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Abstract
This paper investigates a new yet challenging problem called
Reverse k-Maximum Inner Product Search (RkMIPS). Given
a query (item) vector, a set of item vectors, and a set of
user vectors, the problem of RkMIPS aims to find a set of
user vectors whose inner products with the query vector are
one of the k largest among the query and item vectors. We
propose the first subquadratic-time algorithm, i.e., Shifting-
aware Asymmetric Hashing (SAH), to tackle the RkMIPS
problem. To speed up the Maximum Inner Product Search
(MIPS) on item vectors, we design a shifting-invariant asym-
metric transformation and develop a novel sublinear-time
Shifting-Aware Asymmetric Locality Sensitive Hashing (SA-
ALSH) scheme. Furthermore, we devise a new blocking strat-
egy based on the Cone-Tree to effectively prune user vec-
tors (in a batch). We prove that SAH achieves a theoretical
guarantee for solving the RMIPS problem. Experimental re-
sults on five real-world datasets show that SAH runs 4∼8×
faster than the state-of-the-art methods for RkMIPS while
achieving F1-scores of over 90%. The code is available at
https://github.com/HuangQiang/SAH.

Introduction
Recommender systems based on Matrix Factorization (Ko-
ren, Bell, and Volinsky 2009) (MF) and Deep Matrix Fac-
torization (Xue et al. 2017) (DMF) models have been preva-
lent over the last two decades due to their precisely predic-
tive accuracy, superior scalability, and high flexibility in var-
ious real-world scenarios. In MF and DMF models, users
and items are represented as vectors in a d-dimensional Eu-
clidean space Rd obtained from a user-item rating matrix.
The relevance (or interestingness) of an item to a user is usu-
ally measured by the inner product of their representing vec-
tors. This naturally gives rise to the Maximum Inner Product
Search (MIPS) problem, which finds the vector in a set of n
item vectors P ⊂ Rd that has the largest inner product with
a query (user) vector q ∈ Rd, i.e., p∗ = argmaxp∈P⟨p, q⟩,
as well as its extension kMIPS that finds k (k > 1) vec-
tors with the largest inner products for recommending items
to users. Due to its prominence in recommender systems,
the kMIPS problem has attracted significant research inter-
ests, and numerous methods have been proposed to improve
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the search performance (Ram and Gray 2012; Koenigstein,
Ram, and Shavitt 2012; Keivani, Sinha, and Ram 2018;
Teflioudi and Gemulla 2017; Li et al. 2017; Abuzaid et al.
2019; Shrivastava and Li 2014; Neyshabur and Srebro 2015;
Shrivastava and Li 2015; Huang et al. 2018; Yan et al. 2018;
Ballard et al. 2015; Yu et al. 2017; Ding, Yu, and Hsieh
2019; Lorenzen and Pham 2020; Pham 2021; Shen et al.
2015; Guo et al. 2016; Dai et al. 2020; Xiang et al. 2021;
Morozov and Babenko 2018; Tan et al. 2019; Zhou et al.
2019; Liu et al. 2020; Tan et al. 2021).

In this paper, we investigate a problem relevant to kMIPS
yet less explored: how to find the users who are possibly in-
terested in a given item? This problem is essential for mar-
ket analysis from a reverse perspective, i.e., the perspective
of service providers instead of users. For example, when
an e-commerce service promotes a discounted product or
launches a new product, a vital issue for designing an ef-
fective advertising campaign is identifying the customers
who may want to buy this product. In this case, the kMIPS
might not be beneficial in finding potential customers: It can
be leveraged to find k user vectors having the largest inner
products with the item vector. Still, these users might not be
the target customers for the item if they are more interested
in many other items than it. A more suitable formulation is
to find the set of users for whom a query item is included in
their kMIPS results, called Reverse k-Maximum Inner Prod-
uct Search (RkMIPS). Formally,
Definition 1 (RkMIPS (Amagata and Hara 2021)). Given
an integer k (k ≥ 1), a query (item) vector q ∈ Rd, a set of
n item vectors P ⊂ Rd, and a set of m user vectors U ⊂ Rd,
the RkMIPS problem finds every user vector u ∈ U such that
q belongs to the kMIPS results of u among P ∪ {q}.

Compared with the kMIPS, the problem of RkMIPS is
much more challenging. The reasons are two folds. First, the
sizes of its result sets vary among query vectors rather than
being a fixed k. In the worst case, all m users can be included
in the RkMIPS results of a query q. Second, the number of
items and users is typically large in real-world recommender
systems. A trivial approach is performing a linear scan over
all items in P ∪ {q} for each user u ∈ U and adding u to
the RkMIPS results of q once q is included in the kMIPS
results of u. For simplicity, we assume m = O(n), i.e., n
and m are of the same magnitude. This trivial approach takes
O(n2d) time, which is much higher than the time complex-
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ity of brute-force kMIPS and is often computationally pro-
hibitive, especially for large n.

Despite the importance of RkMIPS in real-world scenar-
ios, little work has been devoted to studying this problem.
Simpfer (Amagata and Hara 2021) is a pioneer work yet
the only known algorithm for solving RkMIPS. Its primary
idea is to efficiently solve a decision version of kMIPS for
each user. Simpfer maintains a lower-bound array of the kth
largest inner product of size kmax (k ∈ {1, 2, · · · , kmax})
for each user u ∈ U based on the O(kmax) items with
the largest l2-norms such that each user u can get a quick
“yes”/“no” answer for any query q on whether it belongs
to the kMIPS results of u. Moreover, it performs a linear
scan using the Cauchy-Schwarz inequality to accelerate the
kMIPS on item vectors. To reduce the number of user vec-
tors for kMIPS, it partitions users into blocks based on their
l2-norms with a fixed-size interval. Nonetheless, it is still a
linear scan-based algorithm with the same worst-case time
complexity of O(n2d) as the trivial approach, and its perfor-
mance degrades rapidly when n, k, or d is large.

There have been many sublinear-time hashing schemes
for solving approximate kMIPS (Shrivastava and Li 2014,
2015; Neyshabur and Srebro 2015; Huang et al. 2018; Yan
et al. 2018). One can leverage these schemes to speed up
the kMIPS for each u ∈ U . As such, the time to perform
RkMIPS can be subquadratic. However, such an adaptation
might still be less efficient and effective in practice. First, as
m is often larger than n, it is costly to check all users in-
dividually. Second, there is no symmetric (or asymmetric)
Locality-Sensitive Hashing (LSH) for MIPS in the original
space Rd (Shrivastava and Li 2014; Neyshabur and Srebro
2015). Existing hashing schemes develop different asym-
metric transformations to convert MIPS into Nearest Neigh-
bor Search (NNS) on angular (or Euclidean) distance, i.e., an
item transformation I : Rd → Rd′

and a user transformation
U : Rd → Rd′

on the item and user vectors, respectively,
where d′ > d. Unfortunately, these transformations add a
large constant in angular (and Euclidean) distance, leading
to a significant distortion error for the subsequent NNS, i.e.,
the relative angular (and Euclidean) distance of any I(p)
and U(u) will be much smaller than that in the original
space. As a result, any I(p) can be the NNS result of U(u)
even though their inner product ⟨p,u⟩ is very small. Thus,
the kMIPS results can be arbitrarily bad.

In addition, the RkMIPS problem shares a similar con-
cept with the reverse top-k query (Vlachou et al. 2010, 2011,
2013), since both problems aim to find a set of users such
that the query item is one of their top-k results. The meth-
ods for reverse top-k queries, however, might not be suit-
able for solving RkMIPS as they usually assume that the
dimensionality d is low (Vlachou et al. 2013), i.e., d < 10,
whereas d is often dozens to hundreds in recommender sys-
tems. Another problem related to RkMIPS is the Reverse
k-Nearest Neighbor Search (RkNNS) (Korn and Muthukr-
ishnan 2000; Yang and Lin 2001; Singh, Ferhatosmanoglu,
and Tosun 2003; Tao, Papadias, and Lian 2004; Achtert et al.
2006; Arthur and Oudot 2010). Nevertheless, like the case
of reverse top-k queries, most existing RkNNS methods are
also customized for low-dimensional data.

Our Contributions. In this paper, we propose the first
subquadratic-time algorithm called Shifting-aware Asym-
metric Hashing (SAH) to tackle the problem of RkMIPS
in high-dimensional spaces. To accelerate the kMIPS on
item vectors, we develop a provable, sublinear-time scheme
called Shifting-Aware Asymmetric Locality-Sensitive Hash-
ing (SA-ALSH) together with a novel shifting-invariant
asymmetric transformation to reduce the distortion error sig-
nificantly. Furthermore, we devise a novel blocking strat-
egy for user vectors based on the Cone-Tree (Ram and Gray
2012). Using the cone structure, we derive two tight upper
bounds that can effectively prune user vectors (in a batch).
SAH also inherits the basic idea of Simpfer (Amagata and
Hara 2021) to leverage the lower bounds for users to obtain
a quick “yes”/“no” decision for the kMIPS. We prove that
SAH achieves a theoretical guarantee for solving RkMIPS
when k = 1 in subquadratic time and space. In the ex-
periments, we systematically compare SAH with a state-of-
the-art kMIPS method H2-ALSH (Huang et al. 2018) as
well as the only known RkMIPS method Simpfer (Ama-
gata and Hara 2021). Extensive results over five real-world
datasets demonstrate that SAH runs 4∼8× faster than them
for RkMIPS while achieving F1-scores of over 90%.

Background
Before presenting SAH for solving RkMIPS, we first intro-
duce the background of Locality-Sensitive Hashing (LSH)
and Asymmetric Locality-Sensitive Hashing (ALSH).

Locality-Sensitive Hashing
LSH schemes are one of the most prevalent methods for
solving high-dimensional NNS (Indyk and Motwani 1998;
Charikar 2002; Datar et al. 2004; Andoni and Indyk 2006;
Har-Peled, Indyk, and Motwani 2012; Andoni et al. 2015;
Huang et al. 2015; Lei et al. 2019, 2020). Given a hash func-
tion h, we say two vectors p and u collide in the same bucket
if h(p) = h(u). Let Dist(p,u) be a distance function of
any two vectors p and u. Formally,

Definition 2 (LSH Family (Indyk and Motwani 1998)).
Given a search radius R (R > 0) and an approximation
ratio c, a hash family H is called (R, cR, p1, p2)-sensitive
to Dist(·, ·) if, for any p,u ∈ Rd, it satisfies:

• If Dist(p,u) ≤ R, then Prh∈H[h((p) = h(u)] ≥ p1;
• If Dist(p,u) ≥ cR, then Prh∈H[h(p) = h(u)] ≤ p2.

An LSH family is valid for NNS only when c > 1 and
p1 > p2. With an (R, cR, p1, p2)-sensitive hash family, LSH
schemes can deal with the NNS in sublinear time and sub-
quadratic space.

Theorem 1 (Indyk and Motwani 1998). Given a family
H of (R, cR, p1, p2)-sensitive hash functions, one can con-
struct a data structure that finds an item vector p ∈ P such
that Dist(p,u) ≤ c · Dist(p∗,u) in O(n1+ρ) space and
O(dnρ log1/p2

n) query time, where ρ = ln p1/ ln p2 and
p∗ = argminp∈P Dist(p,u).

SimHash is a classic LSH scheme proposed by Charikar
(2002) for solving NNS on angular distance. The angular
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distance is computed as θ(p,u) = arccos( ⟨p,u⟩
∥p∥∥u∥ ) for any

p,u ∈ Rd. Its LSH function is called Sign Random Projec-
tion (SRP), i.e.,

hsrp(p) = sgn(⟨a,p⟩), (1)

where a is a d-dimensional vector with each entry drawn
i.i.d. from the standard normal distribution N (0, 1); sgn(·)
and ⟨·, ·⟩ denote the sign function and the inner product com-
putation, respectively. Let δ = θ(p,u) be the angular dis-
tance of any p and u. The collision probability is:

p(δ) = Pr[hsrp(p) = hsrp(u)] = 1− δ
π . (2)

Asymmetric LSH
Since existing LSH schemes for NNS on Euclidean or an-
gular distance are not directly applicable to MIPS, they usu-
ally perform asymmetric transformations to reduce MIPS to
NNS, known as Asymmetric LSH (ALSH).
Definition 3 (ALSH Family (Shrivastava and Li 2014)).
Given an inner product threshold S0 (S0 > 0) and an ap-
proximation ratio c, a hash family H, along with two vec-
tor transformations, i.e., I : Rd → Rd′

(Item transforma-
tion) and U : Rd → Rd′

(User transformation), is called
(S0,

S0

c , p1, p2)-sensitive to the inner product ⟨·, ·⟩ if, for any
p,u ∈ Rd, it satisfies:
• If ⟨p,u⟩ ≥ S0, then Prh∈H[h(I(p)) = h(U(u))] ≥ p1;
• If ⟨p,u⟩ ≤ S0

c , then Prh∈H[h(I(p)) = h(U(u))] ≤ p2.
The ALSH family is valid for MIPS only when c > 1 and

p1 > p2. The transformation I (U ) is only applied to item
vectors p ∈ P (user vectors u ∈ U ). The transformations
are asymmetric if I(x) ̸= U(x) ̸= x for any x ∈ Rd.

H2-ALSH (Huang et al. 2018) is a state-of-the-art ALSH
scheme for MIPS. Let p = [p1, · · · , pd] and u = [u1, · · · ,
ud]. It designs a Query Normalized First (QNF) transforma-
tion to convert MIPS into NNS on Euclidean distance, which
is defined as follows:

I(p) = [p1, · · · , pd;
√

M2 − ∥p∥2], (3)
U(u) = [λu1, · · · , λud; 0], where λ = M/∥u∥, (4)

where M is the maximum among the l2-norms of all items
in P , i.e., M = maxp∈P ∥p∥, and [·; ·] denotes the concate-
nation of two vectors. Based on Equations 3 and 4, we have

∥I(p)−U(u)∥2 = 2M · (M − ⟨p,u⟩
∥u∥ ). (5)

Let θ be the angle of p and u. As ⟨p,u⟩/∥u∥ = ∥p∥ cos θ
≤ ∥p∥ ≤ M , we have M − ⟨p,u⟩/∥u∥ ≥ 0. Since M and
∥u∥ are fixed for a given dataset, the MIPS in Rd can be
converted into the NNS on Euclidean distance in Rd+1. Un-
fortunately, the angle θ of any p and u in high-dimensional
spaces is often close to π/2, incurring a very small cos θ.
Thus, we often have ∥p∥ cos θ ≪ M . In the worst case,
maxp∈P ∥I(p) − U(u)∥/minp∈P ∥I(p) − U(u)∥ → 1.
Suppose that this ratio is less than 2, and we set up c = 2
for approximate NNS, which is a typical setting for LSH
schemes (Tao et al. 2009; Gan et al. 2012; Huang et al.
2015). Then, any I(p) can be the NNS result of U(u) even

if ⟨p,u⟩ is small, which means that the MIPS result of H2-
ALSH for u can be arbitrarily bad.

H2-ALSH develops a homocentric hypersphere partition
strategy to split the item vectors into different blocks with
bounded l2-norms such that the item vectors with smaller l2-
norms correspond to a smaller M . This strategy can alleviate
the distortion error but still cannot remedy the issue caused
by the angle close to π/2.

The SAH Algorithm
In this section, we propose the SAH algorithm for perform-
ing RkMIPS on high-dimensional data. To be concise, we
focus on its intuition and procedure. Omitted proofs can be
found in the full version (Huang, Wang, and Tung 2022).

Shifting-invariant Asymmetric Transformation
We first introduce a Shifting-invariant Asymmetric Trans-
formation (SAT) that converts the MIPS in Rd into the NNS
on angular distance in Rd+1. Let c be the centroid of the
item set P , i.e., c = [c1, · · · , cd] = 1

n

∑
p∈P p. Suppose

that R is the radius of the smallest ball centered at c enclos-
ing all p ∈ P , i.e., R = maxp∈P ∥p − c∥. Given any item
vector p = [p1, · · · , pd] and user vector u = [u1, · · · , ud],
the item transformation I : Rd → Rd+1 and user transfor-
mation U : Rd → Rd+1 of SAT are:

I(p, c) = [p1 − c1, · · · , pd − cd;
√
R2 − ∥p− c∥2], (6)

U(u) = [λu1, · · · , λud; 0],where λ = R/∥u∥. (7)

As ∥I(p, c)∥ = ∥U(u)∥ = R, SAT maps each item vector
p ∈ P and user vector u ∈ U in Rd to the hypersphere Sd
of radius R. Based on Equations 6 and 7,

⟨I(p, c),U(u)⟩
∥I(p, c)∥ · ∥U(u)∥

=
⟨p− c,u⟩
R · ∥u∥

. (8)

The intuition of SAT comes from the fact that the MIPS
result of any vector u is shift-invariant, i.e., it is always the
same no matter where the item vectors are shifted.
Fact 1. Given a set of vectors P , the MIPS result of any
vector u is invariant whether all vectors in P are shifted by
c, i.e., argmaxp∈P⟨p,u⟩ = argmaxp∈P⟨p− c,u⟩.

According to Fact 1, as the term R · ∥u∥ in Equation 8 is
the same for any p ∈ P , we have argmaxp∈P⟨p,u⟩ =

argminp∈P arccos( ⟨I(p,c),U(u)⟩
∥I(p,c)∥·∥U(u)∥ ). Thus, SAT converts

the MIPS in Rd into the NNS on angular distance in Rd+1.
Compared with the QNF transformation, SAT introduces a
shifting operation to the item vectors, which typically re-
duces the maximum l2-norm among item vectors after the
item transformation. Moreover, according to Equation 8, the
distortion of SAT only comes from the ratio R/∥p − c∥,
which decreases the error caused by a small cos θ. Therefore,
SAT can significantly reduce the distortion error in practice,
as will be validated in our experiments.

Shifting-Aware Asymmetric LSH
ALSH Family. We first describe the hash family Hsa of
SA-ALSH for solving MIPS. Let hsrp(·) be the SRP-LSH
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Algorithm 1: SA-ALSH Indexing
Input: A set of n item vectors P , an interval ratio

b ∈ (0, 1), number of hash tables K ∈ Z+;
1 Compute ∥p∥ for each item p ∈ P and sort P in

descending order of ∥p∥;
2 j = 0; i = 0;
3 while i < n do
4 j ← j + 1; Mj ← ∥pi∥; Sj ← ∅;
5 while i < n and ∥pi∥ > bMj do
6 Sj ← Sj ∪ {pi}; i← i+ 1;

7 cj =
1

|Sj |
∑

p∈Sj
p; Rj = maxp∈Sj

∥p− cj∥;
8 Ij ← ∅;
9 foreach item p ∈ Sj do

10 I(p, cj)← [p1 − cj1 , · · · , pd − cjd ;√
R2

j − ∥p− cj∥2];
11 Ij ← Ij ∪ {I(p, cj)};
12 Build the K hash tables for Ij using SimHash;
13 t← j;

function in Equation 1. Given the centroid c of item vectors,
I(p, c) and U(u) in Equations 6 and 7, respectively, the
hash familyHsa of hash functions hsa is:

hsa(x) =

{
hsrp(I(x, c)), if x ∈ P,
hsrp(U(x)), if x ∈ U . (9)

According to Equation 8, the collision probability of
hsa(·) for certain p,u is computed as follows:

Pr[hsa(p) = hsa(u)] = p(arccos( ⟨p−c,u⟩
R·∥u∥ )), (10)

where p(·) is the collision probability of the SRP-LSH fam-
ily as given in Equation 2. Let p1 = p(arccos( S0

R·∥u∥ )) and

p2 = p(arccos( S0

cR·∥u∥ )). With I(p, c) and U(u), we show
thatHsa is an ALSH family for ⟨·, ·⟩.
Lemma 1. Given an inner product threshold S0 (S0 > 0),
an approximation ratio c (c > 1), and an (arccos( S0

R·∥u∥ ),

arccos( S0

cR·∥u∥ ), p1, p2)-sensitive SRP hash familyH for the
NNS on angular distance, the hash familyHsa of hash func-
tions hsa(·) is (S0,

S0

c , p1, p2)-sensitive to ⟨·, ·⟩.
We now present SA-ALSH for performing MIPS with the

newly designed ALSH familyHsa. With the insight that the
item vectors with larger l2-norms belong to the MIPS re-
sults of user vectors with higher probability (Huang et al.
2018; Yan et al. 2018; Liu et al. 2020), we introduce a data-
dependent partitioning strategy to build the index separately
for different norm-based partitions of item vectors.

Indexing Phase. The indexing phase of SA-ALSH is de-
picted in Algorithm 1. Given a set of item vectors P , we
first compute the l2-norm ∥p∥ of each p ∈ P and sort
them in descending order (Line 1). Let b be the interval ratio
(0 < b < 1). We partition P into t disjoint subsets {Sj}tj=1

such that bMj < ∥p∥ ≤ Mj for each p ∈ Sj , where

Algorithm 2: SA-ALSH
Input: User vector u, query vector q, k ∈ Z+;

1 C = ∅; φ = −∞;
2 for j = 1 to t do
3 µj = Mj · ∥u∥;
4 if φ > µj then return yes;
5 U(u) = [Rju1/∥u∥, · · · , Rjud/∥u∥; 0];
6 C ← C ∪ SimHash(Sj ,U(u)

)
;

7 φ← the kth largest inner product among the item
vectors in C with u;

8 if ⟨u, q⟩ < φ then return no;
9 return yes;

Mj = maxp∈Sj
∥p∥ (Lines 4–6). For each Sj , we first com-

pute its centroid cj and radius Rj , i.e., cj = 1
|Sj |

∑
p∈Sj

p

and Rj = maxp∈Sj
∥p− cj∥ (Line 7). According to Equa-

tion 6, we apply I : Rd → Rd+1 to convert each p ∈ Sj into
I(p, cj) (Lines 8–11). Finally, we generate a set of SRP-
LSH functions and apply SimHash to build the index for all
I(p, cj)’s (Line 12).

Note that M1, · · · ,Mt are sorted in descending order of
l2-norms and thus can be leveraged to estimate the upper
bound for pruning item vectors in a batch. The number of
partitions t is automatically determined by the l2-norms of
item vectors and the interval ratio b. As the item vectors are
partitioned into subsets and based on different centroids for
the shifting-invariant asymmetric transformation, it is called
the Shifting-Aware ALSH (SA-ALSH).

Query Phase. The query phase of SA-ALSH is shown in
Algorithm 2. Given a user vector u and a query vector q,
SA-ALSH aims to identify a set of candidates C from S1 to
St to determine whether or not the query q is included in
the kMIPS results of u. Let φ be the largest inner prod-
uct of p ∈ P and u found so far. We initialize C as an
empty set (Line 1). For each Sj , we can determine an up-
per bound for the item vectors based on Mj and ∥u∥, i.e.,
µj = Mj · ∥u∥ (Line 3). It is because based on the Cauchy-
Schwarz inequality, as bMj < ∥p∥ ≤ Mj for any p ∈ Sj ,
we have ⟨p,u⟩ ≤ ∥p∥ · ∥u∥ ≤ Mj · ∥u∥. If φ > µj ,
we can prune Sj and the rest partitions {Sj+1, · · · ,St} in
a batch and return “yes” (Line 4) since Mj > Mj+1 and
µj > µj+1, q belongs to the kMIPS results of u; otherwise,
we apply U : Rd → Rd+1 to convert u into U(u) (Line 5),
call SimHash to perform NNS on Sj (Line 6), and update φ
(Line 7). If ⟨u, q⟩ < φ, which means that q is not included
in the kMIPS results of u, we can safely stop and return “no”
(Line 8). Finally, we return “yes” as q is kept in the kMIPS
results of u (Line 9).

As SA-ALSH first performs kMIPS on the item vectors
with the largest l2-norms, which most probably contain the
kMIPS results of u, the search process can be stopped early
and effectively avoid evaluating a large number of false pos-
itives. Based on Theorem 1 and Lemma 1, we demonstrate
that SA-ALSH achieves a theoretical guarantee for solving
MIPS in sublinear time and subquadratic space.
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Theorem 2. Given a hash family HSA of hash functions
hsa(·) as defined by Equation 9, SA-ALSH is a data structure
that finds an item vector p ∈ P for any user vector u ∈
Rd such that ⟨p,u⟩ ≤ ⟨p∗,u⟩/c with constant probability
in O(dnρ log1/p2

n) time and O(n1+ρ) space, where ρ =

ln(1/p1)/ ln(1/p2) and p∗ = argmaxp∈P⟨p,u⟩.

Cone-Tree Blocking
Suppose that θp,u is the angle of an item vector p and a
user vector u. As ⟨p,u⟩ = ∥p∥ · ∥u∥ cos θp,u, we have
another fact that the l2-norm ∥u∥ of u does not affect its
MIPS result. Formally,
Fact 2. Given a set of item vectors P , the MIPS result of
any user vector u is independent of its l2-norm ∥u∥, i.e.,
argmaxp∈P⟨p,u⟩ = argmaxp∈P ∥p∥ cos θp,u.

Based on Fact 2, we simply assume that all user vectors
are unit vectors, i.e., ∥u∥ = 1 for every u ∈ U . Fact 2 also
implies that the MIPS result is only affected by the direction
of u. Motivated by this, we design a new blocking strategy
for user vectors based on Cone-Tree (Ram and Gray 2012).

Cone-Tree Structure. We first review the basic structure
of Cone-Tree (Ram and Gray 2012). The Cone-Tree is a bi-
nary space partition tree. Each node N consists of a subset
of user vectors, i.e., N.S ⊂ U . Let |N | be the number of
user vectors in a node N , i.e., |N | = |N.S|. Any node N
and its two children N.lc and N.rc satisfy two properties:
|N.lc| + |N.rc| = |N | and N.lc.S ∩ N.rc.S = ∅. Specif-
ically, N.S = U if N is the root of the Cone-Tree. Each
node maintains a cone structure for its user vectors, i.e.,
the center N.c = 1

|N |
∑

u∈N.S u and the maximum angle

N.ω = maxu∈N.S arccos( ⟨u,N.c⟩
∥u∥·∥N.c∥ ).

Upper Bounds for RkMIPS. Based on the cone structure,
we present an upper bound to prune a group of user vectors
for RkMIPS. Let ϕ be the angle of N.c and a query q.
Lemma 2 (Node-Level Upper Bound). Let the function
{θ}+ = max{θ, 0}. Given a query q and a node N that
contains a subset of user vectors N.S centered at N.c with
the maximum angle N.ω, the maximum possible ⟨u, q⟩ of
any user vector u ∈ N.S and q is bounded as follows:

max
u∈N.S

⟨u, q⟩ ≤ ∥q∥ cos({ϕ−N.ω}+). (11)

The node-level upper bound can prune all user vectors
within a node in a batch, whereas it might not be tight for
each user vector. To perform vector-level pruning, we fur-
ther maintain cone structures for the user vectors in each leaf
node N . As such, we quickly get an upper bound for each
u ∈ N.S. The advantage is that all cones share the same
center N.c and only an angle θu of each u and N.c is kept.
Lemma 3 (Vector-Level Upper Bound). Given a query q
and a leaf node N that maintains the angle θu of each user
vector u ∈ N.S and the center N.c, the maximum possible
⟨u, q⟩ of each u ∈ N.S and q is bounded as follows:

⟨u, q⟩ ≤ ∥q∥ cos(|ϕ− θu|). (12)
Compared with the Cauchy-Schwarz inequality ⟨u, q⟩ ≤
∥u∥·∥q∥ = ∥q∥ used in Simpfer (Amagata and Hara 2021),
since cos(|ϕ− θu|) ≤ 1, Equation 12 is strictly tighter.

Algorithm 3: Cone-Tree Construction
Input: Subset S ⊆ U , maximum leaf size N0;

1 N.S ← S; N.c← 1
|N |

∑
u∈N.S u;

2 N.ω ← maxu∈N.S arccos( ⟨u,N.c⟩
∥u∥·∥N.c∥ );

3 if |N | > N0 then ▷ internal node
4 Select a point v ∈ N.S uniformly at random;
5 ul ← argminu∈S⟨u,v⟩;
6 ur ← argminu∈S⟨u,ul⟩;
7 Sl ← {u ∈ S | cos θu,ul

≥ cos θu,ur
};

8 Sr ← S \ Sl;
9 N.lc← Cone-Tree Construction(Sl, N0);

10 N.rc← Cone-Tree Construction(Sr, N0);
11 return N ;
12 else ▷ leaf node
13 foreach u ∈ N.S do
14 θu ← arccos( ⟨u,N.c⟩

∥u∥·∥N.c∥ );

15 return N ;

Cone-Tree Blocking. We now present our blocking strat-
egy based on Cone-Tree to partition the set of user vectors U .
We first show the pseudocode of Cone-Tree construction in
Algorithm 3. The center N.c and the maximum angle N.ω
are maintained within each node N (Lines 1 & 2). For an
internal node N , the splitting procedure is performed with
three steps: (1) we select a random point v ∈ N.S (Line 4);
(2) we find the point ul with the minimum inner product of
v, i.e., ul = argminu∈S⟨u,v⟩ (Line 5); (3) we find an-
other point ur with the minimum inner product of ul, i.e.,
ur = argminu∈S⟨u,ul⟩ (Line 6). As we assume that all
user vectors are unit vectors, the point ur with the mini-
mum inner product of ul is also the one with the largest
angle. As such, we use linear time (i.e., O(|N | · d)) to ef-
ficiently find a pair of pivot vectors ul and ur with a large
angle. Then, we assign each u ∈ N.S to the pivot having
a smaller angle with u and thus split S into two subsets
Sl and Sr (Lines 7 & 8). For a leaf node N , we addition-
ally maintain the angle θu between each u ∈ N.S and N.c
(Lines 13 & 14). Suppose N0 is the maximum leaf size. We
start by assigning all user vectors in U to the root node. The
Cone-Tree is built by performing the splitting procedure re-
cursively from the root node until all leaf nodes contain at
most N0 user vectors. By the Cone-Tree construction, each
leaf node contains a set of user vectors close to each other.
Thus, the leaf nodes are used as the blocks of user vectors.

Shifting-aware Asymmetric Hashing
Finally, we combine SA-ALSH with the Cone-Tree blocking
strategy and propose the Shifting-aware Asymmetric Hash-
ing (SAH) algorithm for solving RkMIPS. SAH uses SA-
ALSH to speed up the kMIPS on item vectors. Furthermore,
it leverages the Cone-Tree blocking strategy along with node
and vector-level upper bounds for pruning user vectors. In
addition, it inherits the basic idea of Simpfer (Amagata and
Hara 2021) to utilize the lower-bound arrays of user vectors
to get a quick answer for the kMIPS.
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Algorithm 4: SAH Indexing
Input: Item set P , user set U , kmax ∈ Z+, number of

hash tables K ∈ Z+, maximum leaf size N0;
1 Compute ∥pj∥ for each item pj ∈ P;
2 Sort P in descending order of ∥pj∥;
3 P ′ ← the first O(kmax) items of P;
4 foreach user ui ∈ U do
5 S ← kmaxMIPS of ui on P ′;
6 foreach p∗

j ∈ S do
7 Lj

i ← ⟨ui,p
∗
j ⟩;

8 Build an SA-ALSH index for P \ P ′;
9 T ← Cone-Tree Construction(U , N0);

10 B ← Extract all leaf nodes from T ;
11 foreach block B ∈ B do
12 foreach user ui ∈ B do
13 for j = 1 to kmax do
14 Lj(B)← min{Lj(B), Lj

i};

Indexing Phase. The indexing phase of SAH is depicted
in Algorithm 4. Given a set of item vectors P and a set of
user vectors U , it first computes ∥pj∥ for each pj ∈ P and
sort P in descending order of ∥pj∥ (Lines 1 & 2). Let P ′

be the first O(kmax) item vectors in the sorted P . It then
retrieves the kmaxMIPS results S on P ′ and computes a
lower-bound array Li of size kmax for each ui ∈ U , i.e.,
Lj
i = ⟨ui,p

∗
j ⟩, where p∗

j is the item of the jth (1 ≤ j ≤
kmax) largest inner product in S (Lines 3–7). Next, it calls
Algorithm 1 to builds an SA-ALSH index forP\P ′ (Line 8)
and calls Algorithm 3 to build a Cone-Tree T for U (Line 9).
Then, it extracts each leaf node in the Cone-Tree T as a
block B ∈ B for SAH (Line 10). Finally, it maintains a
lower-bound array L(B) of size kmax for each block B ∈ B
(Lines 11–14).

Query Phase. The query phase of SAH is shown in Al-
gorithm 5. Since every user ui ∈ U might be included in
the RkMIPS results of the query q, SAH checks each block
B ∈ B individually. According to Lemma 2, it first ver-
ifies if ∥q∥ cos({ϕ − N.ω}+) < Lk(B) or not (Line 3).
If yes, it is safe to skip all user vectors in B; otherwise,
each user ui in B should be further checked. Then, based
on Lemma 3, it determines whether ∥q∥ cos(|ϕ − θui

|) <
Lk
i (Line 5). If yes, ui can be pruned; otherwise, it com-

putes the actual inner product ⟨ui, q⟩ and prunes ui when
⟨ui, q⟩ < Lk

i (Line 6). If ui still cannot be pruned, since
the item vectors are sorted in descending order of their l2-
norms, ∥ui∥ · ∥pk∥ = ∥pk∥ is the upper bound of the kth
largest inner product of ui. If ⟨ui, q⟩ ≥ ∥pk∥, ui can be
added to the RkMIPS results S of q; otherwise, SA-ALSH
(i.e., Algorithm 2) is called for performing kMIPS on ui to
decide whether q is in the kMIPS results among P ∪ {q},
and ui is added to S if the answer ans is “yes” (Lines 7–11).
Finally, it returns S as the RkMIPS results of q (Line 12).

Based on Theorem 2, we prove that SAH has a theoretical
guarantee for RMIPS in subquadratic time and space.

Algorithm 5: SAH
Input: query vector q, k ∈ Z+, item set P , user set

U , Cone-Tree blocks B;
1 S ← ∅;
2 foreach block B ∈ B do
3 if ∥q∥ cos({ϕ−N.ω}+) < Lk(B) then continue;
4 foreach user ui ∈ B do
5 if ∥q∥ cos(|ϕ− θui

|) < Lk
i then continue;

6 if ⟨ui, q⟩ < Lk
i then continue;

7 if ∥pk∥ > ⟨ui, q⟩ then
8 ans ← SA-ALSH(ui, q, k);
9 if ans = yes then S ← S ∪ {ui};

10 else
11 S ← S ∪ {ui};

12 return S;

Theorem 3. Given a set of n item vectors P and a set of m
user vectors U (m = O(n)), SAH is a data structure that
finds each user vector u ∈ U for any query vector q ∈ Rd

such that q is the MIPS result of u among P∪{q} with con-
stant probability in O(dn1+ρ log1/p2

n) time and O(n1+ρ)

space, where ρ = ln(1/p1)/ ln(1/p2).

Experiments
Setup. We evaluate the performance of SAH for RkMIPS
through extensive experiments. We compare SAH with one
state-of-the-art kMIPS method H2-ALSH1 and the only
known RkMIPS method Simpfer.2 To provide a more sys-
tematic comparison, we integrate the RkMIPS optimizations
of Simpfer into H2-ALSH as a new baseline called H2-
Simpfer. All methods are implemented in C++ and compiled
by g++-8 using -O3 optimization. We conduct all experi-
ments on a server with an Intel® Xeon® Platinum 8170 CPU
@ 2.10GHz and 512 GB memory, running on CentOS 7.4.
Each method is run on a single thread.

In the experiments, we use five real-world recommenda-
tion datasets, i.e., Amazon-Auto,3 Amazon-CDs,4 Movie-
Lens,5 Music100 (Morozov and Babenko 2018), and Net-
flix (Bennett and Lanning 2007). The numbers of item
and user vectors (n,m) in Amazon-Auto, Amazon-CDs,
MovieLens, Music100, and Netflix are (925387, 3873247),
(64443, 75258), (10681, 71567), (1000000, 1000000), and
(17770, 480189), respectively. For each dataset, the dimen-
sionality d is 100, and we randomly select 100 item vectors
as queries. The detailed procedures of dataset generation are
described in the full version (Huang, Wang, and Tung 2022).

We use the query time to evaluate search efficiency and
the F1-score to assess search accuracy. For SAH, we use
K = 128 hash tables in SA-ALSH and set the leaf size

1https://github.com/HuangQiang/H2 ALSH
2https://github.com/amgt-d1/Simpfer
3https://nijianmo.github.io/amazon/index.html
4http://jmcauley.ucsd.edu/data/amazon/index 2014.html
5https://grouplens.org/datasets/movielens/
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Figure 1: Query performance of different algorithms.

N0 = 20 in Cone-Tree. We fix b = 0.5 for SAH, H2-ALSH,
and H2-Simpfer and set kmax = 50 for SAH, Simpfer, and
H2-Simpfer; for other parameters in Simpfer and H2-ALSH,
we use their default values (Amagata and Hara 2021; Huang
et al. 2018). All results are averaged by repeating each ex-
periment five times with different random seeds.

Query Performance. We evaluate the performance of all
methods for RkMIPS with varying k ∈ {1, 5, 10, 20, 30, 40,
50}. The results are shown in the first two rows of Figure 1.

From the first row of Figure 1, we observe that SAH
is about 4∼8× faster than Simpfer. This is because SAH
leverages SA-ALSH to conduct the kMIPS on item vectors,
each in O(dnρ log n) time, where 0 < ρ < 1. In contrast,
Simpfer retrieves the kMIPS results by performing a linear
scan over all item vectors, which requires O(nd) time. Com-
pared with H2-ALSH, the advantage of SAH is more appar-
ent: it runs nearly or over two orders of magnitude faster
than H2-ALSH. In particular, on the Music100 dataset, H2-
ALSH is about three orders of magnitude slower than other
methods, and it requires taking more than one day to com-
plete all queries. This observation justifies that leveraging
the existing hashing schemes (e.g., H2-ALSH) to speed up
the kMIPS for each user vector is not efficient for RkMIPS.
It also validates the effectiveness of our Cone-Tree block-
ing for pruning user vectors. Besides, SAH always runs (up
to 8×) faster than H2-Simpfer. Since both methods utilize
sublinear-time algorithms for kMIPS, this finding further
confirms the effectiveness of our pruning strategies based
on the cone structure.

Moreover, we plot the curves of F1-score vs. k of all
methods in the second row of Figure 1. As Simpfer is an

exact RkMIPS method, its F1-scores are always 100%. The
F1-scores of SAH across all datasets are over 90% and con-
sistently higher than those of H2-ALSH and H2-Simpfer.
This advantage is attributed to the reductions in distortion
errors coming from the shifting-invariant asymmetric trans-
formation compared with the QNF transformation used in
H2-ALSH and H2-Simpfer.

Finally, we illustrate the query time of each algorithm as
a function of F1-score when k = 10 to compare their trade-
offs between time efficiency and query accuracy in the third
row of Figure 1. For each LSH-based algorithm, we present
its query time and F1-score by varying the number of probed
buckets until either the F1-score reaches 100%, or the total
number of probed buckets exceeds 50%. Since Simpfer is
an exact algorithm without hash-based partitioning, we only
plot its query time @100% F1-score. The results are con-
sistent with the ones for varying k in the first two rows of
Figure 1. We observe that (1) SAH uniformly achieves the
best trade-off between efficiency and accuracy in all cases;
(2) the query time of SAH is still much lower than that of
Simpfer when its F1-score approaches 100%. These results
confirm the superior effectiveness and efficiency of SAH for
RkMIPS in a more detailed manner.

Indexing Time. We present the indexing time of each al-
gorithm in Table 1. H2-ALSH always takes the least time
for index construction because it only builds an index on
item vectors. Nevertheless, it cannot prune any user vector
in the RkMIPS processing. Thus, its query efficiency is not
comparable to other algorithms for solving RkMIPS. The
indexing time of SAH is slightly (1.05∼1.43×) longer than
that of Simpfer, primarily because of the additional cost of
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Figure 2: Ablation Study for SAH with varying k ∈ {1, 5, 10, 20, 30, 40, 50}.

Dataset Simpfer H2-ALSH H2-Simpfer SAH

Amazon-Auto 329.8 19.7 294.1 428.0
Amazon-CDs 9.4 1.3 9.7 11.5
MovieLens 2.6 0.1 1.9 2.7
Music100 32.8 9.3 32.2 46.6

Netflix 18.5 0.2 13.3 20.8

Table 1: Indexing time (in seconds) of each algorithm.

building the Cone-Tree. Nevertheless, the indexing phase of
SAH can always be completed within 7.2 minutes, even on
the Amazon-Auto dataset with nearly 1M items and 3.8M
users. This finding indicates that the index construction of
SAH is scalable to large datasets.

Ablation Study. We conduct an ablation study for SAH.
To validate the effectiveness of SA-ALSH and the Cone-
Tree blocking strategy separately, we first remove the Cone-
Tree blocking strategy from SAH and integrate the Simpfer
optimizations into SA-ALSH as a new baseline called SA-
Simpfer. Then, we replace SA-ALSH with H2-ALSH while
retaining the Cone-Tree blocking strategy as another base-
line called H2-Cone. We show the results of H2-Simpfer,
H2-Cone, SA-Simpfer, and SAH in Figure 2.

From the first row of Figure 2, we discover that H2-
Simpfer takes longer query time than SA-Simpfer in al-
most all cases. This observation validates that SA-ALSH is
more efficient than H2-ALSH for performing kMIPS, which
would be because SA-ALSH incurs less distortion error than
H2-ALSH, so that it finds the kMIPS results as early as pos-
sible and triggers the upper bound µj = Mj∥u∥ of the user
vector u for early pruning. Moreover, we find that the query
time of H2-Cone and SAH is uniformly shorter than H2-
Simpfer and SA-Simpfer, respectively. This finding confirms
the effectiveness of the Cone-Tree blocking compared with
the norm-based blocking in Simpfer. For some datasets such
as Amazon-Auto and Music100, the advantage of the Cone-
Tree blocking is not very apparent because the effectiveness
of upper bounds in Lemmas 2 and 3 to prune unnecessary

inner product evaluations relies on the angle distribution of
user vectors, and they might be less useful when the angles
between most pairs of user vectors are close to π/2.

From the second row of Figure 2, we discover that the F1-
scores of H2-Simpfer and H2-Cone are worse than those of
SA-Simpfer and SAH, and their results are also less stable.
This discovery empirically justifies the effectiveness of SAT
in reducing the distortion error so that SA-Simpfer and SAH,
where SA-ALSH is used for kMIPS, have higher F1-scores
than H2-Simpfer and H2-Cone. These results are consistent
with Figure 1. Finally, H2-Cone and SA-Simpfer are inferior
to SAH in almost all cases, which validates that the integra-
tion of SA-ALSH and Cone-Tree-based blocking further im-
proves the performance upon using them individually with
existing blocking methods or ALSH schemes.

In addition, we also study the impact of the parameters of
SAH and validate the effectiveness of SA-ALSH for kMIPS.
Due to space limitations, the results and analyses are left to
the full version (Huang, Wang, and Tung 2022).

Conclusion
In this paper, we studied a new yet difficult problem called
RkMIPS on high-dimensional data. We proposed the first
subquadratic-time algorithm SAH to tackle the RkMIPS ef-
ficiently and effectively in two folds. First, we developed a
novel sublinear-time hashing scheme SA-ALSH to acceler-
ate the kMIPS on item vectors. With the shifting-invariant
asymmetric transformation, the distortion errors were re-
duced significantly. Second, we devised a new Cone-Tree
blocking strategy that effectively pruned user vectors (in a
batch). Extensive experiments on five real-world datasets
confirmed the superior performance of SAH in terms of
search accuracy and efficiency. Our work will likely con-
tribute to opening up a new research direction and providing
a practical solution to this challenging problem.

In future work, since the SAH algorithm achieves a the-
oretical guarantee for solving RkMIPS only when k = 1,
it would be interesting to design a subquadratic-time algo-
rithm for approximate RkMIPS with any k > 1.
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