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Abstract

Learning the underlying distribution of molecular graphs and
generating high-fidelity samples is a fundamental research
problem in drug discovery and material science. However, ac-
curately modeling distribution and rapidly generating novel
molecular graphs remain crucial and challenging goals. To
accomplish these goals, we propose a novel Conditional Dif-
fusion model based on discrete Graph Structures (CDGS)
for molecular graph generation. Specifically, we construct
a forward graph diffusion process on both graph structures
and inherent features through stochastic differential equations
(SDE) and derive discrete graph structures as the condition
for reverse generative processes. We present a specialized
hybrid graph noise prediction model that extracts the global
context and the local node-edge dependency from interme-
diate graph states. We further utilize ordinary differential
equation (ODE) solvers for efficient graph sampling, based
on the semi-linear structure of the probability flow ODE.
We also combine the solvers with gradient guidance from
the molecule property predictor for similarity-constrained
molecule optimization. Experiments on diverse datasets vali-
date the effectiveness of our framework. Particularly, the pro-
posed method still generates high-quality molecular graphs in
a limited number of steps.

Introduction
Dating back to the early works of Erdős Rényi random
graphs (Erdős, Rényi et al. 1960), graph generation has
been extensively studied for applications in biology, chem-
istry, and social science. Recent graph generative models
make great progress in graph distribution learning by ex-
ploiting the capacity of neural networks. Models for molec-
ular graph generation are notable for their success in repre-
senting molecule structures and restricting molecule search
space, which facilitates drug discovery and material design.
In terms of the sampling process of graph generative mod-
els, autoregressive generation constructs molecular graphs
step-by-step with decision sequences (You et al. 2018a; Jin,
Barzilay, and Jaakkola 2018; Shi et al. 2020; Luo, Yan, and
Ji 2021), whereas one-shot generation builds all graph com-
ponents at once (Zang and Wang 2020; Lippe and Gavves
2021; Liu et al. 2021). Recently, diffusion-based models
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have been applied effectively to one-shot molecular graph
generation (Jo, Lee, and Hwang 2022), highlighting the ad-
vantages of flexible model architecture requirements and
graph permutation-invariant distribution modeling.

However, current diffusion-based models for molecular
graphs still suffer from generation quality and sampling
speed issues. In the work of Jo, Lee, and Hwang, the gen-
erated graph distribution faces an obvious distance from the
true distribution of datasets. Furthermore, their sampling
process relies heavily on extra Langevin correction steps
(Song et al. 2021) to diminish approximation errors, which
largely increases computational cost and inference time, im-
plying insufficient expressiveness of the graph score esti-
mate model. We argue that two major factors hinder the
practice of diffusion-based models for molecular graph gen-
eration. One is to focus on real-number graph formulation
(i.e., representing molecules as node feature and edge fea-
ture matrices) while neglecting the discrete graph structures,
making it difficult to extract accurate local motifs from noisy
real-number matrices for denoising and staying close to the
true graph distribution. The other is that a straightforward
graph neural network design may not be strong enough
to fully model the node-edge dependency from corrupted
graphs and further satisfy the complex generation require-
ments, such as local chemical valency constraints, atom type
proportion closeness, and global structure pattern similarity.

To address these issues, we propose a novel Conditional
Diffusion model based on discrete Graph Structures (CDGS)
for molecular graph generation. We find that considering
graph discreteness and designing suitable graph noise pre-
diction models could boost the ability of diffusion models in
the graph domain, allowing for faster sampling and down-
stream applications.

Graph discreteness. We develop a simple yet effective
method for incorporating discrete graph structures without
using special discrete state spaces. Along with variables for
node and edge features, additional one-bit discrete variables
are added to indicate the existence of edges. We convert
them to real numbers and determine the quantization thresh-
old. In our diffusion framework, the continuous forward pro-
cess is applied directly to edge existence variables, but for
the reverse process, discrete graph structures are decoded
first and serve as the condition for each sampling step.

Graph noise prediction model. We design a hybrid graph
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noise prediction model composed of standard message pass-
ing layers on discrete graphs and attention-based message
passing layers on fully-connected graphs. The first concen-
trates on neighbor node-edge dependency modeling, and the
second on global information extraction and transmission.
Unlike (Jo, Lee, and Hwang 2022) which utilizes separate
networks for node and edge denoising, we apply the unified
graph noise prediction model to explicitly interact with the
node and edge representations from both real-valued matri-
ces and discrete graph structures.

Fast sampling and downstream applications. We em-
ploy stochastic differential equations (SDEs) to describe the
graph diffusion process. With the simple Euler-Maruyama
method, our diffusion-based model can obtain high-fidelity
samples in 200 steps of network evaluations, much fewer
steps than the previous method. We can benefit from re-
cent research on probability flow ordinary differential equa-
tions (ODE) (Zhang and Chen 2022; Lu et al. 2022) to fur-
ther promote fast graph sampling because we preserve the
real-number graph description as an integral part of SDE.
Therefore, we introduce fast ODE solvers utilizing the semi-
linear structure of probability flow ODEs for graphs. Ex-
ploiting ODE solvers, we also construct a useful pipeline
for similarity-constrained molecule optimization based on
latent space determined by the parameterized ODE and gra-
dient guidance from the graph property predictor.

Our main contributions are summarized as follows:

• We propose a novel conditional diffusion framework
based on discrete graph structures. Leveraging a special-
ized graph noise prediction model, our framework ac-
curately models the complex dependency between graph
structures and features during the generative process.

• We promote high-quality rapid graph sampling by adapt-
ing ODE solvers that utilize the semi-linear structure of
the probability flow ODE. These ODE solvers also serve
as the foundation for our effective similarity-constrained
molecule optimization pipeline.

• Experimental results demonstrate that our method out-
performs the state-of-the-art baselines in both molecular
graph and generic graph generation.

Methodology
Conditional Graph Diffusion
The first step in constructing diffusion probabilistic mod-
els (Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020;
Song et al. 2021; Kingma et al. 2021) is to define a forward
process that perturbs data with a sequence of noise until the
output distribution becomes a known prior distribution. As-
suming a continuous random variable x0 ∈ Rd and a well-
defined forward process {xt}t∈[0,T ], we have

q0t(xt|x0) = N (xt|αtx0, σ
2
t I) , (1)

where αt, σt ∈ R+ are time-dependant differentiable func-
tions. αt and σt are usually chosen to ensure that qT (xT ) ≈
N (0, I) with the decreasing signal-to-noise ratio α2

t /σ
2
t . By

learning to reverse such a process, the diffusion model gen-
erates new samples from the prior distribution.

It is a simple way to apply diffusion models to the graph
domain by formulating graphs as high-dimensional vari-
ables G ∈ RN×F × RN×N composed of N node fea-
tures with F dimensions and an edge type matrix (Jo, Lee,
and Hwang 2022). We argue that overlooked discrete graph
structures, including motifs like rings and stars, may provide
extra clues for node-edge dependency modeling and graph
denoising. We propose to separate the edge existence matrix
from the edge type matrix and utilize a one-bit discrete vari-
able representing the existence of a possible edge, forming
Ā ∈ {0, 1}N×N for the whole graph. Instead of design-
ing special discrete state spaces for discrete variables like
(Hoogeboom et al. 2021; Austin et al. 2021), we turn bits
into real numbers and determine a quantization threshold.
Thus, we can conveniently apply the continuous diffusion
process to these variables and decode them with quantiza-
tion back to discrete graph structure Āt for t ∈ [0, T ]. The
discrete graph structures can be plugged into the reverse pro-
cess and function as conditions.

We redefine the graph G by real-number node features
X ∈ RN×F and edge information A ∈ R2×N×N (one
channel for edge existence which can be quantized to Ā and
the other for edge types). The forward diffusion process for
graphs shown in Figure 1 can be described by the stochas-
tic differential equation (SDE) sharing the same transition
distribution in Eq. 1 (Kingma et al. 2021) with t ∈ [0, T ] as

dGt = f(t)Gtdt+ g(t)dwt , (2)

where f(t) = d logαt

dt is the drift coefficient, g2(t) = dσ2
t

dt −
2d logαt

dt σ2
t is the diffusion coefficient, and wt is a standard

Wiener process. The reverse-time SDE from T to 0 (Song
et al. 2021) corresponding to Eq. 2 is denoted as:
dGt = [f(t)Gt− g2(t)∇G log qt(Gt)]dt+ g(t)dw̄t , (3)

where ∇G log qt(Gt) is the graph score function and w̄t is
the reverse-time standard Wiener process. We further split
the reverse-time SDE into two parts that share the drift and
diffusion coefficients as{
dXt = [f(t)Xt − g2(t)∇X log qt(Xt,At)]dt + g(t)dw̄1

t

dAt = [f(t)At − g2(t)∇A log qt(Xt,At)]dt + g(t)dw̄2
t
.

(4)
We use a neural network ϵθ(Gt, Āt, t) with discrete graph
structure conditioning to parameterize the σt-scaled par-
tial scores in Eq. 4, where the node output of the neu-
ral network is denoted by ϵθ,X(Gt, Āt, t) to estimate
−σt∇X log qt(Xt,At), and the edge output is denoted
by ϵθ,A(Gt, Āt, t) to estimate −σt∇A log qt(Xt,At). The
model is optimized by the objective (Ho, Jain, and Abbeel
2020; Song et al. 2021) as follows:

min
θ

Et{w(t)EG0
EGt|G0

[||ϵθ,X(Gt, Āt, t)− ϵX ||22+

||ϵθ,A(Gt, Āt, t)− ϵA||22]} ,
(5)

where w(t) is a given positive weighting function, ϵX and
ϵA are the sampled Gaussian noise, and Gt = (αtX0 +
σtϵX , αtA0 + σtϵA). The training process is summa-
rized in Algorithm 1. In practice, we use the Variance-
Preserving (VP) SDE for implementation, with the defini-
tion that f(t) = − 1

2β(t), g(t) =
√

β(t), and β(t) =
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Figure 1: (Left) Forward diffusion process that perturbs molecular graphs towards a known prior distribution. A graph G0 is
denoted by a node feature matrix X0 and a two-channel edge matrix A0 for edge types and existence. (Right) Discretized
reverse generative process with discrete graph structure conditioning.

β̄min + t(β̄max − β̄min). With the optimized ϵθ and nu-
merical solvers discretizing the SDE trajectory, shown in the
right of Figure 1, new graph samples can be generated by
solving the parameterized reverse-time SDE.

Graph Noise Prediction Model
Since ϵθ(Gt, Āt, t) can be considered to predict the noise
that is added to the original graphs, we refer to it as the
graph noise prediction model. The design of noise predic-
tion models plays a key role in diffusion-based generation,
but it is still an open problem for the graph domain. Apply-
ing the standard graph neural networks used in graph classi-
fication and link prediction tasks is not an appropriate choice
due to the immediate real-number graph states and the com-
plicated requirements for graph distribution learning. In the
case of molecular graphs, the model should focus on local
node-edge dependence for chemical valency rules and at-
tempt to recover global graph patterns like edge sparsity,
frequent ring subgraphs, and even atom-type distribution.

To meet these challenges, we propose a hybrid message
passing block (HMPB) consisting of two different kinds of
message passing layers to explicitly model structure and fea-
ture dependency in both real-valued matrices (Xt and At)
and discrete graphs (Āt). One is a standard message pass-
ing layer like GINE (Hu et al. 2020) to aggregate local
neighbor node-edge features, relying on the decoded dis-
crete graph structures. The other one is a fully-connected
attention-based message passing layer to focus on global in-
formation extraction and transmission. We denote the node
and edge representation update process in the l-th HMPB as

H l+1,El+1 = HMPBl(H l,El, Ā),

with M l+1 = GINEl(H l,El, Ā) + ATTNl(H l,El),

H l+1 = FFNl
0(M

l+1),

El+1
i,j = FFNl

1(M
l+1
i +M l+1

j ),
(6)

where H l ∈ RN×d and El ∈ RN×N×d are node and edge
inputs, M l+1 ∈ RN×d is the aggregated message for nodes,
El+1

i,j ∈ Rd is the (i,j)-indexed edge output; ATTNl is the
full-connected attention layer; FFNl is Feed Forward Net-
work composed of the multilayer perceptron (MLP) and nor-
malization layers. Here, the time t and residual connections
are omitted for clarity. In particular, different from (Dwivedi

and Bresson 2020; Ying et al. 2021; Kreuzer et al. 2021),
our attention layer takes edge features as the gate for both
the message and dot-product calculation to thoroughly in-
teract with node features and bias the message passing. The
key attention mechanism is denoted by

ai,j = softmax(
(tanh(ϕ0(Ei,j)) ·Qi)K

⊤
j√

d
),

ATTNi(H,E) =

N−1∑
j=0

ai,j(tanh(ϕ1(Ei,j)) · Vj),

(7)

where Q,K, V are projected from node feature H; E is the
corresponding edge feature, ϕ0 and ϕ1 are learnable projec-
tions, and tanh is the activation layer.

For the initial features H0 and E0, we not only consider
Xt and At, but also extract structural encodings and rela-
tive positional encodings from Āt. Using the m-step random
walk matrix from the discrete adjacency matrix, we adopt
the arrival probability vector as node features and obtain
the truncated shortest-path distance from the same matrix as
edge features. Time information is added to the initial fea-
tures with the sinusoidal position embedding (Vaswani et al.
2017). The final node and edge representations are respec-
tively input to MLPs for graph noise prediction. Note that
without any node ordering dependent operations, our graph
noise prediction model built upon message passing mecha-
nisms is permutation equivariant and implicitly defines the
permutation invariant graph log-likelihood function.

ODE Solvers for Few-Step Graph Sampling
To generate graphs from the parameterized SDE in Eq. 4,
the SDE trajectory needs to be stimulated with numerical
solvers. The Euler-Maruyama (EM) solver is one of the
simple and general solvers for SDEs, shown in Algorithm
2. Although our diffusion-based model can generate high-
fidelity graphs in 200 steps (a.k.a., number of function eval-
uation (NFE)) using the EM solver shown in Figure 3, such
a solver still needs relatively long steps to achieve conver-
gence in the high-dimensional data space and fails to meet
the fast sampling requirement. Since we preserve the contin-
uous real-number graph diffusion formulation, one promis-
ing fast sampling method is to use the mature black-box
ODE solvers for the probability flow ODE (Song et al. 2021)
that shares the same marginal distribution at time t with the
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SDE. Accordingly, the parameterized probability flow ODE
for graphs is defined as

dGt/dt = f(t)Gt +
g2(t)

2σt
ϵθ(Gt, Āt, t) . (8)

Recent works (Zhang and Chen 2022; Lu et al. 2022) claim
that the general black-box ODE solvers ignore the semi-
linear structure of the probability flow ODE and introduce
additional discretization errors. Therefore, new fast solvers
are being developed to take advantage of the special struc-
ture of the probability flow ODE.

For our graph ODE in Eq. 8, we further extend fast
solvers based on the semi-linear ODE structure to gener-
ate high-quality graphs within a few steps. By introducing
λt := log(αt/σt) and its inverse function tλ(·) that satis-
fies t = tλ(λ(t)), we change the subscript t to λ and get
Ĝλ := Gtλ(λ), ϵ̂θ(Ĝλ, Ā

′
λ, λ) := ϵθ(Gtλ(λ), Ātλ(λ), λ).

We can derive the exact solution of the semi-linear probabil-
ity flow ODE from time s to time t (Lu et al. 2022) as

Gt =
αt

αs
Gs − αt

∫ λt

λs

e−λϵ̂θ(Ĝλ, Ā
′
λ, λ)dλ . (9)

With the analytical linear part, we only need to approxi-
mate the exponentially weighted integral of ϵ̂θ . This approx-
imation can be achieved by various methods (Hochbruck
and Ostermann 2005, 2010), and we follow the derivation
from (Lu et al. 2022) to apply DPM-Solvers to graphs (de-
noted as GDPMS). Given the initial graph sampled from the
prior distribution G̃t0 := GT = (XT ,AT ) with the pre-
defined time step schedules {ti}Mi=0, the sequence {G̃ti =

(X̃ti , Ãti)}Mi=1 is calculated iteratively by the first-order
GDPMS as follows:{

X̃ti =
αti

αti−1
X̃ti−1

− γiϵ̂θ,X(G̃ti−1
, Ā′

ti−1
, ti−1)

Ãti =
αti

αti−1
Ãti−1

− γiϵ̂θ,A(G̃ti−1
, Ā′

ti−1
, ti−1)

,

(10)
where γi = σti(e

λti
−λti−1 − 1), and discrete graph struc-

ture Ā′
ti−1

is decoded from G̃ti−1 . The final graph sample is
derived from G̃tM with discretization. More details on high-
order ODE samplers for graphs are provided in Appendix.

ODE-Based Graph Optimization Besides efficient sam-
pling, the probability flow ODE offers latent representations
for flexible data manipulation (Song et al. 2021). Based on
the latent space determined by the parameterized ODE and
the graph DPM-Solvers assisted by gradient guidance, we
propose a useful optimization pipeline for the meaningful
similarity-constrained molecule optimization task.

Specifically, we first train an extra time-dependent graph
property predictor Rψ(Gt, t) on noisy graphs. Then we set
up a solver for the parameterized ODE in Eq. 8 to map the
initial molecular graphs at time 0 to the latent codes Gtξ
at the time tξ ∈ (0, T ]. Following the common optimiza-
tion manipulation on latent space like (Jin, Barzilay, and
Jaakkola 2018; Zang and Wang 2020), we use the predictor
to predict properties on the graph latent representation and
lead the optimization towards molecules with desired prop-
erties through the gradient ascent, producing a latent graph

Algorithm 1: Optimizing CDGS
Require: original graph data G0 = (X0,A0), graph noise
prediction model ϵθ , schedule function α(·) and σ(·), quan-
tized function quantize(·)

1: Sample t ∼ U(0, 1], ϵX ∼ N (0, I), ϵA ∼ N (0, I)
2: Gt = (Xt,At) ← (α(t)X0 + σ(t)ϵX , α(t)A0 +

σ(t)ϵA)
3: Āt ← quantize(At)
4: ϵXθ , ϵAθ ← ϵθ(Gt, Āt, t)
5: Minimize ||ϵXθ − ϵX ||22 + ||ϵAθ − ϵA||22

Algorithm 2: Sampling from CDGS with the Euler-
Maruyama method
Require: number of time steps N , graph noise prediction
model ϵθ , drift coefficient function f(·), diffusion coeffi-
cient function g(·), schedule function σ(·), quantized func-
tion quantize(·), post-processing function post(·)

1: Sample initial graph G ← (X ∼ N (0, I),A ∼
N (0, I)),

2: ∆t = T
N

3: for i← N to 1 do
4: Ā← quantize(A)
5: ϵX ∼ N (0, I), ϵA ∼ N (0, I)
6: t← i∆t
7: ϵXθ , ϵAθ ← ϵθ(G, Ā, t)

8: X ←X − (f(t)X + g(t)2

σ(t) ϵ
X
θ )∆t+ g(t)

√
∆tϵX

9: A← A− (f(t)A+ g(t)2

σ(t) ϵ
A
θ )∆t+ g(t)

√
∆tϵA

10: return post(X,A)

sequence {Gk
tξ
}Kk=0. Instead of using the same ODE as in

the forward encoding process, we introduce the gradient-
guided ODE to further drive the sampling process to the
high-property region during the decoding process from the
latent space to the molecular graph space. The ODE with
guidance can be modified from Eq. 8 as{

dXt/dt = f(t)Xt +
g2(t)
2σt

[ϵθ,X − rσt∇∗
XRψ]

dAt/dt = f(t)At +
g2(t)
2σt

[ϵθ,A − rσt∇∗
ARψ]

, (11)

where r is the guidance weight,∇∗ refers to the unit normal-
ized gradients, and the input (Gt, Āt, t) for ϵθ and (Gt, t)
for Rψ are omitted for simplicity. Notably, the GDPMS
in Eq. 10 can still work for the gradient-guided ODE by
constructing the ϵ̂θ with the predictor gradients accord-
ingly. The proposed pipeline can also be flexibly extended
for multi-objective optimization by expanding the gradient
guidance from multiple property prediction networks.

Related Work
Molecule Generation Early attempts for molecule gener-
ation introduce sequence-based generative models and rep-
resent molecules as SMILES strings (Gómez-Bombarelli
et al. 2018; Kusner, Paige, and Hernández-Lobato 2017; Dai
et al. 2018). Besides the challenge from long dependency
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modeling, these methods may exhibit low validity rates since
the SMILES string does not ensure absolute validity. There-
fore, graphs are more commonly used to represent molecule
structures in recent studies. Various graph generative models
have been proposed to construct graphs autoregressively or
in a one-shot form, based on different types of generative
models, including variational auto-encoders (Simonovsky
and Komodakis 2018; Liu et al. 2018), generative adversar-
ial networks (De Cao and Kipf 2018; Assouel et al. 2018),
and normalizing flows (Shi et al. 2020; Luo, Yan, and Ji
2021; Lippe and Gavves 2021; Zang and Wang 2020). Com-
pared to these models, our diffusion-based model advances
in stable training and flexible model architecture to consider
discrete graph structures for complicated dependency mod-
eling. In addition, (Jin, Barzilay, and Jaakkola 2018; Ahn
et al. 2022) adopt an effective tree-based graph formulation
for molecules, while our method keeps the general graph set-
tings and models permutation invariant distributions.

Diffusion Models This new family of generative models
(Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020) cor-
related with score-based models (Song et al. 2021; Song and
Ermon 2019) has demonstrated great power in the genera-
tion of high-dimensional data such as images. For molecule
science, in addition to molecular graph generation (Jo, Lee,
and Hwang 2022), diffusion models have also been ap-
plied to generate molecular conformations (Xu et al. 2022;
Jing et al. 2022) and 3D molecular structures (Hoogeboom
et al. 2022). Our framework greatly differs from the previ-
ous diffusion-based molecule generation in the conditional
reverse process and the unified model design instead of sep-
arate models for nodes and edges. Moreover, we promote
efficient molecular graph generation with training-free sam-
plers, which is primarily investigated in the image domain
(Liu et al. 2022; Zhang and Chen 2022; Lu et al. 2022).

Experiment
In this section, we display the experimental results of the
proposed discrete graph structure assisted diffusion frame-
work on multiple datasets. We provide more experiment de-
tails in Appendix, and we release the code at https://github.
com/GRAPH-0/CDGS.

Molecular Graph Generation
Experimental Setup We train and evaluate models on two
molecule datasets, ZINC250k (Irwin et al. 2012) and QM9
(Ramakrishnan et al. 2014). Before converting to graphs, all
molecules are processed to the kekulized form using RD-
Kit (Landrum 2016), where hydrogen atoms are removed
and aromatic bonds are replaced by double bonds. We eval-
uate generation quality on 10, 000 generated molecules with
the following widely used metrics. Fréchet ChemNet Dis-
tance (FCD) (Preuer et al. 2018) calculates the distance be-
tween the reference molecule set and the generated set with
the activations of the penultimate layer of ChemNet. Lower
FCD values indicate higher similarity between the two dis-
tributions. Following (Jo, Lee, and Hwang 2022), we report
FCD values after validity checking and valency correction

Figure 2: Molecular graph normalized visualization at dif-
ferent steps in the reverse generative process from the model
trained on QM9. X is the node feature matrix, A0 is the
edge type matrix, A1 is the quantized edge existence ma-
trix, and Ā is the discrete graph structure visualization.

since FCD is only calculated on valid molecules. Neighbor-
hood subgraph pairwise distance kernel (NSPDK) is the
distance measured by mean maximum discrepancy (MMD),
which incorporates node and edge features along with the
underlying graph structure. FCD and NSPDK, one from the
perspective of molecules and the other from the perspective
of graphs, are crucial for the evaluation of molecular graph
distribution learning (Jo, Lee, and Hwang 2022). VALID
w/o check is the percentage of valid molecules without post-
hoc chemical valency correction. Here, we follow the set-
ting of (Zang and Wang 2020; Jo, Lee, and Hwang 2022)
to consider the formal charges for valency checking. We
also report the results of three metrics that are used com-
monly but have obvious marginal effects, i.e., the ratio of
valid molecules (VALID), the ratio of unique molecules
(UNIQUE), and the ratio of novel molecules with reference
to the training set (NOVEL).

Baselines We compare our CDGS with several autoregres-
sive and one-shot molecular graph generative models, in-
cluding GraphAF (Shi et al. 2020), GraphDF (Luo, Yan,
and Ji 2021), MoFlow (Zang and Wang 2020), GraphCNF
(Lippe and Gavves 2021), EDP-GNN (Niu et al. 2020),
GraphEBM (Liu et al. 2021), and GDSS (Jo, Lee, and
Hwang 2022). GraphAF+FC and GraphDF+FC are the
modified versions considering formal charges for fair com-
parison. GDSS-EM is the result sampled with the EM
solver, and GDSS-VP-EM is retrained with VPSDE, shar-
ing the same SDE parameters with our model.

Generation Quality The molecular graph generation
quality benchmark results on ZINC250k and QM9 are re-
ported in Table 1. We run three times for our method and
report the mean performance. We provide the performance
bound on two distribution metrics by measuring the distance
between preprocessed training molecules and original test
molecules. In the first three non-trivial metrics across two
different molecule datasets, CDGS with the EM solver out-
performs state-of-the-art molecular graph generative mod-
els. The high validity rate before valency checking shows
that CDGS learns the chemical valency rule successfully and
avoids unrealistically frequent valency correction. Further-
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Method VALID w/o
check (%) ↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%) ↑

Train - 5.91e-5 0.985 - - -

Autoreg.

GraphAF 68.00 0.044 16.289 100.00 99.10 100.00
GraphAF+FC 68.47 0.044 16.023 100.00 98.64 99.99

GraphDF 89.03 0.176 34.202 100.00 99.16 100.00
GraphDF+FC 90.61 0.177 33.546 100.00 99.63 100.00

One-shot

MoFlow 63.11 0.046 20.931 100.00 99.99 100.00
GraphCNF 96.35 0.021 13.532 100.00 99.98 100.00
EDP-GNN 82.97 0.049 16.737 100.00 99.79 100.00
GraphEBM 5.29 0.212 35.471 99.96 98.79 100.00

GDSS 97.01 0.019 14.656 100.00 99.64 100.00
GDSS-EM 15.97 0.075 24.310 100.00 100.00 100.00

GDSS-VP-EM 33.01 0.048 24.471 100.00 100.00 100.00
CDGS-EM 98.13 7.03e-4 2.069 100.00 99.99 99.99

CDGS-GDPMS-200 96.19 0.001 3.037 100.00 99.98 99.99
CDGS-GDPMS-50 95.56 0.002 3.567 100.00 99.98 99.99
CDGS-GDPMS-30 93.49 0.003 4.498 100.00 99.99 99.99

Method VALID w/o
check (%) ↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%) ⋆

Train - 1.36e-4 0.057 - - -

Autoreg.

GraphAF 67.00 0.020 5.268 100.00 94.51 88.83
GraphAF+FC 74.43 0.021 5.625 100.00 88.64 86.59

GraphDF 82.67 0.063 10.816 100.00 97.62 98.10
GraphDF+FC 93.88 0.064 10.928 100.00 98.58 98.54

One-shot

MoFlow 91.36 0.017 4.467 100.00 98.65 94.72
EDP-GNN 47.52 0.005 2.680 100.00 99.25 86.58
GraphEBM 8.22 0.030 6.143 100.00 97.90 97.01

GDSS 95.72 0.003 2.900 100.00 98.46 86.27
GDSS-EM 66.01 0.016 5.112 100.00 90.05 94.24

GDSS-VP-EM 86.02 0.013 4.588 100.00 89.03 88.63
CDGS-EM 99.68 3.08e-4 0.200 100.00 96.83 69.62

CDGS-GDPMS-200 99.54 3.68e-4 0.269 100.00 97.20 72.52
CDGS-GDPMS-50 99.47 3.85e-4 0.289 100.00 97.27 72.38
CDGS-GDPMS-30 99.18 4.13e-4 0.326 100.00 97.42 72.52

Table 1: Generation performance on ZINC250k (Up) and QM9 (Down). The best results in first three metrics are highlighted
in bold. The novelty metric on QM9 dataset denoted with ⋆ is debatable due to its contradiction with distribution learning.

more, with much lower NSPDK and FCD values, CDGS
learns the underlying distribution more faithfully in both
graph and chemical space. CDGS achieves such perfor-
mance without any Langevin correction steps in sampling,
while previous diffusion-based GDSS drops off obviously
with the pure EM solver. Using the same SDE parameters,
the performance gap between GDSS-VP-EM and CDGS-
EM further demonstrates the effectiveness of our framework
design. Another noteworthy point is that, equipped with the
3rd-order GDPMS, our proposed model maintains excellent
generation ability with limited NFE decreasing from 200 to
30. Extra visualization of generated molecules is provided
in Appendix.

We also point out that the novelty metric on the QM9
dataset seems debatable because the QM9 dataset is al-
most an exhaustive list of molecules that adhere to a pre-
determined set of requirements (Vignac and Frossard 2022;

Hoogeboom et al. 2022). Therefore, a molecule that is
thought to be novel violates the constraints, which means
the model is unable to capture the dataset properties. This
metric is kept for experiment completeness.

Fast Sampling To explore fast and high-quality few-step
molecular graph sampling, we compare the sampling quality
of CDGS with different types of numerical solvers, includ-
ing GDPMS with different orders, the EM solver, and black-
box ODE solvers. For black-box ODE solvers, we pick out
an adaptive-step and a fixed-step neural ODE solver imple-
mented by (Chen et al. 2018), that is, Runge-Kutta of or-
der 5 of Dormand-Prince-Shampine (dopri5) and Fourth-
order Runge-Kutta with 3/8 rule (rk4). As shown in Fig-
ure 3, based on our conditional diffusion framework, the
EM solver generates high-quality graphs between 200 NFE
and 1000 NFE, but fails to converge under fewer NFE. The
black-box neural ODE solvers can obtain acceptable quality
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Method GraphAF GraphDF MoFlow GDSS Our-50 Our-30 Our-10
Time (s) 2.89e2 3.19e3 1.54 1.42e2 3.79e1 2.38e1 8.38

Figure 3: (Up) Few-step molecular graph sampling results
for various numerical solvers. (Down) The wall-clock time
taken to generate 512 molecular graphs.

at around 50 NFE. The GDPMS displays clear superiority in
the range below 50 NFE. Notably, the 1st-order GDPMS still
generates reasonable molecular graphs with 10 NFE. For
the running time comparison, CDGS equipped with GDPMS
takes much less time compared to autoregressive GraphAF
and GraphDF, and makes an obvious improvement towards
GDSS. MoFlow spends the least time but fails to generate
high-fidelity samples according to Table 1. In conclusion,
benefiting from the framework design and the ODE solvers
utilizing the semi-linear structure, we achieve great advance-
ment in fast sampling for complex molecular graphs.

Ablation Studies We conduct ablation analysis on the
ZINC250k dataset to verify the effectiveness of our frame-
work. In Figure 4, with the goal to generate high-quality
molecular graphs efficiently, we report the results using
GDPMS with 50 NFE, which is sufficient to obtain con-
verged samples. Taking CDGS with 64 hidden dimensions
(64ch) as reference, we first remove the discrete graph struc-
ture related components and remain with our edge-gated at-
tention layers (ATTN), then further remove the edge exis-
tence variable (W-ADJ). The variant using GINE without
attention layers is denoted as GINE.

We emphasize that VALID w/o check and FCD met-
rics are complementary and should be combined to assess
molecule generation quality, because the former only re-
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Figure 4: Ablation on the ZINC250k dataset.

GraphAF-RL MoFlow
δ Improvement Success Improvement Success

0.0 13.13±6.89 100% 8.61±5.44 99%
0.2 11.90±6.86 100% 7.06±5.04 97%
0.4 8.21±6.51 100% 4.71±4.55 86%
0.6 4.98±6.49 97% 2.10±2.86 58%

GraphEBM CDGS
δ Improvement Success Improvement Success

0.0 15.75±7.40 99% 12.83±7.01 100%
0.2 8.40±6.38 94% 11.70±6.84 100%
0.4 4.95±5.90 79% 9.56±6.33 100%
0.6 3.15±5.08 45% 5.10±5.80 98%

Table 2: Similarity-constrained molecule property optimiza-
tion performance.

flects the valency validity of local atom and bond connec-
tions, whereas the latter is obtained after valency corrections
and focuses more on global molecule similarity. It can be ob-
served from Figure 4 that: (1) Compared to 64ch, ATTN has
a lower validity rate and gets a close FCD after more unde-
sirable corrections, while GINE achieves high validity rates
but fails to capture more global information. It proves that
the proposed attention module is crucial for global distribu-
tion learning and that discrete graph structures greatly help
to capture the chemical valency rule. (2) The comparison of
W-ADJ and ATTN shows that separating the edge existence
in the formulation also makes contributions to molecule va-
lidity. In addition, W-ADJ outperforms GDSS-VP-EM in
Table 1, showing the effectiveness of explicitly interacting
node and edge representations using a unified graph noise
prediction model. (3) It is necessary to increase hidden di-
mensions (128ch, 256ch) to better handle the complexity of
drug-like molecules in the ZINC250k dataset.

Similarity-Constrained Property Optimization We also
show how our diffusion framework can be used for
similarity-constrained property optimization. Following
(Shi et al. 2020; Zang and Wang 2020), we select 800
molecules with low p-logP scores (i.e., the octanol-water
partition coefficients penalized by synthetic accessibility
and number of long cycles) as the initial molecules for opti-
mization. We aim to generate new molecules with a higher
p-logP while keeping similarity to the original molecules
with a threshold δ. The similarity metric is defined as Tani-
moto similarity with Morgan fingerprints (Rogers and Hahn
2010). The property predictor is composed of 6 hybrid mes-
sage passing blocks with RGCN (Schlichtkrull et al. 2018)
as the non-attention layer for differentiation. We pretrain
the time-dependent predictor on perturbed graphs of the
ZINC250k dataset for 200 epochs. Each initial molecu-
lar graph is encoded into latent codes at the middle time
tξ = 0.3 through the forward-time ODE solver. After 50
gradient ascent steps, all latent codes are decoded back to
molecules with another gradient-guided reverse-time ODE
solver. This procedure is repeated 20 times with a different
number of atoms to search for the highest property molecule
that satisfies the similarity constraint.
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Community-small Ego-small Enzymes Ego
Deg. Clus. Spec. GIN. Deg. Clus. Spec. GIN. Deg. Clus. Spec. GIN. Deg. Clus. Spec. GIN.

Train/Test 0.035 0.067 0.045 0.037 0.025 0.029 0.027 0.016 0.011 0.011 0.011 0.007 0.009 0.009 0.009 0.005
ER 0.300 0.239 0.100 0.278 0.200 0.094 0.361 0.230 0.844 0.381 0.104 0.808 0.738 0.397 0.868 0.118

VGAE 0.391 0.257 0.095 0.360 0.146 0.046 0.249 0.089 0.811 0.514 0.153 0.716 0.873 1.210 0.935 0.520
GraphRNN 0.106 0.115 0.091 0.353 0.155 0.229 0.167 0.472 0.397 0.302 0.260 1.495 0.140 0.755 0.316 1.283

GraphRNN-U 0.410 0.297 0.103 0.970 0.471 0.416 0.398 0.915 0.932 1.000 0.367 1.263 1.413 1.097 1.110 1.317
GRAN 0.125 0.164 0.111 0.196 0.096 0.072 0.095 0.106 0.215 0.147 0.034 0.069 0.594 0.425 1.025 0.244

GRAN-U 0.106 0.127 0.083 0.164 0.155 0.229 0.167 0.094 0.343 0.122 0.041 0.242 0.099 0.170 0.179 0.128
EDP-GNN 0.100 0.140 0.085 0.125 0.026 0.032 0.037 0.031 0.120 0.644 0.070 0.119 0.553 0.605 0.374 0.295

GDSS 0.102 0.125 0.087 0.137 0.041 0.036 0.041 0.041 0.118 0.071 0.053 0.028 0.314 0.776 0.097 0.156
CDGS-EM 0.052 0.080 0.064 0.062 0.025 0.031 0.033 0.025 0.048 0.070 0.033 0.024 0.036 0.075 0.026 0.026

CDGS-GDPM 0.100 0.121 0.084 0.120 0.116 0.064 0.141 0.052 0.140 0.127 0.041 0.040 0.157 0.109 0.153 0.064

Table 3: Generation performance on generic graph datasets. The better results are indicated by a closer value with the perfor-
mance of training graphs, and the best results are in bold.

Results for the similarity-constrained optimization are
summarized in Table 2. GraphAF-RL is the representative
method combined with reinforcement learning, MoFlow
is a flow-based method, and GraphEBM is an energy-
based method for molecule optimization. With the similar-
ity constraint (δ > 0), CDGS outperforms MoFlow and
GraphEBM in terms of success rate and mean property im-
provement, showing competitive performance to the RL-
based method. Since RL-based methods require heavy prop-
erty evaluator calls, which is unrealistic in some optimiza-
tion scenarios, our framework could serve as a useful sup-
plement for drug discovery tasks.

Generic Graph Generation
Experimental Setup To display the graph structure distri-
bution learning ability, we validate CDGS on four common
generic graph datasets with various graph sizes and charac-
teristics: (1) Community-small, 100 two-community graphs
generated by the Erdős-Rényi model (E-R) (Erdős, Rényi
et al. 1960) with p = 0.7, (2) Ego-small, 200 one-hop ego
graphs extracted from Citeseer network (Sen et al. 2008),
(3) Enzymes, 563 protein graphs with more than 10 nodes
from BRENDA database (Schomburg et al. 2004), (4) Ego,
757 three-hop ego graphs extracted from Citeseer network
(Sen et al. 2008). We use 8 : 2 as the split ratio for train/test.
We generate 1024 graphs for the evaluation on Community-
small and Ego-small, and generate the same number of
graphs as the test set on Enzymes and Ego. We follow the
advice from (O’Bray et al. 2022) to evaluate discrete graph
structure distribution. Three graph-level structure descriptor
functions are selected: degree distribution (Deg.), clustering
coefficient distribution (Clus.) and Laplacian spectrum his-
tograms (Spec.). We use MMD with the radial basis function
kernel (RBF) to calculate the distance on features extracted
by graph descriptors. To accurately evaluate distribution dis-
tance, different from (You et al. 2018b; Liao et al. 2019;
Niu et al. 2020) using a static smoothing hyperparameter for
MMD, we provide a set of hyperparameters and report the
largest distance (Thompson et al. 2022; Huang et al. 2022).
We also consider a well-established comprehensive neural-
network-based metric (GIN.) from (Thompson et al. 2022).

Baselines Apart from scored-based models (EDP-GNN
and GDSS), we compare CDGS with a classical method (ER
(Erdős, Rényi et al. 1960)), a VAE-based method (VGAE
(Kipf and Welling 2016)), and two strong autoregressive
graph generative models (GraphRNN (You et al. 2018b),
GRAN (Liao et al. 2019)). GraphRNN-U and GRAN-U
are trained with uniform node orderings to alleviate the bias
from specific ordering strategies.

Sampling Quality Table 3 displays that CDGS consis-
tently achieves better performance than score-based mod-
els and autoregressive models among four datasets. Espe-
cially for the large Ego dataset, CDGS still generates graphs
with high fidelity while the diffusion-based GDSS fails in
Deg. and Clus. metrics. Using GDPMS with 30 steps, our
method also generates graph structures with acceptable qual-
ity. Thanks to the appropriate framework design and the em-
phasis on evolving discrete graph structures during the gen-
erative process, CDGS effectively captures the underlying
distribution of graph topology.

Conclusion
We present a novel conditional diffusion model for molec-
ular graph generation that takes advantage of discrete graph
structure conditioning and delicate graph noise prediction
model design. Our model markedly outperforms existing
molecular graph generative methods in both graph space and
chemical space for distribution learning, and also performs
well for generic graph generation. By adapting fast ODE
solvers for graphs, we utilize our framework to make ad-
vances in efficient graph sampling and facilitate similarity-
constrained optimization. In the future, we plan to apply
our model to molecule generation with complex conditions,
such as target proteins.
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