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Abstract
Various contrastive learning approaches have been proposed in
recent years and achieve significant empirical success. While
effective and prevalent, contrastive learning has been less ex-
plored for time series data. A key component of contrastive
learning is to select appropriate augmentations imposing some
priors to construct feasible positive samples, such that an
encoder can be trained to learn robust and discriminative rep-
resentations. Unlike image and language domains where “de-
sired” augmented samples can be generated with the rule of
thumb guided by prefabricated human priors, the ad-hoc man-
ual selection of time series augmentations is hindered by their
diverse and human-unrecognizable temporal structures. How
to find the desired augmentations of time series data that are
meaningful for given contrastive learning tasks and datasets
remains an open question. In this work, we address the prob-
lem by encouraging both high fidelity and variety based upon
information theory. A theoretical analysis leads to the criteria
for selecting feasible data augmentations. On top of that, we
propose a new contrastive learning approach with information-
aware augmentations, InfoTS, that adaptively selects optimal
augmentations for time series representation learning. Exper-
iments on various datasets show highly competitive perfor-
mance with up to 12.0% reduction in MSE on forecasting
tasks and up to 3.7% relative improvement in accuracy on
classification tasks over the leading baselines.

Introduction
Time series data in the real world is highly dimensional, un-
structured, and complex with unique properties, leading to
challenges for data modeling (Yang and Wu 2006). In addi-
tion, without human recognizable patterns, it is much harder
to label time series data than images and languages in real-
world applications. These labeling limitations hinder deep
learning methods, which typically require a huge amount
of labeled data for training, being applied on time series
data (Eldele et al. 2021). Representation learning learns a
fixed-dimension embedding from the original time series that
keeps its inherent features. Compared to the raw time se-
ries data, these representations are with better transferability
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and generalization capacity. To deal with labeling limitations,
contrastive learning methods have been widely adopted in var-
ious domains for their soaring performance on representation
learning, including vision, language, and graph-structured
data (Chen et al. 2020; Xie et al. 2019; You et al. 2020). In
a nutshell, contrastive learning methods typically train an
encoder to map instances to an embedding space where dis-
similar (negative) instances are easily distinguishable from
similar (positive) ones and model predictions to be invariant
to small noise applied to either input examples or hidden
states.

Despite being effective and prevalent, contrastive learn-
ing has been less explored in the time series domain (Eldele
et al. 2021; Franceschi, Dieuleveut, and Jaggi 2019; Fan,
Zhang, and Gao 2020; Tonekaboni, Eytan, and Goldenberg
2021). Existing contrastive learning approaches often involve
a specific data augmentation strategy that creates novel and
realistic-looking training data without changing its label to
construct positive alternatives for any input sample. Their
success relies on carefully designed rules of thumb guided by
domain expertise. Routinely used data augmentations for con-
trastive learning are mainly designed for image and language
data, such as color distortion, flip, word replacement, and
back-translation (Chen et al. 2020; Luo et al. 2021). These
augmentation techniques generally do not apply to time se-
ries data. Recently, some researchers propose augmentations
for time series to enhance the size and quality of the train-
ing data (Wen et al. 2021). For example, TS-TCC (Eldele
et al. 2021) and Self-Time (Fan, Zhang, and Gao 2020) adopt
jittering, scaling, and permutation strategies to generate aug-
mented instances. Franceschi et.al. propose to extract subse-
quences for data augmentation (Franceschi, Dieuleveut, and
Jaggi 2019). In spite of the current progress, existing methods
have two main limitations. First, unlike images with human
recognizable features, time series data are often associated
with inexplicable underlying patterns. Strong augmentation
such as permutation may ruin such patterns and consequently,
the model will mistake the negative handcrafts for positive
ones. While weak augmentation methods such as jittering
may generate augmented instances that are too similar to the
raw inputs to be informative enough for contrastive learn-
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Figure 1: InfoTS is composed of three parts: (1) candidate transformation that generates different augmentations of the original
inputs, (2) a meta-learner network that selects the optimal augmentations, (3) an encoder that learns representations of time series
instances. The meta-learner is learned in tandem with contrastive encoder learning.

ing. On the other hand, time series datasets from different
domains may have diverse natures. Adapting a universal data
augmentation method, such as subsequence (Xie et al. 2019),
for all datasets and tasks leads to sub-optimal performances.
Other works follow empirical rules to select suitable augmen-
tations from expensive trial-and-error. Akin to hand-crafting
features, hand-picking choices of data augmentations are un-
desirable from the learning perspective. The diversity and
heterogeneity of real-life time series data further hinder these
methods away from wide applicability.

To address the challenges, we first introduce the criteria
for selecting good data augmentations in contrastive learning.
Data augmentation benefits generalizable, transferable, and
robust representation learning by correctly extrapolating the
input training space to a larger region (Wilk et al. 2018). The
positive instances enclose a discriminative zone in which
all the data points should be similar to the original instance.
The desired data augmentations for contrastive representation
learning should have both high fidelity and high variety. High
fidelity encourages the augmented data to maintain the se-
mantic identity that is invariant to transformations (Wilk et al.
2018). For example, if the downstream task is classification,
then the generated augmentations of inputs should be class-
preserving. Meanwhile, generating augmented samples with
high variety benefits representation learning by increasing
the generalization capacity (Chen et al. 2020). From the moti-
vation, we theoretically analyze the information flows in data
augmentations based on information theory and derive the
criteria for selecting desired time series augmentations. Due
to the inexplicability in practical time series data, we assume
that the semantic identity is presented by the target in the
downstream task. Thus, high fidelity can be achieved by maxi-
mizing the mutual information between the downstream label
and the augmented data. A one-hot pseudo label is assigned to
each instance in the unsupervised setting when downstream
labels are unavailable. These pseudo-labels encourage aug-
mentations of different instances to be distinguishable from
each other. We show that data augmentations preserving these
pseudo labels can add new information without decreasing
the fidelity. Concurrently, we maximize the entropy of aug-
mented data conditional on the original instances to increase
the variety of data augmentations.

Based on the derived criteria, we propose an adaptive data

augmentation method, InfoTS (as shown in Figure 1), to
avoid ad-hoc choices or painstaking trial-and-error tuning.
Specifically, we utilize another neural network, denoted by
meta-learner, to learn the augmentation prior in tandem with
contrastive learning. The meta-learner automatically selects
optimal augmentations from candidate augmentations to gen-
erate feasible positive samples. Along with randomly sam-
pled negative instances, augmented instances are then fed into
a time series encoder to learn representations in a contrastive
manner. With a reparameterization trick, the meta-learner
can be efficiently optimized with back-propagation based on
the proposed criteria. Therefore, the meta-learner can auto-
matically select data augmentations in a per dataset and per
learning task manner without resorting to expert knowledge
or tedious downstream validation. Our main contributions
include:

• We propose criteria to guide the selection of data augmen-
tations for contrastive time series representation learning
without prefabricated knowledge.

• We propose an approach to automatically select feasi-
ble data augmentations for different time series datasets,
which can be efficiently optimized with back-propagation.

• We empirically verify the effectiveness of the proposed
criteria to find optimal data augmentations. Extensive ex-
periments demonstrate that InfoTS can achieve highly
competitive performance with up to 12.0% reduction in
MSE on forecasting tasks and up to 3.7% relative improve-
ment in accuracy on classification tasks over the leading
baselines.

Methodology
Notations and Problem Definition
A time series instance x has dimension T × F , where T is
the length of the sequence and F is the dimension of features.
Given a set of time series instances X, we aim to learn an
encoder fθ(x) that maps each instance x to a fixed-length
vector z ∈ RD, where θ is the learnable parameters of the
encoder network and D is the dimension of representation
vectors. In semi-supervised settings, each instance x in the
labeled set XL ⊆ X is associated with a label y for the
downstream task. Especially, XL = X holds in the fully
supervised setting. In the work, we use the Sans-serif style
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lowercase letters, such as x, to denote random time series
variables and italic lowercase letters, such as x, for sampled
instances.

Information-Aware Criteria for Good
Augmentations
The goal of data augmentation for contrastive learning is to
create realistically rational instances that maintain seman-
tics through different transformation approaches. Unlike in-
stances in vision and language domains, the underlying se-
mantics of time series data is not recognizable to humans,
making it hard, if not impossible, to include human knowl-
edge to data augmentation for time series data. For example,
rotating an image will not change its content or the label.
While permuting a time series instance may ruin its signal
patterns and generates a meaningless time series instance. In
addition, the tremendous heterogeneity of real-life time se-
ries datasets further makes selections based on trial and error
impractical. Although multiple data augmentation methods
have been proposed for time series data, there is less discus-
sion on what is a good augmentation that is meaningful for a
given learning task and dataset without prefabricated human
priors. From our perspective, ideal data augmentations for
contrastive representation should keep high fidelity, high va-
riety, and adaptive to different datasets. The illustration and
examples are shown in Figure 2.

High Fidelity. Augmentations with high fidelity maintain the
semantic identity that is invariant to transformations. Con-
sidering the inexplicability in practical time series data, it is
challenging to visually check the fidelity of augmentations.
Thus, we assume that the semantic identity of a time series in-
stance is presented by its label in the downstream task, which
might be either available or unavailable during the training
period. Here, we start our analysis from the supervised case
and will extend it to the unsupervised case later. Inspired
by the information bottleneck (Tishby, Pereira, and Bialek
2000), we define the objective that keeps high fidelity as the
large mutual information (MI) between augmentation v and
the label y, i.e., MI(v; y).

We consider augmentation v as a probabilistic function of x
and a random variable ϵ, that v = g(x; ϵ). From the definition
of mutual information, we have MI(v; y) = H(y)−H(y|v),
where H(y) is the (Shannon) entropy of y and H(y|v) is the
entropy of y conditioned on augmentation v. Since H(y) is
irrelevant to data augmentations, the objective is equivalent to
minimizing the conditional entropy H(y|v). Considering the
efficient optimization, we follow (Ying et al. 2019) and (Luo
et al. 2020) to approximate it with cross-entropy between y
and ŷ, where ŷ is the prediction with augmentation v as the
input and calculated via

v = g(x; ϵ) z = fθ(v) ŷ = hw(z), (1)
where z is the representation and hw(·) is a prediction projec-
tor parameterized by w. The prediction projector is optimized
by the classification objective. Then, the objective of high fi-
delity for supervised or semi-supervised cases is to minimize

CE(y; ŷ) = −
C∑

c=1

P (y = c) logP (ŷ = c), (2)

(a) Information-aware criteria

(b) Examples

Figure 2: Illustration of the criteria. (a) The proposed crite-
ria have two components: high fidelity, and variety. Fidelity
is represented by the area of A+B, the mutual information
between augmented data v and label y. Variety is denoted
by A+D, the entropy of v conditioned on the raw input x.
(b) In the supervised setting, good data augmentations gener-
ate instances in the area constrained by the label to enlarge
the input training space. In the unsupervised setting, with
one-hot-based pseudo labels, the generated instances are con-
strained to the region around the raw input. Such that they
are still distinguishable from other instances.

where C is the number of labels.
In the unsupervised settings where y is unavailable, one-

hot encoding ys ∈ R|X| is utilized as the pseudo label to
replace y in Eq. (2). The motivation is that augmented in-
stances are still distinguishable from other instances with
the classifier. We theoretically show that augmentations that
preserve pseudo labels have the following properties.
Property 1 (Preserving Fidelity). If augmentation v preserves
the one-hot encoding pseudo label, the mutual information
between v and the downstream task label y (although not
visible to training) is equivalent to that between raw input x
and y, i.e., MI(v; y) = MI(x; y).
Property 2 (Adding New Information). By preserving the
one-hot encoding pseudo label, augmentation v contains new
information comparing to the raw input x, i.e., H(v) ≥ H(x).

These properties show that in the unsupervised setting,
preserving the one-hot encoding pseudo label guarantees that
the generated augmentations will not decrease the fidelity,
regardless of the downstream tasks and variances inherent
in the augmentations. Concurrently, it may introduce new
information for contrastive learning.

Since the number of labels is equal to the number of in-
stances in dataset X in an unsupervised case, direct optimiza-
tion of Eq. (2) is inefficient and unscalable. Thus, we further
relax it by approximating y with the batch-wise one-hot en-
coding yB , which decreases the number of labels C from the
dataset size to the batch size.
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High Variety. Sufficient variances in augmentations improve
the generalization capacity of contrastive learning models. In
information theory, the uncertainty inherent in the random
variable’s possible outcomes is described by its entropy. Con-
sidering that augmented instances are generated based on the
raw input x, we maximize the entropy of v conditioned on x,
H(v|x), to maintain a high variety of augmentations. From
the definition of conditional entropy, we have

H(v|x) = H(v)− MI(v; x). (3)

We dismiss the first part since the unconstrained entropy
of v can be dominated by meaningless noise. Considering
the continuity of both v and x, we minimize the mutual in-
formation between v and x by minimize the leave-one-out
upper (L1Out) bound (Poole et al. 2019). Other MI upper
bounds, such as contrastive log-ratio upper bound of mutual
information (Cheng et al. 2020), can also conveniently be
the plug-and-play component in our framework. Then, the
objective to encourage high variety is to minimize the L1Out
between v and x:

IL1Out(v; x) = Ex

[
log

exp(sim(zx, zv))∑
x′∈X,x′ ̸=x exp(sim(zx, zv′))

]
,

(4)
where v′ is an augmented instance of input instance x′. zx,
zv , and zv′ are representations of instance x, v, and v′ respec-
tively. sim(z1, z2) = zT1 z2 is the inner product of vectors z1
and z2.

Criteria. Combining the information-aware definition of
both high fidelity and variety, we propose the criteria for
selecting good augmentations without prior knowledge,

min
v

IL1Out(v; x) + βCE(y;hw(fθ(v))), (5)

where β is a hyper-parameter to achieve the trade-off between
fidelity and variety. Note that in the unsupervised settings, y
is replaced by one-hot encoding pseudo label..

Relation to Information Bottleneck. Although the forma-
tion is similar to information bottleneck in data compression,
minp(e|x) MI(x; e) − βMI(e; y), our criteria are different in
the following aspects. First, e in the information bottleneck
is a representation of input x, while v in Eq.(5) represents
the augmented instances. Second, the information bottleneck
aims to keep minimal and sufficient information for data
compression, while our criteria are designed for data aug-
mentations in contrastive learning. Third, in the information
bottleneck, the compressed representation e is a deterministic
function of input x with no variances. MI(e; y) and MI(e; x)
are constraint by MI(x; y) and H(x) that MI(e; y) ≤ MI(x; y)
and MI(e; x) = H(e), where H(e) is the entropy of e. In our
criteria, v is a probabilistic function of input x. As a result,
the variances of v make the augmentation space much larger
than the compression representation space in the information
bottleneck.

Relation to InfoMin. InfoMin is designed based on the in-
formation bottleneck that good views should keep minimal
and sufficient information from the original input (Tian et al.
2020). Similar to the information bottleneck, InfoMin as-
sumes that augmented views are functions of the input, which

heavily constrains the variance of data augmentations. Be-
sides, high-fidelity property is dismissed in the unsupervised
setting. It works for image datasets due to the availability
of human knowledge. However, it may fail to generate rea-
sonable augmentations for time series data. In addition, they
adopt adversarial learning, which minimizes a lower bound
of MI, to increase the variety of augmentations. While to
minimize statistical dependency, we prefer an upper bound,
such as L1Out, instead of lower bounds.

Time Series Meta-Contrastive Learning
We aim to design a learnable augmentation selector that
learns to select feasible augmentations in a data-driven man-
ner. With such adaptive data augmentations, the contrastive
loss is then used to train the encoder that learns representa-
tions from raw time series.

Architecture The adopted encoder fθ(x) : RT×F → RD

consists of two components, a fully connected layer, and a
10-layer dilated CNN module (Franceschi, Dieuleveut, and
Jaggi 2019; Yue et al. 2022). To explore the inherent structure
of time series, we include both global-wise (instance-level)
and local-wise (subsequence-level) losses in the contrastive
learning framework to train the encoder.

Global-wise contrastive loss is designed to capture the
instance-level relations in a time series dataset. Formally,
given a batch of time series instances XB ⊆ X, for each
instance x ∈ XB , we generate an augmented instance v with
an adaptively selected transformation, which will be intro-
duced later. (x, v) is regarded as a positive pair and other
(B − 1) combinations {(x, v′)}, where v′ is an augmented
instance of x′ and x′ ̸= x, are considered as negative pairs.
Following (Chen et al. 2020; You et al. 2020), we design the
global-wise contrastive loss based on InfoNCE (Hjelm et al.
2018). The batch-wise instance-level contrastive loss is

Lg = − 1

|XB |
∑
x∈XB

log
exp(sim(zx, zv))∑

x′∈XB
exp(sim(zx, zv′))

. (6)

Local-wise contrastive loss is proposed to explore the intra-
temporal relations in time series. For an augmented instance
v of a time series instance x, we first split it into a set of
subsequences S, each with length L. For each subsequence
s ∈ S, we follow (Tonekaboni, Eytan, and Goldenberg 2021)
to generate a positive pair (s, p) by selecting another subse-
quence close to it. Non-neighboring samples, N̄s, are adopted
to generate negative pairs. Then, the local-wise contrastive
loss for an instance x is:

Lcx =

− 1

|S|
∑
s∈S

log
exp(sim(zs, zp))

exp(sim(zs, zp)) +
∑

j∈N̄s
exp(sim(zs, zj))

.

(7)
Across all instances in a batch, we have Lc =
1

|XB |
∑

x∈XB
Lcx. The final contrastive objective is:

min
θ

Lg + αLc, (8)

where α is a hyper-parameter to achieve the trade-off between
global and local contrastive losses.
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Meta-learner Network Previous time series contrastive
learning methods (Franceschi, Dieuleveut, and Jaggi 2019;
Fan, Zhang, and Gao 2020; Eldele et al. 2021; Tonekaboni,
Eytan, and Goldenberg 2021) generate augmentations with
either rule of thumb guided by prefabricated human priors
or tedious trial-and-errors, which are designed for specific
datasets and learning tasks. In this part, we discuss how to
adaptively select the optimal augmentations with a meta-
learner network based on the proposed information-aware
criteria. We can regard its choice of optimal augmentation as
a kind of prior selection. We first choose a set of candidate
transformations T, such as jittering and time warping. Each
candidate transformation ti ∈ T is associated with a weight
pi ∈ (0, 1), inferring the probability of selecting transforma-
tion ti. For an instance x, the augmented instance vi through
transformation ti can be computed by:

ai ∼ Bernoulli(pi) vi = (1− ai)x+ aiti(x). (9)

Considering multiple transformations, we pad all vi to be
with the same length. Then, the adaptive augmented instance
can be achieved by combining candidate ones, v = 1

|T|
∑

i vi.
To enable efficient optimization with gradient-based meth-

ods, we approximate discrete Bernoulli processes with bi-
nary concrete distributions (Maddison, Mnih, and Teh 2016).
Specifically, we approximate ai in Eq. (9) with

ϵ ∼ Uniform(0, 1)

ai = σ((log ϵ− log(1− ϵ) + log
pi

1− pi
)/τ),

(10)

where σ(·) is the sigmoid function and τ is the temperature
controlling the approximation. Moreover, with temperature
τ > 0, the gradient ∂v

∂pi
is well-defined. Therefore, our meta-

network is end-to-end differentiable.

Related Work
Contrastive Time Series Representation Learning
Contrastive learning has been utilized widely in represen-
tation learning with superior performances in various do-
mains (Chen et al. 2020; Xie et al. 2019; You et al. 2020).
Recently, some efforts have been devoted to applying con-
trastive learning to the time series domain (Oord, Li, and
Vinyals 2018; Franceschi, Dieuleveut, and Jaggi 2019; Fan,
Zhang, and Gao 2020; Eldele et al. 2021; Tonekaboni, Eytan,
and Goldenberg 2021; Yue et al. 2022). Time Contrastive
Learning trains a feature extractor with a multinomial lo-
gistic regression classifier to discriminate all segments in a
time series (Hyvarinen and Morioka 2016). In (Franceschi,
Dieuleveut, and Jaggi 2019), Franceschi et.al. generate posi-
tive and negative pairs based on subsequences. TNC employs
a debiased contrastive objective to ensure that in the represen-
tation space, signals in the local neighborhood are distinguish-
able from non-neighboring signals (Tonekaboni, Eytan, and
Goldenberg 2021). SelfTime adopts multiple hand-crafted
augmentations for unsupervised time series contrastive learn-
ing by exploring both inter-sample and intra-sample rela-
tions (Fan, Zhang, and Gao 2020). TS2Vec learns a represen-
tation for each time stamp and conducts contrastive learning

in a hierarchical way (Yue et al. 2022). However, data aug-
mentations in these methods are either universal or selected
by error and trail, hindering them away from being widely
applied in complex real-life datasets.

Time Series Forecasting
Forecasting is a critical task in time series analysis. Deep
learning architectures used in the literature include Recurrent
Neural Networks (RNNs) (Salinas et al. 2020; Oreshkin et al.
2019), Convolutional Neural Networks (CNNs) (Bai, Kolter,
and Koltun 2018), Transformers (Li et al. 2019; Zhou et al.
2021), and Graph Neural Networks (GNNs) (Cao et al. 2021).
N-BEATS deeply stacks fully-connected layers with back-
ward and forward residual links for univariate times series
forecasting (Oreshkin et al. 2019). TCN utilizes a deep CNN
architecture with dilated causal convolutions (Bai, Kolter,
and Koltun 2018). Considering both long-term dependencies
and short-term trends in multivariate time series, LSTnet
combines both CNNs and RNNS in a unified model (Lai et al.
2018). LogTrans brings the Transformer model to time series
forecasting with causal convolution in its attention mech-
anism (Li et al. 2019). Informer further proposes a sparse
self-attention mechanism to reduce the time complexity and
memory usage (Zhou et al. 2021). StemGNN is a GNN-based
model that considers the intra-temporal and inter-series corre-
lations simultaneously (Cao et al. 2021). Unlike these works,
we aim to learn general representations for time series data
that can not only be used for forecasting but also for other
tasks, such as classification. Besides, the proposed framework
is compatible with various architectures as encoders.

Adaptive Data Augmentation
Data augmentation is an important component of contrastive
learning. Existing researches reveal that the choices of opti-
mal augmentation are dependent on downstream tasks and
datasets (Chen et al. 2020; Fan, Zhang, and Gao 2020).
Some researchers have explored adaptive selections of op-
timal augmentations for contrastive learning in the visual
field. AutoAugment automatically searches the combina-
tion of translation policies via a reinforcement learning
method (Cubuk et al. 2019). Faster-AA improves the search-
ing pipeline for data augmentation using a differentiable pol-
icy network (Hataya et al. 2020). DADA further introduces
an unbiased gradient estimator for an efficient one-pass opti-
mization strategy (Li et al. 2020). Within contrastive learning
frameworks, Tian et.al. apply the Information Bottleneck
theory that optimal views should share minimal and suffi-
cient information, to guide the selection of good views for
contrastive learning in the vision domain (Tian et al. 2020).
Considering the inexplicability of time series data, directly
applying the InfoMin framework may keep insufficient in-
formation during augmentation. Different from (Tian et al.
2020), we focus on the time series domain and propose an
end-to-end differentiable method to automatically select the
optimal augmentations for each dataset.

Experiments
In this section, we compare InfoTS with SOTA baselines
on time series forecasting and classification tasks. We also
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conduct case studies to show insights into the proposed crite-
ria and meta-learner network. Detailed experimental setups
are shown in Appendix. Full experimental results and extra
experiments are presented in Appendix.

Time Series Forecasting
Time series forecasting aims to predict the future Ly time
stamps, with the last Lx observations. We follow (Yue et al.
2022) to train a linear model regularized with the L2 norm
penalty to make predictions. The output has dimension Ly

in the univariate case and Ly × F for the multivariate case,
where F is the feature dimension.

Datasets and Baselines. Four benchmark datasets for time
series forecasting are adopted, including ETTh1, ETTh2,
ETTm1 (Zhou et al. 2021), and the Electricity dataset (Yue
et al. 2022). These datasets are used in both univariate and
multivariate settings. We compare unsupervised InfoTS to
the SOTA baselines, including TS2Vec (Yue et al. 2022),
Informer (Zhou et al. 2021), StemGNN (Cao et al. 2021),
TCN (Bai, Kolter, and Koltun 2018), LogTrans (Li et al.
2019), LSTnet (Lai et al. 2018), and N-BEATS (Oreshkin
et al. 2019). Among these methods, N-BEATS is merely
designed for the univariate and StemGNN is for multivariate
only. We refer to (Yue et al. 2022) to set up baselines for a fair
comparison. Standard metrics for a regression problem, Mean
Squared Error (MSE), and Mean Absolute Error (MAE) are
utilized for evaluation. Evaluation results of univariate time
series forecasting are shown in Table 1.

Performance. As shown in Tabel 1 and Appendix, compar-
ison in both univariate and multivariate settings indicates
that InfoTS consistently matches or outperforms the leading
baselines. Some results of StemGNN are unavailable due
to the out-of-memory issue (Yue et al. 2022). Specifically,
we have the following observations. TS2Vec, another con-
trastive learning method with data augmentations, achieves
the second-best performance in most cases. The consistent
improvement of TS2Vec over other baselines indicates the
effectiveness of contrastive learning for time series represen-
tations learning. However, such universal data augmentations
may not be the most informative ones to generate positive
pairs. Compared to TS2Vec, InfoTS decreases the average
MSE by 12.0%, and the average MAE by 9.0% in the uni-
variate setting. In the multivariate setting, the MSE and MAE
decrease by 5.5% and 2.3%, respectively. The reason is that
InfoTS can adaptively select the most suitable augmentations
in a data-driven manner with high variety and high fidelity.
Encoders trained with such informative augmentations learn
representations with higher quality.

Time Series Classification
Following the previous setting, we evaluate the quality of
representations on time series classification in a standard
supervised manner (Franceschi, Dieuleveut, and Jaggi 2019;
Yue et al. 2022). We train an SVM classifier with a radial
basis function kernel on top of representations in the training
split and then compare the prediction in the test set.

Datasets and Baselines. The UEA archive (Bredin 2017)

(a) MSE (b) MAE

Figure 3: Evaluation of the criteria on forecasting.

consists of 30 multivariate datasets. We compare In-
foTS with baselines including TS2Vec (Yue et al. 2022),
T-Loss (Franceschi, Dieuleveut, and Jaggi 2019), TS-
TCC (Eldele et al. 2021), TST (Zerveas et al. 2021), and
DTW (Franceschi, Dieuleveut, and Jaggi 2019). For our meth-
ods, InfoTSs, training labels are only used to train the meta-
learner network to select suitable augmentations, and InfoTS
is with a purely unsupervised setting for representation learn-
ing.

Performance. The results on the UEA datasets are summa-
rized in Table 2. With the ground-truth label guiding the meta-
learner network, InfoTSs substantially outperforms other
baselines. On average, it improves the classification accuracy
by 3.7% over the best baseline, TS2Vec, with an average
rank value of 1.967 on all 30 UEA datasets. Under the purely
unsupervised setting, InfoTS preserves fidelity by adopting
one-hot encoding as the pseudo labels. InfoTS achieves the
second-best average performance in Table 2, with an average
rank value of 2.633.

Ablation Studies
To present deep insights into the proposed method, we con-
duct multiple ablation studies on the Electricity dataset to
empirically verify the effectiveness of the proposed informa-
tion aware criteria and the framework to adaptively select
suitable augmentations. MSE is utilized for evaluation.

Evaluation of The Criteria. We propose information-aware
criteria of data augmentations for time series that good aug-
mentations should have high variety and fidelity. With L1Out
and cross-entropy as approximations, we get the criteria in
Eq. (5). To empirically verify the effectiveness of the pro-
posed criteria, we adopt two groups of augmentations, subse-
quence augmentations with different lengths and jitter aug-
mentations with different standard deviations. Subsequence
augmentations work on the temporal dimension, and jitter
augmentations work on the feature dimension. For the subse-
quence augmentations, we range the ratio of subsequences
r in the range [0.01, 0.99]. The subsequence augmentation
with ratio r is denoted by Subr, such as Sub0.01. For the
jitter augmentations, the standard deviations are chosen from
the range [0.01, 3.0]. The jitter augmentation with standard
deviation std is denoted by Jitterstd, such as Jitter0.01.

Intuitively, with r increasing, Subr generates augmented
instances with lower variety and higher fidelity. For exam-

4539



InfoTS TS2Vec Informer LogTrans N-BEATS TCN LSTnet

Dataset Ly MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.039 0.149 0.039 0.152 0.098 0.247 0.103 0.259 0.094 0.238 0.075 0.210 0.108 0.284
48 0.056 0.179 0.062 0.191 0.158 0.319 0.167 0.328 0.210 0.367 0.227 0.402 0.175 0.424

168 0.100 0.239 0.134 0.282 0.183 0.346 0.207 0.375 0.232 0.391 0.316 0.493 0.396 0.504
336 0.117 0.264 0.154 0.310 0.222 0.387 0.230 0.398 0.232 0.388 0.306 0.495 0.468 0.593
720 0.141 0.302 0.163 0.327 0.269 0.435 0.273 0.463 0.322 0.490 0.390 0.557 0.659 0.766

ETTh2

24 0.081 0.215 0.090 0.229 0.093 0.240 0.102 0.255 0.198 0.345 0.103 0.249 3.554 0.445
48 0.115 0.261 0.124 0.273 0.155 0.314 0.169 0.348 0.234 0.386 0.142 0.290 3.190 0.474

168 0.171 0.327 0.208 0.360 0.232 0.389 0.246 0.422 0.331 0.453 0.227 0.376 2.800 0.595
336 0.183 0.341 0.213 0.369 0.263 0.417 0.267 0.437 0.431 0.508 0.296 0.430 2.753 0.738
720 0.194 0.357 0.214 0.374 0.277 0.431 0.303 0.493 0.437 0.517 0.325 0.463 2.878 1.044

ETTm1

24 0.014 0.087 0.015 0.092 0.030 0.137 0.065 0.202 0.054 0.184 0.041 0.157 0.090 0.206
48 0.025 0.117 0.027 0.126 0.069 0.203 0.078 0.220 0.190 0.361 0.101 0.257 0.179 0.306
96 0.036 0.142 0.044 0.161 0.194 0.372 0.199 0.386 0.183 0.353 0.142 0.311 0.272 0.399

288 0.071 0.200 0.103 0.246 0.401 0.554 0.411 0.572 0.186 0.362 0.318 0.472 0.462 0.558
672 0.102 0.240 0.156 0.307 0.512 0.644 0.598 0.702 0.197 0.368 0.397 0.547 0.639 0.697

Electricity

24 0.245 0.269 0.260 0.288 0.251 0.275 0.528 0.447 0.427 0.330 0.263 0.279 0.281 0.287
48 0.294 0.301 0.319 0.324 0.346 0.339 0.409 0.414 0.551 0.392 0.373 0.344 0.381 0.366

168 0.402 0.367 0.427 0.394 0.544 0.424 0.959 0.612 0.893 0.538 0.609 0.462 0.599 0.500
336 0.533 0.453 0.565 0.474 0.713 0.512 1.079 0.639 1.035 0.669 0.855 0.606 0.823 0.624

Avg. 0.154 0.253 0.175 0.278 0.263 0.367 0.336 0.419 0.338 0.402 0.289 0.359 1.090 0.516

Table 1: Univariate time series forecasting results.

Method InfoTSs InfoTS TS2Vec T-Loss TNC TS-TCC TST DTW

Avg. ACC 0.730 0.714 0.704 0.658 0.670 0.668 0.617 0.629
Avg. Rank 1.967 2.633 3.067 3.833 4.367 4.167 5.0 4.366

Table 2: Multivarite time series classification on 30 UEA datasets.

InfoTS Data Augmentation Meta Objective

Random All w/o Fidelity w/o Variety

24 0.245 0.252 0.249 0.254 0.251
48 0.294 0.303 0.303 0.306 0.297
168 0.402 0.414 0.414 0.414 0.409
336 0.533 0.565 0.563 0.562 0.542

Avg. 0.369 0.384 0.382 0.384 0.375

Table 3: Ablation studies on Electricity with MSE as the
evaluation.

ple, with r = 0.01, Subr generates subsequences that only
keep 1% time stamps from the original input, leading to high
variety but extremely low fidelity. Similarly, for jitter augmen-
tations, with std increasing, Jitterstd generates augmented
instances with higher variety but lower fidelity.

In Figure 3, we show the relationship between forecasting
performance and our proposed criteria. In general, perfor-
mance is positively related to the proposed criteria in both
MAE and MSE settings, verifying the correctness of using the
criteria as the objective in the meta-learner network training.

Evaluation of The Meta-Learner Network. In this part,
we empirically show the advantage of the developed meta-
learner network on learning optimal augmentations. Results
are shown in Table 3. We compare InfoTS with variants
“Random” and “All”. “Random” randomly selects an augmen-
tation from candidate transformation functions each time and

“All” sequentially applies transformations to generate aug-
mented instances. Their performances are heavily affected by
low-quality candidate augmentations, verifying the key role
of adaptive selection in our method. 2) To show the effects
of variety and fidelity objectives in meta-learner network
training, we include two variants, “w/o Fidelity” and “w/o
Variety”, which dismiss the fidelity or variety objective, re-
spectively. The comparison between InfoTS and the variants
empirically confirms both variety and fidelity are important
for data augmentation in contrastive learning.

Conclusion
We propose information-aware criteria of data augmentations
for time series data that good augmentations should pre-
serve high variety and high fidelity. We approximate the cri-
teria with a mutual information neural estimation and cross-
entropy estimation. Based on the approximated criteria, we
adopt a meta-learner network to adaptively select optimal
augmentations for contrastive representation learning. Com-
prehensive experiments show that representations produced
by our method are highly qualified and easy to use in vari-
ous downstream tasks, such as time series forecasting and
classification, with state-of-the-art performances.
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