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Abstract

In recommender systems, a common problem is the presence
of various biases in the collected data, which deteriorates the
generalization ability of the recommendation models and leads
to inaccurate predictions. Doubly robust (DR) learning has
been studied in many tasks in RS, with the advantage that
unbiased learning can be achieved when either a single impu-
tation or a single propensity model is accurate. In this paper,
we propose a multiple robust (MR) estimator that can take the
advantage of multiple candidate imputation and propensity
models to achieve unbiasedness. Specifically, the MR esti-
mator is unbiased when any of the imputation or propensity
models, or a linear combination of these models is accurate.
Theoretical analysis shows that the proposed MR is an en-
hanced version of DR when only having a single imputation
and a single propensity model, leading to a smaller bias. In-
spired by the derived generalization error bound of MR, we
further propose a novel multiple robust learning approach for
stabilization. We conduct extensive experiments on real-world
and semi-synthetic datasets, which demonstrates the superior-
ity of the proposed approach over the state-of-the-art methods.

Introduction
Recommender systems (RSs) have made remarkable progress
on many tasks in recent years, such as rating prediction with
explicit feedback (Schnabel et al. 2016; Wang et al. 2019),
user-item interaction prediction with implicit feedback (Yang
et al. 2018; Saito 2019; Saito et al. 2020), post-view click-
through rate prediction (Yuan et al. 2019), post-click conver-
sion rate prediction (Zhang et al. 2020; Guo et al. 2021), and
uplift modeling (Sato et al. 2019, 2020). Among them, an
important challenge is that the collected data are always not
the representative of the overall population of interest, due
to the presence of selection bias and confounding bias (Chen
et al. 2020; Wu et al. 2022b). To address this problem, recent
debias-related studies design causality-inspired approaches
to achieve unbiased learning for RS. Specifically, Marlin et al.
(2012) and Steck (2013) proposed error imputation-based
(EIB) approaches, which leverage an additional imputation
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model to estimate the prediction errors for missing data. How-
ever, the imputed errors tend to be inaccurate in practice and
will probably cause a large bias. Besides, Schnabel et al.
(2016) proposed the inverse propensity score (IPS) and self-
normalized inverse propensity score (SNIPS) methods for
unbiased learning with the assistance of a propensity model.
Furthermore, Wang et al. (2019) proposed a doubly robust
(DR) estimator to combine an error imputation model and a
propensity model. DR has double robustness, which is unbi-
ased if either the imputed errors or propensities are accurate.
Currently, DR and its enhanced versions (Guo et al. 2021;
Dai et al. 2022; Ding et al. 2022) achieve the state-of-the-art
performance for debiasing recommendation tasks.

The strength of doubly robust estimators is attributed to
the two chances of achieving unbiased learning, i.e., accurate
modeling of imputed errors or learned propensities. However,
the correct specifications of these models are demanding. If
both of the learned models are mildly misspecified, the bias
of the doubly robust learning can be severe as pointed out by
existing work (Tan 2007; Wu et al. 2022a). What is worse,
it is challenging to accurately learn them based on observed
data, even if there are correct model specifications. Firstly,
the accurate imputed errors are hard to obtain, since the impu-
tation model is learned with the exposed events while being
used for the unexposed events. This can easily cause a large
bias if the distributions of the exposed events and unexposed
events are significantly different (Dai et al. 2022). Secondly,
the collected data always contains many biases (Chen et al.
2020; Wu et al. 2022b) (e.g., biases induced by unobserved
confounders), which may result in the inaccurate estimation
of propensities. Therefore, more research efforts for unbiased
learning are needed.

In this paper, we propose a multiple robust (MR) estimator
for unbiased learning in RS, which contains multiple candi-
date propensity models and error imputation models. It allows
multiple different specifications and learning of the propen-
sity and imputation models. Through theoretical analysis, we
demonstrate that the proposed MR estimator has multiple
robustness, which is unbiased if any of the propensity mod-
els, imputation models, or even a linear combination of these
models can accurately estimate the true propensities or pre-
diction errors. Therefore, the MR estimator can significantly
tackle the problem of inaccuracy in learned propensities or
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imputed errors from a single model of existing work, by
providing more opportunities for model specification and
learning. In addition, we particularly analyze the relation be-
tween MR and DR, when MR has only one propensity model
and one imputation model, and theoretically find that our MR
estimator can actually provide an enhanced version of double
robustness. By analyzing the tail bound of the MR estima-
tor, we further propose a multiple robust learning approach
for stabilization, to better control the generalization error by
adding an L2 regularization. Extensive experiments on both
real-world and semi-synthetic datasets demonstrate that the
proposed MR method achieves a significant improvement
compared to the state-of-the-art methods.

Related Work
Unbiased Learning in Recommendation. RS is always af-
fected by various biases (Wu et al. 2022b), leading to the
inconsistency between the collected data and the target pop-
ulation. Therefore, unbiased learning has been extensively
studied (Marlin and Zemel 2009; Steck 2010; Liu et al. 2021).
In RS, Schnabel et al. (2016) and Saito (2019) used a single
propensity model for unbiased learning on explicit and im-
plicit feedback tasks, while Marlin et al. (2012) and Steck
(2013) adopted a single error imputation model for unbiased
learning. Wang et al. (2019) proposed to combine a propen-
sity and an error imputation model to achieve doubly robust
learning, and yielded superior performance on ranking (Saito
2020; Kiyohara et al. 2022), uplift modeling (Sato et al. 2020)
and data fusion (Bonner and Vasile 2018; Liu et al. 2020;
Chen et al. 2021; Wang et al. 2021; Li et al. 2023b). Based on
that, Guo et al. (2021), Dai et al. (2022), Li et al. (2023a) and
Li, Zheng, and Wu (2023) proposed more robust DR meth-
ods, and Zhang et al. (2020) proposed a parameter sharing
mechanism applied to multi-task learning. In addition, Ding
et al. (2022) proposed a robust deconfounder framework to
mitigate the influence of unmeasured confounder. Different
from the existing debiasing methods, this paper develops a
novel multiple robust learning approach, which allows multi-
ple propensity and error imputation models and thus enables
a greater chance of unbiased learning.
Multiple Robust. MR approaches were designed to prevent
the inaccuracy of learned propensities and imputed errors.
Currently, the MR methods mainly focused on estimating
the population mean of a response variable with missing (Li,
Gu, and Liu 2020). They can be divided into two major cate-
gories: empirical likelihood-based calibration methods (Han
and Wang 2013; Chen and Haziza 2017; Han 2016, 2018)
and ensemble learning-based methods (Chan 2013; Chan
and Yam 2014; Duan and Yin 2017). The former relies on
solving a large optimization problem and is hard to imple-
ment in the data of RS. To ease the computational burden,
the latter decomposes the optimization problem into two
steps, which first compress multiple propensity/imputation
models into one new propensity/imputation model, and then
solve an optimization problem the same as the calibration
approaches (Duan and Yin 2017). How to reduce the compu-
tational burden and how to embed them in a joint learning
model in RS are challenges problems. To the best of our
knowledge, this is the first work that proposes a multiple

robust learning approach for debiased recommendations.

The Proposed Method
Problem Definition and Preliminaries
Let U = {u} be the users, I = {i} the items, and D =
U × I all of the user-item pairs. Let xu,i be the feature
of a user-item pair (u, i), which is used by the prediction
model f(xu,i; θ) with model parameters θ in RS, to predict
the rating yu,i of item i given by user u. In RS, a large
fraction of yu,i is missing-not-at-random, resulting in the
highly sparse and biased data along with the challenge of
unbiased model learning. Define ou,i as an indicator function
of whether yu,i is observed or not, i.e., ou,i = 1 if yu,i is
observed and ou,i = 0 otherwise. Denote O = {(u, i) ∈ D :

ou,i = 1} as the indices of observed samples, and Ŷ as the
predicted rating matrix of all user-item pairs, obtained from
the prediction model f(xu,i; θ). This work aims to train the
prediction model based on the observed samples to infer all
true ratings yu,i on (u, i) ∈ D.

To evaluate the performance of the prediction model
f(xu,i; θ) over all user-item pairs, let eu,i be the prediction
error, which is an appropriately chosen loss function, e.g.,
the squared loss (yu,i − f(xu,i; θ))

2. However, the unbiased
evaluation on D requires all values of yu,i. Given all the
predicted ratings ŷu,i ≜ f(xu,i; θ), ideally, if all ratings yu,i
are observed, the prediction model f(·; θ) can be trained by
directly optimizing the following ideal loss

Eideal = Eideal(Ŷ) = |D|−1
∑

(u,i)∈D

eu,i.

However, since yu,i is observed only when ou,i = 1, the
ideal loss is non-computable. To address this problem, many
debiasing methods in RS have been proposed by constructing
unbiased substitutes of the ideal loss, such as EIB estimator
EEIB = |D|−1

∑
(u,i)∈D[ou,ieu,i + (1 − ou,i)m̂u,i], and

IPS estimator EIPS = |D|−1
∑

(u,i)∈D ou,ieu,i/p̂u,i, where

m̂u,i ≜ m(xu,i; β̂) is an estimate of the prediction error
eu,i from an error imputation model with parameter β̂, and
p̂u,i ≜ π(xu,i; α̂) is an estimate of propensity score pu,i ≜
P(ou,i = 1|xu,i) from a propensity model with parameter α̂.
Besides, the doubly robust (DR) uses both imputed errors
and propensities to further reduce the bias, which is

EDR = |D|−1
∑

(u,i)∈D

[
m̂u,i +

ou,i(eu,i − m̂u,i)

p̂u,i

]
.

Multiple Robust Estimator
The unbiasedness of IPS and EIB estimators rely on the
accurate estimations of propensities and prediction errors,
respectively, from a single model. The DR estimator takes ad-
vantage of both the estimated propensities and imputed errors
to achieve double robustness, but it only allows to use one
propensity model and one imputation model. Nevertheless,
the challenges of model specification and model learning
significantly hinder the realization of unbiased learning. In
this work, we propose a multiple robust (MR) estimator to
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tackle these challenges by introducing multiple propensity
models and error imputation models. Specifically, consider J
propensity models and K imputation models

G = {π1(x; α̂1), . . . , πJ(x; α̂J)},
M = {m1(x; β̂1), . . . ,mK(x; β̂K)}.

Let p̂ju,i ≜ πj(xu,i; α̂j), m̂k
u,i ≜ mk(x; β̂k), and

u(xu,i) =
(
1/p̂1u,i, · · · , 1/p̂Ju,i, m̂1

u,i, · · · , m̂K
u,i

)T
.

The proposed MR estimator is given as

EMR = |D|−1
∑

(u,i)∈D

uT (xu,i) · η̂(θ),

where η̂(θ) is the solution by minimizing∑
(u,i)∈D

ou,i{eu,i − uT (xu,i) · η}2. (1)

Denote η̂(θ) as η̂ for simplification. Let [P̂j ]u,i = 1/p̂ju,i be
the (u, i)-th element of the j-th learned inverse propensities
matrix, and [Êk]u,i = m̂k

u,i be the (u, i)-th element of the
k-th imputed errors matrix.
Theorem 1 (Multiple Robustness). MR is consistent1 when
either of the following conditions hold:

(a) there exists a linear combination of the J inverse
propensities accurate, i.e., [P̂ln]u,i = 1/pu,i;

(b) there exists a linear combination of the K imputed
errors accurate, i.e. [Êln]u,i = eu,i,
where P̂ln =

∑J
j=1 wjP̂

j and Êln =
∑K

k=1 vkÊ
k are the

linear combinations of P̂j and Êk.
In addition, the MR estimator EMR is unbiased, if η̂ and
EMR are obtained through different samples.

We formally elaborate the multiple robustness of the MR
estimator. Firstly, note that η̂ will make the first-derivative of
equation (1) with respect to η equals to 0, i.e.,∑
(u,i)∈D

ou,i · [eu,i − uT (xu,i) · η̂] · u(xu,i) = 0(J+K)×1,

of which the j-th element is that∑
(u,i)∈D

{eu,i − uT (xu,i) · η̂}ou,i/p̂ju,i = 0.

Therefore, for any given j = 1, ..., J ,

EMR =
1

|D|
∑

(u,i)∈D

uT (xu,i) · η̂+

1

|D|
∑

(u,i)∈D

ou,i

p̂ju,i
· {eu,i − uT (xu,i) · η̂}︸ ︷︷ ︸

0

=
1

|D|
∑

(u,i)∈D

ou,i

p̂ju,i
· eu,i+

1

|D|
∑

(u,i)∈D

[
1− ou,i

p̂ju,i

]
· uT (xu,i) · η̂. (2)

1An estimator is consistent if, as the sample size increases, it
converges to the true value of the parameter in probability.

Suppose 1/p̂ju,i is an accurate estimate of 1/pu,i and it can
be shown that the last term in equation (2) will converge to 0
in probability, which implies that

EO[EMR]
P−→ |D|−1

∑
(u,i)∈D

EO[ou,ieu,i/p̂
j
u,i] = Eideal.

If [P̂ln]u,i = 1/pu,i for some weights w1, ..., wJ , the con-
sistency of EMR follows immediately from the weighted
summation of the equation (2) with different j.

Instead, if one of the imputed errors, or a linear com-
bination of the K imputed errors can estimate eu,i accu-
rately, i.e., [Êln]u,i = eu,i for some weights v1, ..., vK ,
which implies that η̂ = (0, · · · , 0, v1, ..., vK)T , resulting
in EO[EMR] = Eideal. Thus, EMR is multiple robust in the
sense of consistency. In addition, when using different sam-
ples to calculate η̂ and EMR, such independence ensures that
the expectation of last term in equation (2) is strictly equal to
0, resulting in EO[EMR] = Eideal (See the next section for
implementation details).

Theorem 1 indicates that the MR estimator can achieve
unbiasedness under weaker conditions than those of the DR
estimator. Instead of IPS and EIB relying only on a single
model, and DR relying on a single propensity and a single im-
putation model, the MR estimator allows to exploit multiple
candidate models to reach unbiasedness. In addition, MR has
great potential in industrial application scenarios of RS, since
there are usually many candidate models for recommenda-
tion tasks, and MR further allows combining those models as
shown in Theorem 1 and enhances the prediction accuracy.

When the MR estimator contains exactly one error impu-
tation model m̂u,i and one propensity model p̂u,i, a natural
question is the relationship between MR and DR, and Theo-
rem 2 states that MR acts as a boosted version of DR.
Theorem 2 (Relation to DR). Given one error imputation
model and one propensity model, then

(a) (Enhanced double robustness) EMR has double ro-
bustness. Furthermore, when both the imputation model and
propensity model are inaccurate, EMR retains unbiasedness
in condition that eu,i can be linearly represented by m̂u,i

and 1/p̂u,i, but EDR doesn’t.
(b) (Equivalent Form) EMR = EDR if the error imputation

model is accurate.
Note that DR can be written as

EDR =
1

|D|
∑

(u,i)∈D

[
ou,i · eu,i

p̂u,i
+

{
1− ou,i

p̂u,i

}
· m̂u,i

]
, (3)

and it follows from equation (2) that

EMR =
1

|D|
∑

(u,i)∈D

[
ou,i · eu,i

p̂u,i
+

{
1− ou,i

p̂u,i

}
· uT (xu,i) · η̂

]
.

(4)

Therefore, EMR degenerates to EDR if m̂u,i = uT (xu,i) · η̂,
for which a sufficient condition is eu,i = m̂u,i, i.e., the error
imputation model is accurate.

By a direct comparison of equation (3) and equation (4),
it can be seen that MR performs as a different estimator
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with double robustness, replacing the m̂u,i with uT (xu,i) · η̂.
Importantly, if 1/p̂u,i is helpful to fit eu,i, then uT (xu,i) · η̂
is expected to be a more accurate estimate of the prediction
error than m̂u,i. If 1/p̂u,i doesn’t help, then uT (xu,i) · η̂ and
m̂u,i will have the same accuracy. Thus, EMR can be viewed
as an improved version of DR when we only have access to
an error imputation model and a propensity model.

Theorem 1 shows that the bias of MR vanishes with an ac-
curate model. However, when all of the models are inaccurate,
the bias of MR is derived in Theorem 3.
Theorem 3 (Bias of MR). Given the J propensity models
and K imputation models, with p̂ju,i > 0 for all (u, i) pairs,
then the bias of MR estimator is given as

Bias (EMR) =
1

|D|

∣∣∣∣∣ ∑
(u,i)∈D

{
1− pu,i

J∑
j=1

wj

p̂ju,i

}
︸ ︷︷ ︸

linear combination of 1/π1,...,1/πJ

×

{
eu,i − uT (xu,i) · EO[η̂]

}︸ ︷︷ ︸
linear combination of multiple models

∣∣∣∣∣+O(|D|−1),

where
∑J

j=1 wj/p̂
j
u,i is the best linear approximation of

1/pu,i.
Theorem 3 shows that the bias of MR estimator consists of

a dominant term and a negligible term of order O(|D|−1). In
addition, it can be seen that the bias of MR has similar form
compared to that of DR, based on the j-th propensity model
and k-th imputation model, which is given by

1

|D|

∣∣∣ ∑
(u,i)∈D

{
1− pu,i

p̂ju,i

}
︸ ︷︷ ︸

single propensity 1/πj

·
{
eu,i − m̂k

u,i

}︸ ︷︷ ︸
single imputation mk

∣∣∣.
Note that both the biases consist of the product of the esti-
mation inaccuracies from learned propensities and imputed
errors. However, MR allows using the optimal linear combi-
nation of multiple propensity models to approximate pu,i, as
well as using the optimal linear combination of all models
to approximate eu,i, while DR only uses one single propen-
sity and imputation model to approximate pu,i and eu,i, re-
spectively. This shows that MR tends to have a smaller bias
compared to that of the DR.

Alternating Multiple Robust Learning with
Stabilization
In this subsection, we analyze the tail bound of the MR
estimator and the generalization error bound of the learned
prediction model based on the MR loss, and find that both of
them depend on the norm of η̂, which motivates us to propose
an alternative multiple robust learning for stabilization. The
following Theorem 4 presents the tail bound of the MR.
Theorem 4 (Tail Bound of MR). Suppose all J propensity
models satisfy Γ−1 ≤ p̂ju,i ≤ 1 (Γ ≥ 1) for j = 1, . . . , J ,
and all K imputation models satisfy |m̂k

u,i| ≤ M/2 for
k = 1, . . . ,K . Then for any prediction matrix Ŷ with given

η̂, with probability 1− δ, the MR estimator does not deviate
from its expectation by more than∣∣∣EMR(Ŷ)− EO

[
EMR(Ŷ)

]∣∣∣ ≤√
log(2/δ)
2|D| max(Γ− 1,M) · ∥η̂∥1.

For any given hypothesis spaceH of the prediction model,
the optimal prediction model Ŷ† can be defined by Ŷ† =

argminŶ∈H EMR(Ŷ). Then, the generalization error bound
of Ŷ† fromH obtained using MR can be further derived as
shown in Theorem 5.

Theorem 5 (Generalization Error Bound). For any finite
hypothesis space of predictionsH = {Ŷ1, . . . , Ŷ|H|}, then
under the conditions of Theorems 1 and 4, the MR estima-
tor deviates from the true risk Eideal(Ŷ†) with given η̂ is
bounded with probability 1− δ by

Eideal(Ŷ
†) ≤ EMR(Ŷ

†)+

√
log(2|H|/δ)

2|D| max(Γ−1,M)·∥η̂∥1.

Theorem 5 shows that the generalization error bound can
be controlled via the tighter range bounds of the propensity
and imputation models, as well as a smaller value of ∥η̂∥1.
The former can be achieved by clipping the extremely small
estimated propensities or imposing an additional penalty for
extreme imputed errors. The latter can be achieved by im-
posing an additional regularization term on the MR loss to
penalize the norm of η̂ to stabilize the MR estimator.

A key design of the learning process is to use different
samples to compute η̂ and update the prediction model with
MR loss. As shown in Theorem 1, such independence guaran-
tees the strict unbiased learning process. Specifically, we first
randomly sample a batch D′ from D, and use the samples
O′ with observed ratings in D′ to compute η̂. Next, another
batch is drawn from the remaining samplesD\D′ for the cal-
culation of MR loss and the update of the prediction model.

Since Lasso has no closed-form solution and the iterative
procedure will increase the computational cost, we take the
Ridge regression with O′ ⊂ D′ to obtain η̂ in MR

η̂ =
[∑

(u,i)∈O′ u(xu,i) · uT (xu,i) + λI
]−1[∑

(u,i)∈O′ u(xu,i) · eu,i
]
,

(5)

where I is an identity matrix, and λ is a hyper-parameter for
stabilization. Then the prediction model is updated by the pro-
posed MR lossLMR(θ; α̂, β̂) =

∑
(u,i)∈D\D′ u(xu,i)

T η̂(θ).
In addition, given the prediction model and sampling data
{(ukl

, ikl
)}Ll=1 for k = 1, . . . ,K from O, the k-th imputa-

tion model is updated by using

Lek (θ, βk) = L−1
L∑

l=1

(mk(xukl
,ikl

;βk)− eukl
,ikl

)2/p̂jukl
,ikl

,

where eu,i = yu,i − fθ (xu,i) and p̂ju,i is a randomly-chosen
propensity model. By alternatively updating the imputation
models and prediction ratings with the above process, we
can finally achieve unbiased learning with stabilization. We
summarized the alternating learning approach in Alg. 1.
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Algorithm 1: Alternating Multiple Robust Learning
with Stabilization

Input: observed ratings Ro, propensity models
π1, . . . , πj , and stabilization parameter λ

1 while stopping criteria is not satisfied do
2 for k ∈ {1, . . . ,K} do
3 for number of steps for training the k-th

imputation model do
4 Sample a batch of user-item pairs

{(ukl
, ikl

)}Ll=1 from O;
5 Update βk by descending along the

gradient∇βk
Lek (θ, βk)

6 end
7 end
8 for number of steps for training the prediction

model do
9 Sample a batch of user-item pairs D′ from D;

10 Obtain the rated samples in D′ as
{(um, im)}Mm=1 = O′ ⊆ O;

11 η ← [
∑

(u,i)∈O′ u(xu,i) · uT (xu,i) +

λI]−1[
∑

(u,i)∈O′ u(xu,i) · eu,i];
12 Sample a batch of user-item pairs

{(un, in)}Nn=1 from D \ D′;
13 Update θ by descending along the gradient

∇θLMR (θ;α, β)
14 end
15 end

Experiments
In this section, we conduct experiments on both real-world
datasets and semi-synthetic datasets to evaluate the effective-
ness of our proposed method.
Baselines. The proposed MR2 and most existing debias-
ing methods are model-agnostic, which can be integrated
into existing recommendation models for unbiased learning
based on biased data. We follow prior studies (Wang et al.
2020; Liu et al. 2021) to adopt two of the most common
recommendation models as the backbones, i.e., matrix fac-
torization (MF) (Koren, Bell, and Volinsky 2009) and neural
collaborative filtering (NCF) (He et al. 2017). Besides the
naive estimator, we compare our method with the following
state-of-the-art debiasing estimators: inverse propensity score
(IPS) method (Schnabel et al. 2016), the self-normalized IPS
(SNIPS) (Swaminathan and Joachims 2015), doubly robust
learning (DR) (Jiang and Li 2016), doubly robust joint learn-
ing (DR-JL) (Wang et al. 2019), more robust doubly robust
joint learning (MRDR-JL) (Guo et al. 2021), counterfactual
variational information bottleneck (CVIB) (Wang et al. 2020),
and debiased information bottleneck (DIB) (Liu et al. 2021).
Evaluation Protocols and Experimental Details. We em-
ploy three widely used metrics to measure the prediction
performance on the testing set for unbiased evaluation, in-

2https://gitee.com/mindspore/models/tree/master/research/
recommend/multi_robust

cluding the mean square error (MSE), the area under the
ROC curve (AUC), and the normalized discounted cumula-
tive gain (NDCG). MSE measures the accuracy of the pre-
diction, AUC measures the overall ranking performance on
the testing set, and NDCG evaluates the ranking performance
in a user-wise manner. All experiments are implemented on
PyTorch (Paszke et al. 2019) with Adam optimizer (Kingma
and Ba 2015), and grid search is used to choose the optimal
set of hyper-parameters based on a validation set split from
the training set.

Experiments on Real-World Datasets
Datasets. We consider two benchmark real-world datasets
containing MNAR and MAR ratings, i.e., Coat3 (Schnabel
et al. 2016) and Yahoo4 (Marlin and Zemel 2009), as existing
work (Schnabel et al. 2016; Wang et al. 2019). Specifically,
Coat has 6,960 five-star ratings from 290 Amazon Mechan-
ical Turkers on an inventory of 300 coats in the training
set, and 4,640 ratings collected from the 290 workers on 16
randomly selected coats in the testing set. Yahoo includes
a MNAR training set with 311,704 five-star ratings from
15,400 users and 1,000 songs, and a MAR testing set with
54,000 ratings from 5,400 users on 10 randomly selected
songs. We follow prior studies (Schnabel et al. 2016; Wang
et al. 2019, 2020) to use the MNAR dataset for training and
the MAR dataset for unbiased evaluation on both datasets.
Performance. The experimental results are shown in Table 1.
We have the following observations. Existing debiased esti-
mators, including IPS, SNIPS, DR, DR-JL, MRDR-JL, CVIB
and DIB, can effectively improve recommendation perfor-
mance under biased training sets, since they all produce better
results than the corresponding backbone models. DR meth-
ods only perform comparable to IPS based methods, which
might be due to the inaccurate imputed errors. Impressively,
our proposed MR estimator achieves significant improve-
ments over the existing debiased methods in both Coat and
Yahoo regardless of the backbone recommendation models.
The reason can be attributed to its multiple robustness. By
utilizing multiple different propensity models and imputation
models, the MR estimator achieves state-of-the-art debiasing
performance in terms of MSE, AUC and NDCG@K.

Experiments on Semi-synthetic Datasets
Datasets. We conduct experiments on semi-synthetic datasets
constructed from MovieLens 100K5 (ML-100K) to evalu-
ate the robustness of our proposed method. ML-100K is a
dataset collected from a movie recommendation service with
100,000 MNAR ratings from 943 users and 1,682 movies. We
generate three datasets based on it, denoted as ML-100K-1,
ML-100K-2, and ML-100K-3, which have an increasing level
of selection bias by varying the skewness of the propensities.
Performance. The experimental results are shown in Table 2.
It can be found that our proposed MR estimator achieves the
best results among all three semi-synthetic datasets, which

3https://www.cs.cornell.edu/~schnabts/mnar/
4http://webscope.sandbox.yahoo.com/
5https://grouplens.org/datasets/movielens/100k/
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Datasets Coat Yahoo

Methods MSE AUC NDCG@5 NDCG@10 MSE AUC NDCG@5 NDCG@10

MF 0.2405 0.7028 0.6189 0.6858 0.2494 0.6806 0.6357 0.7640
+IPS 0.2251 0.7152 0.6256 0.6934 0.2223 0.6831 0.6480 0.7665
+SNIPS 0.2262 0.7082 0.6198 0.6861 0.1941 0.6834 0.6400 0.7648
+DR 0.2325 0.7121 0.6246 0.6938 0.2106 0.6849 0.6580 0.7738
+DR-JL 0.2312 0.7110 0.6209 0.6907 0.2175 0.6876 0.6458 0.7655
+MRDR-JL 0.2301 0.7157 0.6325 0.6970 0.2169 0.6841 0.6465 0.7683
+CVIB 0.2201 0.7247 0.6361 0.7030 0.2621 0.6856 0.6491 0.7718
+DIB 0.2334 0.7104 0.6303 0.6986 0.2494 0.6832 0.6348 0.7633

+MR (Ours) 0.2106 0.7356 0.6697 0.7343 0.1920 0.6990 0.6709 0.7833

NCF 0.2116 0.7661 0.6293 0.7019 0.3318 0.6771 0.6532 0.7722
+IPS 0.2002 0.7692 0.6362 0.7126 0.1706 0.6882 0.6630 0.7776
+SNIPS 0.1920 0.7700 0.6313 0.7070 0.1697 0.6893 0.6687 0.7810
+DR 0.2146 0.7523 0.6197 0.6908 0.1702 0.6890 0.6633 0.7779
+DR-JL 0.2071 0.7612 0.6193 0.7021 0.2396 0.6811 0.6469 0.7653
+MRDR-JL 0.2036 0.7629 0.6231 0.7011 0.2340 0.6834 0.6499 0.7681
+CVIB 0.2060 0.7661 0.6244 0.6969 0.3055 0.6748 0.6701 0.7817
+DIB 0.2030 0.7681 0.6300 0.7035 0.2849 0.7007 0.6757 0.7864

+MR (Ours) 0.1945 0.7737 0.6393 0.7159 0.1676 0.7026 0.7179 0.8112
⋆ The best results are highlighted in bold.

Table 1: Experimental results on Coat and Yahoo with MF and NCF as backbone models.

Datasets ML-100K-1 ML-100K-2 ML-100K-3

Methods MSE AUC NDCG@10 MSE AUC NDCG@10 MSE AUC NDCG@10

Naïve 0.1188 0.6587 0.3223 0.1454 0.5700 0.2452 (-23.9%) 0.2023 0.5105 0.2009 (-37.7%)

IPS 0.0913 0.7260 0.3517 0.1025 0.6321 0.2889 (-17.9%) 0.2043 0.5144 0.2227 (-36.7%)

SNIPS 0.0914 0.7251 0.3526 0.1023 0.6318 0.2867 (-18.7%) 0.1975 0.5126 0.2282 (-35.3%)

DR 0.0997 0.6678 0.3204 0.1021 0.5926 0.2613 (-18.4%) 0.1825 0.5186 0.2075 (-35.2%)

DR-JL 0.0896 0.7296 0.3536 0.0975 0.6418 0.2875 (-18.7%) 0.0991 0.5959 0.2838 (-19.7%)

MRDR-JL 0.0904 0.7268 0.3521 0.0980 0.6440 0.2919 (-17.1%) 0.0987 0.6036 0.2823 (-19.8%)

CVIB 0.1036 0.6596 0.3151 0.1040 0.5538 0.2156 (-31.6%) 0.2903 0.5050 0.1786 (-43.3%)

DIB 0.1190 0.6583 0.3243 0.1407 0.5756 0.2531 (-22.0%) 0.1908 0.5117 0.1878 (-42.1%)

MR (Ours) 0.0902 0.7316 0.3622 0.0919 0.6968 0.3318 (-8.4%) 0.0980 0.6379 0.3100 (-14.4%)
⋆ The best results are highlighted in bold.

Table 2: Experimental results on the three semi-synthetic datasets, including ML-100K-1, ML-100K-2, and ML-100K-3, which
have increasing exposure bias. We also present the relative performance drops of all methods on NDCG@10 in ML-100K-2 and
ML-100K-3 compared with the corresponding results in ML-100K-1 to demonstrate the robustness of different models.

demonstrates MR to be the most effective unbiased estimator
compared with existing methods. Besides, MR demonstrates
the most competitive performance in terms of robustness.
Specifically, with the increase of selection bias, the perfor-
mance of IPS and SNIPS drops dramatically (e.g., the AUC
score of IPS drops up to 17.9% and 36.7% in ML-100K-2
and ML-100K-3, respectively, compared with that in ML-
100K-1). Both DR-JL and MRDR-JL outperform IPS and
SNIPS due to their double robustness. Our proposed MR has
superior performance in all three datasets and shows signifi-
cantly little performance drops with the increase of data bias,
because of its multiple robustness for unbiased learning.

In-Depth Analysis of MR
In this subsection, we conduct an in-depth analysis to study
the effect of the imputation models and propensity models.
Effect of Imputation Models. We study the effect of im-

putation models on the MR estimator by setting MR with
different numbers and types of imputation models. We use
a single propensity model, i.e., the Naive Bayesian model,
for all experiments for comparison purpose. MF is used as
the backbone prediction model, while both MF and NCF are
used for imputations depending on specific configurations.

As shown in the left side of Table 3, when increasing the
number of imputation models from one to five, all evalua-
tion metrics first improve steadily and significantly, and then
slightly drop. The best performance is achieved in the MR
with four imputation models. It demonstrates that utilizing
multiple imputation models instead of only one in the MR
estimator can effectively improve model robustness and gen-
eralization. Theoretically, as long as one of the imputation
models estimate the prediction error accurately, the MR ap-
proach can achieve unbiased learning. However, it is worth
noting that the MR method with five imputation models has
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Imputation Model MSE AUC NDCG@10 Imputation Model MSE AUC NDCG@10

MF 0.2295 0.7209 0.7206 MF 0.2295 0.7209 0.7206
MF, MF 0.2252 0.7243 0.7301 MF, MF 0.2252 0.7243 0.7301
MF, MF, MF 0.2232 0.7332 0.7343 NCF 0.2285 0.7230 0.7328
MF, MF, MF, MF 0.2223 0.7435 0.7563 NCF, NCF 0.2093 0.7381 0.7445
MF, MF, MF, MF, MF 0.2228 0.7421 0.7494 MF, NCF 0.2143 0.7332 0.7325

Table 3: Performance of the MR method on Coat under different settings of imputation models, i.e., different numbers and types.

Propensity Model MSE AUC NDCG@10 Propensity Model MSE AUC NDCG@10

NB 0.2291 0.7219 0.7204 NB 0.2291 0.7219 0.7204
NB, NB-Uni 0.2269 0.7282 0.7322 NB, NB 0.2293 0.7216 0.7195
NB, NB-Uni, User 0.2228 0.7370 0.7347 NB, NB, NB 0.2293 0.7216 0.7206

Table 4: Performance of the MR method under different numbers and types of propensity models on Coat dataset, where the
imputation model and backbone prediction model both employ MF.
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Figure 1: AUC of MR with different settings of λ. The 90%
confidence of the results is shown with the shaded regions.

slightly worse performance compared with that of fours. It
can be interpreted as the additional MF model brings less
improvement to the prediction accuracy than the noise. There-
fore, the choice of the number of imputation models can be
considered as a bias-noise trade-off, and the proper number
of imputation models will lead to the optimal performance.

We further investigate the effect of the combination of
different types of imputation models on the performance of
MR methods, and the results are shown in the right side of
Table 3. First, MR methods with two MF and NCF imputa-
tions obtain an absolute increase in AUC scores of 3.4‰ and
5.1‰, respectively, compared to those methods with only one
MF and NCF imputation model. Furthermore, although the
mixture of MF and NCF performed competitively, the MR
with two NCF imputations performs best. This suggests that
deep recommendation models such as NCF perform better
than simple models such as MF in terms of estimating predic-
tion errors. Overall, the proper number of deep imputation
models can help improve the debiasing performance of MR.

Effect of Propensity Models. Table 4 shows the experimen-
tal results including different settings of propensity models
on MR. Specifically, ‘NB’, ‘NB-Uni’, and ‘User’ represent
the Naive Bayes propensity estimator, uniform Naive Bayes
propensity estimator, and user propensity estimator respec-
tively. There are two experimental observations. Firstly, the
MR method can achieve better performance by engaging sev-

eral different types of propensity models as shown in the left
part of the table. The reason is that different estimations of
propensity scores can complement each other and contribute
to the multiple robustness of MR beneficially. Secondly, em-
ploying the same type of several propensity models, such as
two or three NB in the right part of Table 4, tends to harm the
model performance. Since the additional same type propensi-
ties provide no more useful information but bring redundant
noises into the MR learning process.

Sensitivity of Hyper-parameter. By Theorem 5, using a
ridge regression form instead of the ordinary least square re-
gression can further control the generalization error bound of
MR. We further explore the effect of regularization strength
λ in the equation (5) on the debiasing performance of MR.
From Figure 1, when varying λ from 0 to 10, the AUC
score increases from the beginning, and then declines a little,
demonstrating that a proper λ can further improve the perfor-
mance of MR. Besides, it can effectively mitigate the prob-
lem when computing η̂, especially

∑
(u,i)∈Õ u(xu,i;α, β) ·

uT (xu,i;α, β), runs into singular matrix.

Conclusion

In this paper, we propose a MR estimator to achieve unbi-
ased learning in RS under weaker conditions. Theoretical
analysis demonstrates that the proposed estimator enjoys the
property of multiple robustness, i.e., it is unbiased when any
of the imputation or propensity models, or a linear combi-
nation of these models is accurate. We also show that MR
is an enhanced DR estimator when the MR contains only
one propensity model and one error imputation model. Fur-
ther, we analyze the generalization error bound of MR and
propose a novel multiple robust learning method with stabi-
lization. We conduct extensive experiments on real-world and
semi-synthetic datasets, which shows that the MR estimator
can take advantage of multiple candidate propensity models
and imputation models to significantly improve performance
compared to the state-of-the-art debiasing approaches in RS.
In future work, we will study the enhanced versions of MR
and focus on sequential training for candidate models in MR.
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