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Abstract

Personal knowledge bases (PKBs) are crucial for a broad
range of applications such as personalized recommendation
and Web-based chatbots. A critical challenge to build PKBs
is extracting personal attribute knowledge from users’ con-
versation data. Given some users of a conversational system,
a personal attribute and these users’ utterances, our goal is to
predict the ranking of the given personal attribute values for
each user. Previous studies often rely on a relative number
of resources such as labeled utterances and external data, yet
the attribute knowledge embedded in unlabeled utterances is
underutilized and their performance of predicting some dif-
ficult personal attributes is still unsatisfactory. In addition, it
is found that some text classification methods could be em-
ployed to resolve this task directly. However, they also per-
form not well over those difficult personal attributes. In this
paper, we propose a novel framework PEARL to predict per-
sonal attributes from conversations by leveraging the abun-
dant personal attribute knowledge from utterances under a
low-resource setting in which no labeled utterances or exter-
nal data are utilized. PEARL combines the biterm semantic
information with the word co-occurrence information seam-
lessly via employing the updated prior attribute knowledge
to refine the biterm topic model’s Gibbs sampling process in
an iterative manner. The extensive experimental results show
that PEARL outperforms all the baseline methods not only
on the task of personal attribute prediction from conversa-
tions over two data sets, but also on the more general weakly
supervised text classification task over one data set.

Introduction
Personal knowledge bases (PKBs) (Balog and Kenter 2019;
Yen, Huang, and Chen 2019)-structured information about
entities personally related to the users, their attributes, and
the relations between them-are popular nowadays. They can
supply plentiful personal background knowledge for a broad
range of downstream applications like Web-based chatbots
(Ghazvininejad et al. 2018), personalized recommendation
(Balog, Radlinski, and Arakelyan 2019; Luo et al. 2019),
and personalized search (Lu et al. 2020). A potential re-
source for building such PKBs is the personal attribute
knowledge (e.g., hobbies and medical conditions) extracted
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from users’ conversation data on a lot of platforms such as
social media. To draw the personal attribute knowledge em-
bedded in conversations, personal attribute prediction from
conversations becomes an increasingly important task.

Given multiple users of a conversational system, a per-
sonal attribute, and utterances of these users, the task of per-
sonal attribute prediction from conversations aims to predict
the ranking of the given personal attribute values for each
user. It is noted that this task focuses on the case that the
personal attribute values are not explicitly mentioned in ut-
terances, and the given attribute values are ranked based on
the underlying semantics of utterances, which is different
from the common information extraction task. For example,
we could rank the attribute values scientist and teacher high
with regard to the profession attribute when the user men-
tions the words “research”, “lab”, “teaching” and “educa-
tor” in user utterances. However, this task is challenging due
to the following aspects: (1) compared with formal docu-
ments, user utterances are often short, noisy, colloquial and
have diverse topics, and the textual cues in utterances are
too implicit to seize; (2) the construction of training data via
manually annotating user utterances is time-consuming and
labor-intensive; (3) for the personal attribute with too many
attribute values (e.g., profession), its several attribute val-
ues (e.g., student and teacher) may be related and difficult
to distinguish as they often co-occur with the same words in
utterances.

Recently, some neural network based models have been
explored for this task. These models resort to labeled utter-
ances (Tigunova et al. 2019), external data (e.g., Wikipedia
and Web pages) (Liu, Chen, and Shen 2022) or both (Ti-
gunova et al. 2020) as resources of training data. However,
there exist three issues in these previous works: (1) they rely
on many resources of training data but these resources are
not always available and expensive to fetch, which limits
their adaptability to new domains or new data; (2) the at-
tribute knowledge embedded in the unlabeled utterances is
underutilized; (3) their performance over some difficult per-
sonal attributes (e.g., profession and hobby) is still unsatis-
factory. Additionally, it is found that text classification meth-
ods (Mekala and Shang 2020; Wang, Mekala, and Shang
2021; Zhang et al. 2021) which are adept in mining the tex-
tual cues could be used to address this task directly. Unfor-
tunately, they also fail to achieve good performance when
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predicting those difficult personal attributes, which has been
verified by our experiments.

Intuitively, the personal attribute knowledge involved in
unlabeled utterances is abundant. For example, if the words
“law”, “legal”, “court”, and “constitution” frequently co-
occur with each other in different utterances, there is a
high probability that users who mention these words have
the same profession (i.e., lawyer). This kind of word co-
occurrence information is beneficial for predicting personal
attributes. Moreover, it is found that different word pairs
(biterms) constructed from utterances as well as two words
belonging to the same biterm may be related to an attribute
value in different degrees at the semantic level. This kind of
biterm semantic information is attribute-oriented and is also
vital to our task. Consequently, how to integrate these two
categories of information becomes very crucial.

To tackle the above issues, we propose a novel framework
PEARL to Predict pErsonal Attributes from conveRsations
by leveraging the abundant personal attribute knowledge
from utterances in a Low-resource setting (without requir-
ing any labeled utterances or external data). Our proposed
framework PEARL is composed of a biterm semantic ac-
quisition (BSA) module and an attribute knowledge integra-
tion (AKI) module. To capture the biterm semantic informa-
tion, the BSA module derives the biterm set by searching
words with high semantic relevance to the attribute value
from utterances and yields the attribute-oriented biterm rep-
resentation for each biterm based on the pre-trained lan-
guage model (PLM). To integrate the biterm semantic infor-
mation with the word co-occurrence information, the AKI
module leverages the biterm-attribute value similarity score
derived from the BSA module as the prior attribute knowl-
edge to guide the biterm topic model (BTM)’s (Yan et al.
2013) Gibbs sampling process. To further promote the pre-
diction performance, the AKI module can update the prior
attribute knowledge based on the new sampling result and
refine the Gibbs sampling process guided by the updated
prior attribute knowledge in an iterative manner. After mul-
tiple iterations in such a way, PEARL can predict probable
attribute values for each user by utilizing the final sampling
result. Additionally, it is worth mentioning that our proposed
framework can not only solve the personal attribute predic-
tion task but also adapt to the more general weakly super-
vised text classification task.

Our contributions can be summarized as follows:

• We are the first to address personal attribute prediction
from conversations under a low-resource setting which
does not resort to any labeled utterances or external data.
• We propose a novel framework PEARL which fuses the

biterm semantic information and the word co-occurrence
information together via leveraging the updated prior at-
tribute knowledge to refine the BTM’s Gibbs sampling
process in an iterative manner.
• Extensive experimental studies have been conducted for

the task of personal attribute prediction from conversa-
tions over two data sets, and the task of weakly super-
vised text classification over one data set. The experi-
mental results show that our framework surpasses all the

baseline methods on both tasks.

Preliminary
Task Definition
A user ID of a conversational system is denoted by i (1 ≤
i ≤ n), and the utterances posted by this user can be concate-
nated as one utterance denoted by ui . A personal attribute is
denoted by c, and {c1, c2, ..., cg} is the set of personal at-
tribute values of c. Formally, given user IDs 1,2, ...,n, a per-
sonal attribute c, and the corresponding utterances of these
users, the task of low-resource personal attribute prediction
from conversations is to predict the ranking of the personal
attribute values (i.e., c1, c2, ..., cg) for each user according to
these unlabeled utterances without the need of any other re-
sources (e.g., labeled utterances or external data).

Biterm Topic Model
Conventional topic models (e.g., PLSA (Hofmann 1999)
and LDA (Blei, Ng, and Jordan 2003)) can reveal the latent
topics by implicitly capturing the document-level word co-
occurrence patterns, while biterm topic model (BTM) can
learn the topics better by modeling the generation of word
co-occurrence patterns directly. We introduce BTM here in
brief. Given a biterm set B, which is constructed based on a
document collection by extracting any two distinct words in
a document as a biterm, the generation process of B in BTM
can be described as follows:
• Draw a topic distribution θ ∼ Dir(α)
• For each topic z

(a) Draw a topic-word distribution ψz ∼ Dir(β)
• For each biterm b ∈ B

(a) Draw a topic z ∼ Multi(θ)
(b) Draw two words to generate b: wj ,wk∼ Multi(ψz)

where α and β are the Dirichlet priors. The parameters of
BTM (i.e., ψ and θ) can be approximately inferred by the
Gibbs sampling process. To perform Gibbs sampling, the
key step is to calculate the conditional distribution for each
biterm b as follows:

P(z |z¬b,B, α, β) ∝ (nz + α) ·
(nwj |z + β)(nwk |z + β)

(
∑

w nw |z + Mβ)2
(1)

where z¬b denotes the topic assignments for all biterms ex-
cept b; nw |z denotes how many times the word w is assigned
to the topic z; nz denotes how many biterms are assigned
to the topic z; M denotes the number of words in the docu-
ment collection. Subsequently, the parameters ψ and θ can
be calculated as follows:

ψw |z =
nw |z + β∑

w nw |z + Mβ
(2)

θz =
nz + α
|B| + Jα

(3)

where J is the number of topics. Finally, the topic propor-
tions of a document d can be inferred based on ψ and θ as
follows:

P(z |d) =
∑
b

P(z |b)P(b|d) (4)

4508



A𝟎

Attribute value representation

Biterm representation

Biterm set generation

BSA Module

GG A𝟏 A𝟐 … G P

AKI Module

PEARL

G BTM’s Gibbs sampling process A𝒊 Prior attribute knowledge

P Personal attribute  value prediction

Input

Output

A𝒏

Figure 1: Overview of our framework PEARL.

P(z |b)=
P(z)P(wj |z)P(wk |z)∑
z P(z)P(wj |z)P(wk |z)

=
θzψwj |zψwk |z∑
z θzψwj |zψwk |z

(5)

where P(b|d) denotes the relative frequency of b in d. Inter-
ested readers please refer to BTM (Yan et al. 2013) for more
details.

The Framework PEARL
The overall framework of our proposed PEARL is shown in
Figure 1. We begin with the introduction of the BSA module
and thereafter describe the AKI module.

Biterm Semantic Acquisition (BSA) Module
The BSA module consists of three parts: (1) attribute value
representation (i.e., construct an attribute value representa-
tion for each attribute value); (2) biterm set generation (i.e.,
generate a biterm set for each utterance based on the attribute
value representation); (3) biterm representation (i.e., yield
an attribute-oriented biterm representation for each biterm
based on the biterm set). We elaborate them as follows.

Attribute Value Representation. To understand the se-
mantics of personal attribute values, we first define the static
representation sw for a word w by averaging contextualized
representations of its all occurrences in utterances as fol-
lows:

sw =

∑
ui , j=w ri, j

Nw
(6)

where ui, j denotes the j-th token of utterance ui; ri, j de-
notes the contextualized token representation of ui, j based
on a PLM; Nw denotes how many times w appears in all
utterances. Thus, for an attribute value cq which contains
only one word, its static representation can be denoted by
scq . Specially, if cq contains several words, we average the
static representations of all the single words in cq as scq for
simplicity.

To enhance the semantic understanding, inspired by re-
cent weakly supervised text classification methods (Wang,
Mekala, and Shang 2021; Mekala and Shang 2020), we pro-
pose to construct a word list for each attribute value to store
some attribute-related words. For the attribute value cq , we
utilize its surface form to initialize its word list Lcq , and sub-
sequently discover its next attribute-related word owning the
highest similarity score in utterances to expand its current
word list iteratively. This similarity score can be calculated
by the cosine similarity between the static representation of
a word and the static representation of an attribute value. If
the selected word is in the current word list of an attribute
value, we will ignore it and continue to select another word
for this iteration until the selected word does not occur in any
attribute value’s current word list. We will stop the iteration
for the attribute value cq if the overlap between the current
word list Lcq and the top |Lcq | similar words generated by
the current attribute value representation is below a thresh-
old η, which is a dynamic mechanism. We define the current
attribute value representation νcq for the attribute value cq
as a weighted average representation based on the current
word list Lcq of cq as follows:

νcq =

|Lcq |∑
i=1

f (sLcq ,i
, scq ) · sLcq ,i

(7)

where Lcq ,i denotes the i-th word in Lcq (1 ≤ i ≤ |Lcq |) and
sLcq ,i

denotes the static representation of Lcq ,i calculated by
Formula 6; f (sLcq ,i

, scq ) is the normalized cosine similarity
score between sLcq ,i

and scq . It is also worth mentioning
that the final lengths of the word lists for different attribute
values could be different as they are determined by the dy-
namic mechanism.

Biterm Set Generation. Intuitively, different words in an
utterance have various levels of importance for predicting
personal attributes. Specially, those words that are highly
relevant to the attribute value are valuable for our task, so
we need to find them out from each utterance to compose
the biterm set. Inspired by the previous work (Xie, Girshick,
and Farhadi 2016), to estimate the word importance, firstly
we calculate the weight πi, j for each word ui, j based on the
Student t-distribution (Van der Maaten and Hinton 2008) via
using the obtained attribute value representation as follows:

πi, j = max
cq

Sim(ui, j, cq) (8)

Sim(ui, j, cq) =
(1 + ‖ri, j − νcq ‖2/λ)−

λ+1
2∑

c′q
(1 + ‖ri, j − νc′q ‖2/λ)−

λ+1
2

(9)

where Sim(ui, j, cq) is the similarity between the word ui, j
and the attribute value cq; λ is the degree of freedom for
the Student t-distribution. Subsequently, we aims to select
top K words with high weights from each utterance ui as
the keywords, i.e., ui,top1 , ui,top2 ,... , ui,toph , ..., and ui,topK ,
where 1 ≤ h ≤ K and toph is the ID of the token with the
h-th highest weight in ui . Thus we can construct a biterm set
Bi for ui via the selected K keywords of ui as follows:

Bi = {bi,h,l = (ui,toph ,ui,topl )|1 ≤ h, l ≤ K} (10)
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where bi,h,l denotes a biterm composed of the words ui,toph
and ui,topl . By concatenating the biterm sets B1,B2, ...,Bn

we can obtain the final biterm set B over all utterances for
our task.

Biterm Representation. Considering that the two words
belonging to the same biterm have different relevance de-
grees to the attribute value at the semantic level, we propose
to construct the attribute-oriented biterm representation for
each biterm to capture the biterm semantic information. Af-
ter obtaining the biterm set B, for each biterm bi,h,l in B,
we define its representation νbi ,h ,l

as follows:

νbi ,h ,l
= πi,toph ri,toph + πi,topl ri,topl (11)

It is noted that for the utterance ui , the weights of its selected
K keywords should be normalized in advance.

Attribute Knowledge Integration (AKI) Module
Although biterm topic model (BTM) exploits the word co-
occurrence information successfully, the biterm semantic in-
formation is ignored in BTM. To fuse these two categories
of information, we try to inject the biterm semantic informa-
tion into BTM via this AKI module. If we run BTM directly
on the biterm setB generated by the BSA module, i.e., itera-
tively calculate the conditional distribution P(z |z¬b,B, α, β)
for each biterm (Formula 1) and update the counting vari-
ables (i.e., nz and nw |z), each utterance can be assigned a
topic by calculating the highest value of P(z |ui) (Formula 4)
over all the topics. However, even if the number of topics
is set to be the same as the number of attribute values, the
correspondence between the topic and the attribute value is
still lacking, which makes it impossible to be applied to our
task of personal attribute prediction.

To remedy this issue, we propose an iterative biterm se-
mantics (BS) based Gibbs sampling process in the AKI mod-
ule. It is able to build the corresponding relationship between
the attribute value and the topic via leveraging the prior at-
tribute knowledge derived from the BSA module to guide
the BTM’s Gibbs sampling process. First, we associate each
topic z with an individual attribute value cq , and initialize
states for the Markov chain randomly like BTM. Next, in-
spired by (Yang et al. 2020), we define the conditional dis-
tribution P′(cq |c¬bi ,h ,l

,B, α, β) for each biterm bi,h,l in the
biterm set B via combining the biterm-attribute value sim-
ilarity score Ω(bi,h,l, cq) with the conditional distribution
P(cq |c¬bi ,h ,l

,B, α, β) (Formula 1) as follows:

P′(cq |c¬bi ,h ,l
,B, α, β) = Ω(bi,h,l, cq)

·P(cq |c¬bi ,h ,l
,B, α, β)

(12)

where c¬bi ,h ,l
denotes the the attribute value assignments for

all biterms ofB except bi,h,l . The biterm-attribute value sim-
ilarity score could encode the prior attribute knowledge in-
volved in utterances well, and we initialize it using the value
of cosine(νbi ,h ,l

, νcq ), where νbi ,h ,l
and νcq denote the rep-

resentations of the biterm bi,h,l and the attribute value cq re-
spectively, which are yielded by the BSA module. Following
the original Gibbs sampling process, we iteratively calcu-
late the conditional distribution for each biterm by Formula
12 and update the counting variables ncq , nui ,toph

|cq , and

Algorithm 1: Iterative BS based Gibbs sampling process
Input: The biterm set B, the biterm representation νbi ,h ,l

of
the biterm bi,h,l ∈ B, the attribute value representations νc1 ,
νc2 , ..., νcg , hyperparameters α and β, and the number of
iterations E and T .
Output: The parameters ψ and θ.

1: Initialize attribute value assignments randomly for all
the biterms in B

2: Initialize the biterm-attribute value similarity score
Ω(bi,h,l, cq) by the value of cosine(νbi ,h ,l

, νcq )
3: for e = 1 to E do
4: for t = 1 to T do
5: for bi,h,l ∈ B do
6: Draw an attribute value for bi,h,l from the condi-

tional distribution P′(cq |c¬bi ,h ,l
,B, α, β) by For-

mula 12
7: Update ncq , nui ,toph

|cq , and nui ,topl
|cq

8: end for
9: end for

10: Calculate ψ and θ by Formulas 2 and 3 respectively
11: Update Ω(bi,h,l, cq) by Formula 13
12: end for

nui ,topl
|cq . Finally, the parameters ψ and θ of BTM can be

calculated by Formulas 2 and 3 respectively. In this way, the
AKI module enables BTM to induce attribute value-aware
topics in the inference stage to integrate the biterm seman-
tic information and the word co-occurrence information pre-
liminarily. To further fuse these two categories of informa-
tion, we propose a simple iteration operation by exploiting
superior prior attribute knowledge to refine the Gibbs sam-
pling process. Specifically, we update Ω(bi,h,l, cq) accord-
ing to the parameters ψ in an iterative manner, which are the
output of the Gibbs sampling process for each iteration as
follows:

Ω(bi,h,l, cq) = ψui ,toph
|cq · ψui ,topl

|cq (13)

It is noted that this iteration operation can promote the per-
formance of our framework PEARL successfully, which has
been verified in our experiments. In practice, it is found that
after dozens of iterations, the performance is stable. This
iterative procedure is summarized in Algorithm 1, which
can automatically learn the parameters of our framework
PEARL without requiring any training data. Note that in Al-
gorithm 1, E is the number of iterations for the proposed
iteration operation, while T is the number of iterations for
the Gibbs sampling process.

After performing the iterative BS based Gibbs sampling
process, the ranking of the attribute values can be obtained
based on the learned parameters ψ and θ via calculating
the probability score P(cq |ui) (Formula 4) for each attribute
value cq .

Experiments
Experimental Setting
Data Sets. For the task of personal attribute prediction from
conversations, we perform experiments over two public data
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Method type Labeled External data Method Profession Hobby
utterances Wiki-page Wiki-category MRR nDCG MRR nDCG

Personal attribute
prediction
methods

yes

� x BERT IR 0.30 0.45 0.22 0.43
x � 0.28 0.44 0.18 0.42
� x CHARMKNRM

0.27 0.44 0.22 0.44
x � 0.35 0.55 0.27 0.49
� x CHARMBM25

0.29 0.46 0.24 0.47
x � 0.28 0.47 0.21 0.43

no

� x No-keyword + BM25 0.15 0.32 0.16 0.42
x � 0.17 0.37 0.13 0.35
� x RAKE + BM25 0.16 0.33 0.17 0.42
x � 0.19 0.39 0.14 0.37
� x RAKE + KNRM 0.16 0.33 0.12 0.32
x � 0.13 0.34 0.12 0.31
� x TextRank + BM25 0.21 0.39 0.21 0.46
x � 0.26 0.45 0.20 0.42
� x TextRank + KNRM 0.21 0.38 0.15 0.36
x � 0.18 0.36 0.16 0.36
� x HAMavg

0.06 0.07 0.06 0.05
x � 0.06 0.07 0.03 0.02
� x HAM2attn

0.06 0.07 0.04 0.05
x � 0.06 0.07 0.06 0.07
� x HAMCNN

0.20 0.18 0.22 0.14
x � 0.27 0.34 0.17 0.27
� x HAMCNN−attn

0.21 0.28 0.13 0.10
x � 0.25 0.31 0.16 0.25
� x DSCGN 0.43 0.57 0.29 0.50
x � 0.44 0.60 0.29 0.49

Weakly supervised
text classification

methods
no

x x SeedBTM 0.33 0.55 0.17 0.42
x x ConWea 0.07 0.26 0.04 0.21
x x LOTClass 0.07 0.26 0.04 0.2
x x X-Class 0.34 0.57 0.23 0.47
x x ClassKG 0.07 0.24 0.04 0.19

Our method no x x PEARL 0.49 0.64 0.31 0.54

Table 1: Performance on the task of personal attribute prediction from conversations. All the results of the personal attribute
prediction baselines are taken from DSCGN (Liu, Chen, and Shen 2022). The performance of all the weakly supervised text
classification methods is reproduced via their open-source solutions.

sets: (1) profession data set; (2) hobby data set. These two
data sets are extracted from publicly-available Reddit sub-
missions and comments (2006 - 2018), and are annotated
and provided by the authors of (Tigunova et al. 2020).
All utterances containing explicit personal attribute asser-
tions used for annotation have been removed. The given at-
tribute values for each personal attribute are defined based
on Wikipedia lists. The number of attribute values for pro-
fession and hobby are 71 and 149 respectively. Both data
sets consist of about 6000 users and have a maximum of 500
and an average of 23 users for each personal attribute value.
Evaluation Measures. Following the previous personal at-
tribute prediction studies (Tigunova et al. 2019, 2020; Liu,
Chen, and Shen 2022), we adopt the same ranking metrics
MRR (Mean Reciprocal Rank) and nDCG (normalized Dis-
counted Cumulative Gain) to evaluate all the methods.
Setting Details. The threshold η, the Dirichlet prior β, the
number of keywords K for each utterance, the degree of free-
dom λ, the numbers of iterations E and T are set to 75%,
0.01, 60, 1, 20 and 50 respectively. The Dirichlet prior α is

set to 50/g, where g is the number of attribute values. BERT
base-uncased model is adopted as the PLM. The number of
attribute-related words for each attribute value is set to a
minimum of 10 and a maximum of 40. The experiments are
implemented by MindSpore Framework1. The source code
and data sets used in this paper are publicly available2.

Effectiveness Study
We compare our proposed framework with the following
personal attribute prediction methods. BERT IR (Dai and
Callan 2019) trains BERT to calculate the relevance be-
tween an utterance ui and a document denoted by dext
from external data (e.g., Wiki-page or Wiki-category) w.r.t.
an attribute value based on a binary cross-entropy loss.
To fit the input size of BERT, ui and dext are both split
into 256-token chunks. CHARM (Tigunova et al. 2020) ex-
tracts keywords from ui by a cue detector and retrieves

1https://www.mindspore.cn/en
2https://github.com/CodingPerson/PEARL
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(a) profession, varying K . (b) hobby, varying K . (c) 20News, varying K .

(d) profession, varying T . (e) hobby, varying T . (f) 20News, varying T .

Figure 2: Parameter study over the profession, hobby, and 20News data sets.

the relevant documents from external data by a value
ranker. CHARMBM25 (resp. CHARMKNRM) adopts BM25
(Robertson et al. 1995) (resp. KNRM (Xiong et al. 2017))
as the value ranker of CHARM. No-keyword + BM25
uses ui and dext directly as the input of BM25. RAKE
(TextRank) + BM25 (KNRM) utilizes keywords extracted
from ui by the unsupervised keyword extraction approach
RAKE (Rose et al. 2010) (TextRank (Mihalcea and Ta-
rau 2004)) and dext as the input of BM25 (KNRM). HAM
(Tigunova et al. 2019) can predict the score of the at-
tribute value for ui by training the neural network based
on the external data. HAMavg, HAM2attn, HAMCNN, and
HAMCNN−attn are four different configurations of HAM.
HAMCNN/HAMCNN−attn (resp. HAMavg/HAM2attn) adopts a
text classification CNN (resp. two stacked fully connected
layers). HAMCNN−attn/HAM2attn (resp. HAMavg/HAMCNN)
adopts attention mechanisms (resp. average methods) within
and across utterances. DSCGN (Liu, Chen, and Shen 2022)
fine-tunes BERT over unlabeled utterances and external data
to predict an attribute value score list for ui .

Additionally, we add some recent SOTA weakly super-
vised text classification methods as baselines, which can
be used to train an utterance classifier to predict the prob-
ability of attribute values for each utterance ui . Specifi-
cally, ConWea (Mekala and Shang 2020) can utilize user-
provided seed words to create a contextualized utterance
corpus, which is further leveraged to train an utterance clas-
sifier and expand seed words iteratively. SeedBTM (Yang
et al. 2020) could utilize user-provided seed words to ex-
tend BTM into an utterance classifier based on the word

embedding technique. LOTClass (Meng et al. 2020) gener-
ates some attribute-indicative words for each attribute value
to fine-tune a PLM on a word-level category prediction
task, and then does self-training on unlabeled utterances. X-
Class (Wang, Mekala, and Shang 2021) can learn attribute-
oriented utterance representations by a PLM and use the
utterance-attribute value pairs generated by the Gaussian
mixture model clustering process to train an utterance classi-
fier. ClassKG (Zhang et al. 2021) can generate pseudo labels
for utterances by annotating keyword subgraphs, and train
an utterance classifier with the pseudo labels.

Apart from external data (e.g., Wiki-page or Wiki-
category), the personal attribute prediction baselines BERT
IR, CHARMBM25, and CHARMKNRM require the labeled
utterances to train the model and execute ten-fold cross-
validation on each data set under a zero-shot setting in which
the attribute values in the training set and the testing set
are disjoint. Other personal attribute prediction baselines di-
rectly perform on the unlabeled utterances and external data
without the requirement of labeled utterances, which is a rel-
atively difficult setting, as it pushes “zero-shot” to the ex-
treme – no labeled utterances for any attribute values are
provided. Compared with all the personal attribute predic-
tion baselines, our framework PEARL and all the weakly
supervised text classification methods perform on the unla-
beled utterances only, which is an extremely difficult low-
resource setting, as no other resources are provided except
for the unlabeled utterances. Additionally, it is noted that
some weakly supervised text classification methods require
user-provided seed words, for each attribute value, we use
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Ablations Profession Hobby
MRR nDCG MRR nDCG

PEARL 0.49 0.64 0.31 0.54
w/o AKI 0.41 0.60 0.23 0.45

w/o the iteration operation 0.45 0.62 0.29 0.52

Table 2: Ablation study on personal attribute prediction from
conversations.

its surface form as its seed word.
From the results in Table 1, it can be seen that al-

though consuming minimal resources, our proposed frame-
work PEARL still yields the best performance compared
with eighteen baselines on both data sets. To be specific,
there are five weakly supervised text classification baselines
with the same low-resource setting as us. Nevertheless, our
method significantly surpasses them, which may be due to
the fact that our framework can mine the personal attribute
knowledge embedded in unlabeled utterances better. Despite
that all the personal attribute prediction methods leverage
more resources (e.g., labeled utterances or external data)
than PEARL, PEARL still promotes by at least 2 (resp. 4)
percentages compared with the best personal attribute pre-
diction baseline DSCGN in terms of MRR (resp. nDCG)
over both data sets. All the above experimental results vali-
date the superiority of our proposed framework for predict-
ing personal attributes from conversations.

Parameter Study
To investigate the robustness of our framework, we conduct
sensitivity analysis to understand the impact of the parame-
ter K (i.e., the number of keywords for each utterance) and
T (i.e., the number of iterations for the Gibbs sampling pro-
cess in Algorithm 1) on our PEARL’s performance over the
profession and hobby data sets. From the trend plotted in
Figure 2a and Figure 2b, we can see that when K > 50 (resp.
K > 60), the performance achieved by PEARL is very stable
on the profession (resp. hobby) data set, and is insensitive to
the parameter K . From the trend plotted in Figure 2d and
Figure 2e, it can be seen that the performance of PEARL is
relatively stable on both data sets, and is insensitive to the
parameter T .

Ablation Study
To verify the importance of different parts in our framework
PEARL, we first remove the AKI module to make the BSA
module work alone and perform attribute prediction by For-
mula 4 directly (i.e., P(b|d) is set to 1). Considering that the
AKI module alone cannot predict personal attributes from
conversations, which has been discussed in the AKI part, so
we cannot provide the effect of PEARL removing the BSA
module. In addition, to examine the effectiveness of the iter-
ation operation, we run PEARL by executing the BSA mod-
ule first and thereafter executing the AKI module without
the iteration operation (i.e., E in Algorithm 1 is set to 1).

From the results in Table 2, we can draw the following
observations: (1) without the AKI module, the performance
of PEARL declines significantly on both data sets, which

Method 20News
Micro-F1 Macro-F1

SeedBTM 44.9 37.3
ConWea 75.7 73.3

LOTClass 73.8 72.5
X-Class 78.6 77.8
ClassKG 83.8 82.7
PEARL 84.1 83.7
w/o AKI 68.5 64.3

w/o the iteration operation 82.7 81.6

Table 3: Performance on the task of weakly supervised text
classification. The performance of the baselines SeedBTM
and ClassKG is reproduced via their open-source solutions.
The results of the remaining baselines are taken from X-
Class (Wang, Mekala, and Shang 2021).

demonstrates the importance of the AKI module. This may
be attributed to the fact that the biterm semantic information
and the word co-occurrence information are complementary
to some extent, and our framework PEARL can harness this
complimentary knowledge effectively for better prediction;
(2) without the iteration operation, PEARL performs worse
over both data sets, which validates the point that the it-
eration operation can indeed obtain superior prior attribute
knowledge derived from the AKI module to refine the Gibbs
sampling process and enhance the prediction performance.

Experimental Analysis on Weakly Supervised Text
Classification Task
To adapt our framework to the weakly supervised text clas-
sification task, we replace the attribute value (resp. utter-
ance) with the class (resp. text) and select the class with the
highest probability as the predicted label for the text based
on the output ranking of PEARL. Following the previous
weakly supervised text classification studies (Meng et al.
2020; Wang, Mekala, and Shang 2021), we adopt the same
evaluation metrics, i.e., micro-F1 and macro-F1, to evaluate
PEARL, PEARL’s two truncated versions, and five SOTA
weakly supervised text classification methods over the com-
mon benchmark data set 20News (Lang 1995), which con-
sists of 17817 texts. Different from the profession (resp.
hobby) data set containing 71 (resp. 149) attribute values as
labels, 20News only has a fairly small number of five topics
as labels (i.e., computer, sports, science, politics, and reli-
gion).

From the results in Table 3, it can be seen that (1) our
framework PEARL exceeds all weakly supervised text clas-
sification methods, exhibiting its superiority and universal-
ity for the task of weakly supervised text classification; (2)
PEARL outperforms its two truncated versions, which also
demonstrates the effectiveness of the AKI module and the
iteration operation for the text classification task.

To explore the robustness of our framework on the weakly
supervised text classification task, we further conduct sensi-
tivity analysis to understand the impact of the parameters K
(i.e., the number of keywords for each utterance) and T (i.e.,
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the number of iterations for the Gibbs sampling process in
Algorithm 1) on our PEARL’s performance over the 20News
data set. From the trend plotted in Figure 2c, we can see that
when K > 50, the performance of PEARL changes little
and is insensitive to the parameter K . From the trend plotted
in Figure 2f, it can be seen that PEARL performs relatively
stable, and is insensitive to the parameter T .

Related Work
Personal Attribute Prediction
The task of personal attribute prediction usually contains
two aspects of studies: (1) personal attribute prediction from
conversations; (2) personal attribute prediction from social
media. We elaborate them as follows.

Previous works extracted the profession attribute from
conversations to build a PKB for a user by maximum-
entropy classifiers (Jing, Kambhatla, and Roukos 2007) and
sequence-tagging CRFs (Li et al. 2014). These methods as-
sumed that users explicitly mentioned the attribute value in
their utterances, so they are not applicable for the profes-
sion and hobby data sets without personal assertions. Re-
cently, HAM (Tigunova et al. 2019) predicted scores of dif-
ferent attribute values for an utterance based on the stacked
fully connected layers or CNNs by utilizing average ap-
proaches or attention mechanisms within and across utter-
ances. CHARM (Tigunova et al. 2020) first extracted some
keywords from utterances by leveraging BERT, and then
matched these keywords against Web documents indicat-
ing possible attribute values from external data via some
SOTA information retrieval ranking models (i.e., RAKE and
KNRM). Specially, the procedure of the keyword extraction
was trained by a reinforce policy gradient method. DSCGN
(Liu, Chen, and Shen 2022) yielded two categories of super-
vision, i.e., document-level supervision via a distant supervi-
sion strategy and contextualized word-level supervision via
a label guessing method from unlabeled utterances and ex-
ternal data, to fine-tune the language model with a noise-
robust loss function. Different from all the above methods
which consume plenty of resources, our framework does not
rely on any labeled utterances or external data.

Additionally, numerous works aim to predict personal at-
tributes (e.g., age (Bayot and Gonçalves 2017; Mac Kim
et al. 2017; Liu and Singh 2021), gender (Bayot and
Gonçalves 2017; Mac Kim et al. 2017; Vijayaraghavan,
Vosoughi, and Roy 2017; Basile et al. 2017), location (Shen,
Liu, and Wang 2018; Liu et al. 2021), political preference
(Vijayaraghavan, Vosoughi, and Roy 2017; Preoţiuc-Pietro
et al. 2017; Xiao et al. 2020), ethnicity (Preoţiuc-Pietro and
Ungar 2018), and occupational class (Preoţiuc-Pietro, Lam-
pos, and Aletras 2015)) from social media such as Face-
book and Twitter. The results provided by (Tigunova et al.
2019) show that three of these works (Basile et al. 2017;
Bayot and Gonçalves 2017; Preoţiuc-Pietro, Lampos, and
Aletras 2015) obtain unsatisfactory performance when pre-
dicting personal attributes from conversations, so they are
not selected as our baselines. The remaining works rely on
rich meta-data of social media (e.g., user profile, hashtag,
and social network structure) that do not exist in conversa-

tion data, so they are unsuitable for our task.

Weakly Supervised Text Classification
In recent years, many methods have been proposed to use
the label surface name as the weakly supervised signal to
solve the text classification task without requiring any la-
beled documents or external data, whose setting is con-
sistent with our proposed low-resource setting. Therefore,
these methods can be utilized to predict personal attributes
by training an utterance classifier based on unlabeled ut-
terances. These weakly supervised text classification ap-
proaches (Meng et al. 2020; Mekala and Shang 2020; Wang,
Mekala, and Shang 2021; Zhang et al. 2021) usually trained
a classifier by using the pseudo labels and refined the model
over the unlabeled data via self-training. However, they per-
form not well on the profession and hobby data sets, which
has been verified in our experiments.

Conclusion and Future Work
To predict personal attributes from conversations under a
low-resource setting which does not resort to any labeled
utterances or external data, we propose a novel framework
PEARL that combines the biterm semantic information with
the word co-occurrence information seamlessly in an itera-
tive manner. Extensive experiments have demonstrated the
effectiveness of our framework PEARL against many SOTA
personal attribute prediction methods and weakly supervised
text classification methods. In addition, we argue that the
profession and hobby data sets can be utilized to measure
the efficacy of weakly supervised text classification methods
to a certain extent, which can benefit the text classification
research community for future studies.
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