing research opportunities in studying MTTD learning
conditioned on graph-structure data by investigating pack-
ages’ travel time distribution in the logistics network. We pro-
pose a Graph-based Mixture Density Network, named GMD-
Net, which takes the benefits of both graph neural network
and mixture density network for estimating MTTD condi-
tioned on graph-structure data (i.e., the logistics network).
Furthermore, we adopt the Expectation-Maximization (EM)
framework in the training process to guarantee local con-
vergence and thus obtain more stable results than gradient
descent. Extensive experiments on two real-world datasets
demonstrate the superiority of our proposed model.

Introduction
Millions of packages are transported through the logistics
network every day in China. In logistics platforms, one
of the most crucial tasks is to estimate the Travel Time
Distribution (TTD) of a package given the route from its
start node to the destination node. Accurately estimating the
travel time distribution is of great value for both consumers
and platforms. Notifying consumers about travel time distri-
bution can help them schedule the delivery time and alleviate
their waiting anxiety. For logistics platforms, estimating the
travel time distribution can help the destination node in the
logistics network make better scheduling plans in advance.

In a logistics network, packages are sent from a start node
and follow a predetermined route consisting of several nodes
and edges to a destination node. The travel time is the sum
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of the stay time in those nodes and the transfer time in those
edges. Similar problems have been studied for many years
in traffic road networks. However, packages’ TTD in the lo-
gistics field still lacks effective methods due to the following
challenges:

1) Complex spatial correlations and influence factors
in the logistics network. Firstly, nodes in the logistics net-
works are naturally connected and correlated with others
through package flows, as shown in the left part of Figure 1.
A sudden increase of packages at upstream nodes will spread
to downstream nodes, resulting in changes in stay time and
transfer time in the process towards downstream nodes. Thus
the nodes in the logistics networks are spatially correlated.
Secondly, a package’s stay time in a node is affected by mul-
tiple complex factors, such as the current number of pack-
ages in the node, e.g., the more packages in the node, the
more time a package may wait to leave the node. Previous
works like (Ramezani and Geroliminis 2012; Ma et al. 2017;
Zhang et al. 2019) estimate TTD on traffic road networks
based on the travel times of link pairs, which could not be
well applied to handle graph-structure data and complex cor-
relations in logistics networks.

2) As shown in Figure 1, the packages’ travel time dis-
tribution is multimodal, which means there can be more
than one likely output with a given route. In Figure 1, pack-
age 1 and package 2 are on the same route starting from A
to D at 17:00. However, package 1 arrives at the destina-
tion D earlier than package 2. Because of the uncertainty in
the transfer process, it is hard to determine which truck each
package will be assigned to (even though they are on the
same route). Some packages (in this case, package 1) may be
luckily taken on an almost filled truck to the next node early,
while other packages (in this case, package 2) that arrive at
the same time have to wait for the next truck. Such character-
istics generate typically multimodal travel time distribution
for packages in the logistics network. Although extensive
works towards the travel time estimation (TTE) in road net-
works take graph-structure data into account, such as (Fang
et al. 2020), (Hong et al. 2020), (Jin et al. 2022), they treat
TTE as a regression problem that predicts an average value,
thus fail to depict the MTTD of package’s travel time.

To address the aforementioned challenges simultane-
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Figure 1: Packages’ MTTD given a route in the logistics net-
work (better viewed in color). The travel time distribution of
packages sent out at 17:00 from node A to node D in the
logistics network (left part) is multimodal (right part). Pack-
age 1 (orange) arrive earlier than package 2 (green) due to
uncertainty in the transfer process of the route (middle part).

ously, we propose a graph-based mixture density network,
named GMDNet, for predicting packages’ multimodal
travel time distribution (MTTD). Moreover, an Expectation-
Maximization (EM) framework is adopted to guarantee local
convergence in the training process. Unlike previous works,
GMDNet can both handle graph-structure data and approxi-
mate the MTTD. Specifically, we design a graph-cooperated
route encoding layer to obtain the embedding of the pack-
age’ route via handling complex spatial correlations and in-
fluence factors in the logistics network. Then a mixture den-
sity decoding layer is proposed to fully leverage the route
embedding to achieve accurate multimodal distribution esti-
mation. Overall, the contribution of this paper is summarized
as follows:

• By investigating the multimodal distribution of pack-
ages’ travel time in the logistics network, this work
opens appealing research opportunities in the study of
multimodal travel time distribution learning conditioned
on graph-structure data and extends the capabilities of
graph-based TTE methods whose output is limited to an
expected value or a unimodal distribution.

• A graph-based mixture density network, named GMD-
Net, is proposed for accurately predicting packages’
MTTD. GMDNet takes the benefits of both graph neu-
ral networks and mixture density networks for estimat-
ing MTTD while leveraging complex spatial correla-
tions in the logistics network. Moreover, the Expectation-
Maximization (EM) framework is adopted in the training
process to guarantee local convergence and thus achieve
more stable results than gradient descent.

• Extensive experiments on two real-world logistics
datasets demonstrate that GMDNet significantly outper-
forms other solutions.

Related Work
Travel Time Estimation (TTE). The road segment-based
methods (Wang, Zheng, and Xue 2014) predict the travel
time on each road segment and then sum up the predicted
times of all road segments. Such methods are efficient but
fail to incorporate the contextual information of the route,

such as delays caused by the intersections in the routes.
Route-based methods take a route as a whole and estimate
the travel time directly to address the limitations of road
segment-based methods. (Wang et al. 2018) and (Wang, Fu,
and Ye 2018) employ an RNN to learn the travel time while
using various features. To capture the spatial-temporal de-
pendency in the road network, (Fang et al. 2020), (Jin et al.
2022), and (Derrow-Pinion et al. 2021) adopt models based
on graph neural networks to achieve more accurate TTE.

Although these graph-based methods can achieve accu-
rate TTE, estimating a single value in some scenarios, such
as estimating MTTD in the logistics network, is insufficient.
To this end, we extend the capabilities of graph-based TTE
methods whose output is restricted to an expected value or a
unimodal distribution.
Travel Time Distribution Estimation (TTD). To derive the
uncertainty of the expected travel time. Many works esti-
mate the TTD for a given route on road networks. (Hunter
et al. 2013) utilizes Gaussian Markov Random Field to com-
pute the travel time distribution of a path. (Wu et al. 2016)
proposes a model to learn the mean value of travel time
and models the relationship between the variance and mean
value to derive the distribution. To relax the assumption
that traffic conditions in the same time slot are temporally-
invariant, DeepGTT(Li et al. 2019) develops a deep genera-
tive model to learn the travel time distribution by condition-
ing on the real-time traffic. However, it extracts the traffic
condition representation based on grid structure data, which
cannot well reflect the traffic network’s actual topology. To
address this limitation, (Song, Zhang, and James 2021) esti-
mates the travel time in a distribution form with deep graph
learning and a generative adversarial network.

The above-mentioned TTD methods did not explore es-
timating MTTD. However, travel time distribution in some
real-world scenarios can be multimodal such as packages’
TTD in the logistics network, leading to research on learn-
ing multimodal travel time distributions. (Ma et al. 2017) uti-
lizes the Gaussian Mixture model and Markov chain model
to estimate the MTTD of routes in the road network. (Zhang
et al. 2019) estimates MTTD in the road network within
the framework of generative adversarial networks. These ap-
proaches estimate MTTD by modeling the travel time of
link pairs without considering the topology of the whole net-
work. Thus, they are hard to handle complex spatial corre-
lations and influence factors in the logistics network. To ad-
dress this limitation, we propose a graph-based mixture den-
sity network for accurately predicting MTTD while leverag-
ing complex spatial correlations in the logistics network.

Preliminaries
In this section, related definitions are provided, and the pack-
ages’ MTTD estimation problem is formalized.
Definition 1. Logistics Network. The logistics network is
intrinsically a directed graph, which is defined as G =
(V, E ,X,A,E), where V = {v1, . . . , vN}, and each node
corresponds to a logistics entity (e.g., store, transfer center).
E = {eij | vi, vj ∈ V} is the set of edges. X ∈ RN×dv and
E ∈ RN×N×de are the node and edge features respectively,
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where dv and de are the node feature dimension and edge
feature dimension. A ∈ RN×N is the adjacent matrix.
Definition 2. Route. A route in the logistics network is de-
noted as a tuple R = (r, f). r = [e1, . . . , el] is the sequence
of edges in route R, where e1, . . . , el ∈ E . f ∈ Rdf are the
route related features in r, where df is the dimension of the
features.
Problem Statement. Given the logistics network Gt and the
route Rt of a package at the request time t, we aim to pre-
dict the package’s travel time distribution P (ys|s), where
s = (Gt, Rt), and ys is the actual travel time (i.e., the label)
given s.

Proposed GMDNet Model
The main idea of our proposed model is to learn the pack-
ages’ MTTD conditioned on the input route and the logistics
network.

Overall Idea: MLE Hypothesis
To equip the model with multimodal output capabili-
ties, we leverage the benefits of the mixture density net-
work (BISHOP 1994) to learn the conditional distribu-
tion P (ys|s). Specifically, we combine K mixture compo-
nents with mixture weights πs ∈ [0, 1]

K that sum to 1, to
produce the output distribution. And the mixture compo-
nents/weights are estimated by solving maximum likelihood
estimation (MLE). Given a hypotheses space H, we seek
the optimal MLE hypothesis h∗ that can maximize the like-
lihood

∏
s∈D P (ys|s), formally:

h∗ = argmax
h∈H

L(h|D) = argmax
h∈H

∏
s∈D

P (ys|s)

= argmax
h∈H

∏
s∈D

∑K
k=1

P (ys|πk
s , s)P (πk

s |s).

(1)
The latent variable πs is introduced through marginaliza-
tion whose k-th component is πk

s . To model the distribu-
tion P (ys|s) in Equation 1, we first implement a graph-
cooperated route encoding layer to obtain the route embed-
ding taken s as input. Then the mixture weights P (πk

s |s)
and the mixture components P (ys|πk

s , s)(k = 1, ...,K) are
produced by the mixture density decoding layer based on the
route embedding. At last, P (ys|s) is produced by combining
the mixture weights and components. We sketch the overall
architecture in Figure 2.

Input Layer
At the request time t, an input contains the logistics network
Gt and the route Rt. The feature construction for them is
elaborated in this section.
Network Features. Let aij be the (i, j)-th entry of the ad-
jacent matrix A ∈ RN×N . If packages can be transferred
from node i to node j (i ̸= j), aij equals 1; if i = j, aij
equals −1. Otherwise, aij equals 0.

Given a node vi ∈ V , the node feature vector xi is formu-
lated as: xi = (xin

i , xout
i , weekday, hour). xin

i is the num-
ber of incoming packages from all upstream nodes, and xout

i

is the number of packages sent out to all downstream nodes.
weekday and hour are the day-of-week and hour-of-day,
respectively.

Given an edge (i, j) ∈ E at time t, the edge feature vector
is: eij = (einij , e

out
ij , estayij , etransij , aij , weekday, hour). einij

/ eoutij is the number of packages brought in/sent out from
node i to node j, respectively. estayij is the average stay time
in node i for packages from node i to node j. etransij is the
average transfer time from node i to node j . And aij is the
proximity between node i and j.
Route Features. The edge sequence in route Rt is denoted
as r. The route related features f in route Rt are formulated
as: f = (fout, f trans, weekday, hour). fout is the number
of packages sent out from the start node to the destination
node. f trans is the average travel time from the start node to
the destination node.

Among the features mentioned above, xin
i , xout

i , einij , eoutij ,
estayij , etransij , fout, and f trans are calculated in a given time
window (one day in this paper) before t.

Graph-Cooperated Route Encoding Layer
We design a graph-cooperated route encoding layer that
models the spatial dependency in the logistics network and
integrates mutual information among edges in the route to
generate a comprehensive representation of the route.
Spatial Dependency Modeling. Given the dh-dimensional
node and edge embeddings obtained by the node and edge
features through linear transformations as input, the spatial
dependency among nodes and edges in the logistics network
is modeled through a graph neural network with L layers,
each of which updates the node and edge embeddings by
modeling their interactions.

Let ul
i denote the embedding associated with node i, and

hl
ij denote the embedding associated with edge (i, j) at the

l-th layer. In a logistics network, the package flows are di-
rectional and associated with both nodes and edges, so we
jointly update the node embedding and edge embedding at
layer l + 1 by the following process:

ul+1
i = f(ul

i,Agg{ul
i,h

l
ij : j ∈ Ni}), (2)

hl+1
ij = g(hl

ij ,Agg{hl
ij ,u

l
i,u

l
j}), (3)

where Ni denotes the set of neighbors centered at node i,
Agg(·) is the aggregation function. The updating function
f, g can be further specified by non-linear transformations:

ul+1
i = ul

i + σ1(BN(Wl
1u

l
i +

∑
j∈Ni

σ2(h
l
ij)⊙Wl

2u
l
j)),

(4)
hl+1
ij = hl

ij + σ1(BN(Wl
3h

l
ij +Wl

4u
l
i +Wl

5u
l
j)), (5)

where Wl
i ∈ Rdh×dh (i = 1, . . . , 5) are trainable param-

eters, σ1 is ReLU activation function, and σ2 is the sig-
moid function. BN(·) represents batch normalization. After
the computation of the graph neural network with L layers,
we get the output of spatial-correlation encoding: Us and
Hs, which are the embeddings of nodes and edges, respec-
tively.
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Figure 2: The architecture of GMDNet. Firstly, The graph-cooperated route encoding layer produces the route embedding r
′′

s
via capturing the spatial dependency in the logistics network and mutual correlations among edges in the route. Secondly, the
mixture density output layer outputs the mixture weights πs and the mixture components P (ys|πk

s , s)(k = 1, ...,K) based on
r
′′

s . Finally, P (ys|s) can be obtained by combing the mixture weights and mixture components.

Mutual Correlation Modeling. We generate a comprehen-
sive embedding for the route by integrating the mutual cor-
relations among edges in the route.

The initial route embedding (denoted by Rs ∈ Rl×dh )
is obtained by stacking the edge embeddings (from Hs) in
that route. Secondly, we adopt the multi-head self-attention
mechanism to integrate the mutual information among edges
in the route and obtain the updated route embedding r

′

s. The
attention function is formulated as follows:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (6)

where Q,K,V (queries, keys and values) are constructed
by the route embedding Rs, and d is the dimension of K.
Here we adopt the multi-head self-attention to jointly attend
to information from different representation subspaces. For-
mally,

MHSelfAttention(Q,K,V) = ⊕(head1, . . . , headh)W
O,

(7)
headj = Attention(QWQ

j ,KWK
j ,VWV

j ), (8)

where h is the number of attention heads. WQ
j ,W

K
j , and

WV
j are projection matrices applied on Q, K, and V; WO

is the final output projection matrix.
In the route encoding layer, we equip the initial route em-

bedding Rs with fixed position embedding to incorporate
the order bias into the model. We concatenate the edges’
embeddings with the position embedding, which helps the
model recognize the relative order among edges in a route.

Lastly, we reshape the updated embedding of the route
r
′

s to Rl∗dh , and concatenate it with route related feature
f ∈ Rdf to obtain the final route embedding r

′′

s ∈ Rl∗dh+df

based on the input s = (Rt, Gt) at the request time t.

Mixture Density Decoding Layer
We develop a mixture density decoding layer to model the
mixture weights πs and the parameters of mixture compo-
nents P (ys|πk

s , s) (k = 1, ...,K) based on the route em-
bedding r

′′

s . The multimodal travel time distribution P (ys|s)
can be obtained by combing the mixture weights and mix-
ture components. More formally, the process of modeling
P (ys|s) can be represented by the Bayesian network as
shown in Figure 3.

Figure 3: The process of modeling P (ys|s) can be repre-
sented as a Bayesian network where the round green (yel-
low) nodes are observed (unobserved) random variables, and
the blue square represents deterministic route embedding r

′′

s .

We model the mixture weights πs ∈ [0, 1]K as a cate-
gorical distribution with K possible states. And πs satisfies∑K

k=1
P (πk

s ) = 1. The posterior distribution P (πs|s) can
be computed by the deterministic route embedding r

′′

s :

P (πs|s) = ϕπ(r
′′

s ) = σ(fπ(r
′′

s )), (9)
where ϕπ is a nonlinear transformation composed of a linear
model fπ and a softmax function σ.

As for the mixture components, we assume that the con-
ditional distributions of the mixture components come from
the family of Gaussian distributions. Because the combi-
nation of Gaussian distributions is proved to be capable of
approximating any given density function to arbitrary ac-
curacy (McLachlan and Basford 1988), moreover, Gaussian
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distribution is a common practice for representing a variable
without prior knowledge. In this way, the conditional den-
sity function of the mixture components can be formulated
as:

p(ys|πk
s , s) =

1

(2π)1/2σk(s)
exp{− (ys − µk(s))

2

2σ2
k(s)

}. (10)

Then networks ϕkµ , ϕkσ are adopted to output the param-
eters of the conditional density function based on the route
embedding:

µk(s) = ϕkµ
(r

′′

s ) = fkµ
(r

′′

s ), (11)

σk(s) = ϕkσ (r
′′

s ) = exp(fkσ (r
′′

s )), (12)

where fkµ , fkσ are linear models. Note that the route’s em-
bedding r

′′

s is shared in the mixture density output layer
transformations instead of requiring a new encoder for each
mixture component (Masoudnia and Ebrahimpour 2014).
This form of weight sharing reduces the number of param-
eters and helps the model encode more useful information
into the route embedding.

Model Training via EM Framework
Training. Recall that the logarithm of the likelihood func-
tion in the MLE estimation is taken as:

logL(h|D) =
∑
s∈D

log
∑K

k=1
P (ys|πk

s , s)P (πk
s |s). (13)

To train the model (i.e., maximize the above log-likelihood),
an intuitive way is to update the parameters via gradient de-
scent. However, due to the presence of the latent variable
in the log-likelihood function, it is more effective to solve
the MLE estimation via Expectation-Maximization (EM)
framework (Dempster, Laird, and Rubin 1977). Since com-
pared with gradient descent, the EM framework can theo-
retically guarantee local convergence (Errica, Bacciu, and
Micheli 2021; Bilmes et al. 1998). Thus the results are more
stable, as we will also prove this in the experiment.

For the convenience of solving the MLE estimation based
on the EM framework, we introduce the indicator variable
zks ∈ Z (zks = 1 when the input s is in latent state k,
where k ∈ {1, . . . ,K}). The introduction of zks provides
us with the opportunity to write the lower bound of the
log-likelihood logL(h|D)) by Jensen’s inequality (Chandler
1987), which can be formulated as:

logL(h|D) ≥ EZ|D[logL(h|D)]. (14)

Maximizing the lower bound can thereby indirectly maxi-
mize the log-likelihood. The lower bound can be further de-
rived as:

EZ|D[logL(h|D)] =
∑
s∈D

K∑
k=1

E[zks |D]P (ys|πk
s , s)P (πk

s |s).

(15)

Based on the lower bound of the log-likelihood, we can
perform the E-step of the EM algorithm by computing the
posterior probability of the indicator variables:

E[zks |D] = P (zks = 1|s) = 1

Q
P (ys|πk

s , s)P (πk
s |s), (16)

where Q is the normalization term and derived by marginal-
ization:

Q =
∑K

k=1
P (ys|πk

s , s)P (πk
s |s). (17)

The M-step is implemented by gradient ascent to maximize
Equation 15. This implementation is known as Generalized
EM (GEM) (Dempster, Laird, and Rubin 1977). GEM guar-
antees local convergence if each optimization step improves
Equation 15. If no prior information is introduced to the
distribution of P (πs|s), the posterior probability mass may
collapse onto a single state, thus resulting in the output of
a unimodal distribution. To address this problem, we ap-
ply an optional Dirichlet regularizer λ with hyper-parameter
α = (α1, . . . , αK) on the distribution P (πs|s) to the orig-
inal objective function. Note that α = 1K corresponds to
a uniform prior, which means no regularization. Finally, the
objective function to be maximized is formulated as follows.

Lobj = EZ|D[logL(h|D)] +
∑
s∈D

logλ(πs|α). (18)

Note that the local convergence can also be guaranteed to
maximize Equation 18 after adding the regularization, if
Equation 15 increases at each step. To conclude, in the train-
ing process, we first implement the E-step by Equation 16
and then implement the M-step using gradient descent to
maximize Equation 18. This process is iterated until conver-
gence. Finally, we obtain the optimal MLE hypothesis h∗.
Prediction. The whole process of estimating a package’s
travel time is illustrated in Algorithm 1.

Algorithm 1: Prediction by GMDNet.

Input: The graph and route of a package s = (Gt, Rt) at t.
Output: Travel time distribution P (ys|s).

1: // Graph-Cooperated Route Encoding Layer
2: for l = 1, ..., L do
3: Update node embeddings by Equation 4;
4: Update edge embeddings by Equation 5;
5: end for
6: Obtain r

′′

s according to Equation 6 - Equation 8;
7: // Mixture Density Decoding Layer
8: Output mixture weights P (πs|s) by Equation 9;
9: Output parameters of mixture components µk(s), σk(s)

by Equation 11 and Equation 12;
10: P (ys|s) =

∑K
k=1

P (πk
s |s)×N (µk(s), σk(s));

11: return P (ys|s);

Experiments
In order to evaluate the effectiveness of our proposed
method, we carried out comparative experiments and com-
ponent analysis on two real-world logistics datasets.
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Dataset. The experiment is conducted on two real-world
logistics datasets collected from two different regions by
Cainiao1, one of the largest logistics companies in China,
handling millions of packages per day. Both datasets contain
the travel information of packages in the logistics network
from Feb. 06, 2022, to Mar. 08, 2022. Detailed statistics of
the dataset is shown in Table 1.

Dataset D1 D2

Average travel time (hours) 15.8 16.1
Average number of edges in a route 3 3

#training samples 358,822 492,831
#validation samples 59,529 77,572

#test samples 54,257 76,003

Table 1: Statistics of the Datasets.

Baselines. There are few related public achievements for di-
rectly comparison. So we choose both TTE and TTD meth-
ods as baselines for a comprehensive comparison:

• Historical Average (HA). The prediction travel time is
given by summing the average travel time of each edge
in the route.

• LightGBM (Ke et al. 2017). A popular traditional ma-
chine learning algorithm that predicts the expected travel
time of the package.

• Wide-Deep-Recurrent (Wang, Fu, and Ye 2018) (WDR).
WDR is a deep neural network that can model different
types of features by combing the wide, deep, and recur-
rent network components.

• Mixture Density Network (BISHOP 1994) (MDN). MDN
is proposed to approximate arbitrarily complex condi-
tional target distribution, it can be used to model the mul-
timodal distributions of travel time.

• Kernel Density Estimation (Weglarczyk 2018) (KDE).
KDE is a nonparametric method to estimate the proba-
bility density function of the travel time based on kernels
as weights.

• GCGTTE (Song, Zhang, and James 2021). GCGTTE is
proposed to estimate the TTD with graph deep learning
and generative adversarial network (GAN).

• GMDNet-GD. GMDNet trained via gradient descent.

Evaluation Metrics. We evaluate the performance of dif-
ferent models by the following metrics: Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE),
Log-likelihood (logL) (Shao 2003), and Continuous Ranked
Probability Scores (CRPS) (Matheson and Winkler 1976).
MAE and MAPE measure the degree to which the predic-
tion deviates from the label. logL and CRPS measure how
good predictions are in matching observed outcomes. Note
that we use the weighted mean of the output distribution to
calculate MAE/MAPE for models that output a distribution.
Larger logL and smaller MAE/MAPE/CRPS means better
performance in the experiment.

1https://www.cainiao.com/

Settings. We set the bandwidth of KDE with Gaussian ker-
nel to 1. We implement all the deep models by Pytorch.
The batch size of each epoch is 32, and the learning rate
of the Adam optimizer is 0.001. For all deep models, hy-
perparameters are tuned by using the validation set, and
test results are reported at the best validation epoch. To
test the stability of the deep models, we ran over 10 times
for each model and recorded each metric’s mean and stan-
dard deviation. For deep baseline models, we searched pa-
rameters according to their paper and our prediction task.
For the parameter search space of GMDNet, the number
of hidden units is searched from {16, 32, 64, 128, 256}, the
embedding dimension of categorical features is searched
from {8, 16, 32}, the number of attention heads is searched
from {2, 4, 8}, the number of GNN layers is searched
from {1, 2, 3}, K is searched from {1, 2, 3, 4, 5}, and α
is searched from {1K ,1.05K}. The code is available at
https://github.com/maoxiaowei97/GMDNet.
Experimental Results. Table 2 shows the comparison of
different approaches. HA, LightGBM, and WDR cannot out-
put the travel time distribution, so we do not calculate logL
or CRPS for those methods. The results show that GMDNet
outperforms other methods on both datasets.

HA is an intuitive but less effective approach. WDR
jointly trains wide linear models, deep neural networks, and
recurrent networks to model various input features. Light-
GBM is efficient for implementation and achieves reason-
able results. However, the complex spatial correlations in the
logistics network could not be well modeled by LightGBM
or WDR, which can be essential for accurately estimating
the travel time. Additionally, LightGBM and WDR can only
output an expected value of the travel time, thus failing to
handle the MTTD given an input route and graph.

MDN and KDE can output the MTTD based on the in-
put route. However, MDN and KDE perform unsatisfactorily
since they could not handle graph-structure data, thus failing
to learn the spatial correlations in the logistics network and
mutual correlations in the package’s route.

GCGTTE fails to achieve ideal performance for estimat-
ing TTD in the logistics network. Although it uses a graph
neural network to learn the spatial correlations among nodes
in the logistics network, it fails to model the directional
package flows on edges and mutual correlations in the pack-
ages’ route. Moreover, it is difficult to control the synchro-
nization of the two adversarial networks, so the training pro-
cess can be unstable (Gonog and Zhou 2019).

Our GMDNet presents the most effective results. On the
one hand, we design a graph-cooperated route encoding
layer to model spatial dependency in the logistics network
and mutual correlation in the route. On the other hand, the
mixture density decoding layer enables outputting multi-
modal distribution, so the ground truth distribution can be
better approximated while breaking the limitation of predict-
ing an expected value or a unimodal distribution. Further-
more, the standard deviation is lower when training via the
EM framework than gradient descent. Since the local con-
vergence can be guaranteed to adopt the EM framework in
the training process, more stable results can be obtained than
gradient descent.
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Method D1 D2

MAE(h) MAPE(%) logL CRPS MAE(h) MAPE(%) logL CRPS
HA 3.75 27.2 - - 3.57 25.5 - -

LightGBM 2.06 13.6 - - 1.81 12.1 - -
WDR 2.10 ± 0.07 13.9 ± 0.56 - - 1.85 ± 0.06 12.6 ± 0.83 - -
MDN 2.15 ± 0.03 14.2 ± 0.20 -2.19 ± 0.08 1.64 ± 0.01 1.90 ± 0.04 13.3 ± 0.32 -1.61 ± 0.06 1.37 ± 0.01
KDE 2.04 12.6 -2.02 1.61 1.83 11.7 -1.41 1.35

GCGTTE 2.56 ± 0.13 16.2 ± 0.76 -4.27 ± 0.98 1.95 ± 0.18 2.47 ± 0.14 15.7 ± 0.81 -4.11 ± 0.85 1.65 ± 0.14
GMDNet-GD 1.92 ± 0.08 11.5 ± 0.75 -0.81 ± 0.16 1.43 ± 0.04 1.66 ± 0.08 11.0 ± 0.70 -0.99 ± 0.12 1.23 ± 0.03

GMDNet 1.89 ± 0.03 11.3 ± 0.28 -0.73 ± 0.02 1.39 ± 0.01 1.63 ± 0.02 10.8 ± 0.37 -0.94 ± 0.04 1.21 ± 0.01

Table 2: Experiment Results.

Component Analysis. To further analyze the components
of GMDNet, we design three variants of GMDNet and com-
pare them on the D1 dataset. Figure 4 illustrates the results.

Firstly, we replace the graph-cooperated route encod-
ing layer of GMDNet with a Multi-Layer Perceptron (wo-
GR). The performance drops at all evaluation metrics. This
demonstrates that effectively handling complex spatial de-
pendency and mutual correlation in the logistics network is
essential for accurately estimating packages’ MTTD.

Secondly, removing the mutual correlation modeling
block (wo-R) also brings a decrease in the model’s perfor-
mance. The results demonstrate that producing the route em-
bedding by integrating the mutual information among edges
in the route contributes to performance improvement.

Lastly, we set the number of mixture components of
GMDNet to 1, resulting in a model (wo-M) without the abil-
ity to output multimodal TTD. We report MAE and MAPE
using the weighted mean of the mixture components in
GMDNet, so the difference between MAE and MAPE is not
significant. However, the lower −logL and CRPS indicate
that modeling the MTTD can help better approximate the
ground truth distribution.

Figure 4: Ablation study.

Case Study. To analyze the performance of GMDNet more
intuitively, we provide a case study shown in Figure 5. We
plot the output distributions of wo-GR, wo-M, GCGTTE,
KDE, GMDNet, and packages’ actual travel time distribu-
tion for a given input route. Firstly, wo-GR and KDE could
not well approximate the packages’ travel time distribution
since they are unaware of the graph-structure information
and unable to model complex spatial dependencies in the lo-
gistics network. Secondly, wo-M models the spatial depen-
dency and mutual correlation via a graph-cooperated route
encoding layer. It produces a unimodal distribution that ac-
counts for majorities of the actual distribution. However, wo-

M cannot produce a multimodal distribution that well ap-
proximates the actual distribution. Thirdly, GCGTTE fails
to approximate the ground truth ideally. On the one hand, it
fails to model the spatial dependency by considering the di-
rectional package flow and mutual correlation among edges
in the route. On the other hand, the training of GAN is diffi-
cult and often unstable (Gui et al. 2021). In contrast, GMD-
Net can learn the complex spatial correlations and influ-
ence factors in the logistics network and produce a multi-
modal distribution that can better approximate the ground
truth MTTD.

Figure 5: Case study. GMDNet can better approximate the
ground truth MTTD.

Conclusion
This paper opens appealing research opportunities in the
study of MTTD learning conditioned on graph-structure
data, by investigating the package’s MTTD in the logis-
tics network. And a graph-based mixture density network,
named GMDNet, is proposed for accurately predicting the
package’s travel time distribution. GMDNet is equipped
with a graph-cooperated route encoding layer to model com-
plex spatial dependency in the logistics network and mutual
correlation among edges in the route. Then a mixture den-
sity decoding layer is leveraged to output multimodal distri-
bution to extend the capabilities of graph-based TTE meth-
ods whose output is limited to an expected value or a uni-
modal distribution. Moreover, the EM framework is adopted
in the training process to guarantee local convergence and
thus achieve more stable results than gradient descent. Ex-
periments conducted on two real-world datasets demonstrate
the effectiveness of GMDNet.
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