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Abstract

Deep generative models have demonstrated superior perfor-
mance in lossless compression on identically distributed data.
However, in real-world scenarios, data to be compressed are of
various distributions and usually cannot be known in advance.
Thus, commercially expected neural compression must have
strong Out-of-Distribution (OoD) generalization capabilities.
Compared with traditional compression methods, deep learning
methods have intrinsic flaws for OoD generalization. In this
work, we make the attempt to tackle this challenge by exploit-
ing a zoo of Deep Autoregressive models (DAMix). We build a
model zoo consisting of autoregressive models trained on data
from diverse distributions. In the test phase, we select useful ex-
pert models by a simple model evaluation score and adaptively
aggregate the predictions of selected models. By assuming the
outputs from each expert models are biased in favor of their
training distributions, a von Mises-Fisher based filter is pro-
posed to recover the value of unbiased predictions that provides
more accurate density estimations than a single model. We
derive the posterior of unbiased predictions as well as concen-
tration parameters in the filter, and a novel temporal Stein vari-
ational gradient descent for sequential data is proposed to adap-
tively update the posterior distributions. We evaluate DAMix on
22 image datasets, including in-distribution and OoD data, and
demonstrate that making use of unbiased predictions has up to
45.6% improvement over the single model trained on ImageNet.

Introduction
The big data era, with the huge amount of data being generated
each year, inspires new business lines including cloud service
and streaming platforms. This motivates the industry to de-
velop more efficient and effective lossless compression meth-
ods (Alakuijala et al. 2019; Sneyers and Wuille 2016; Collet
and Turner 2016; Ahmed, Islam, and Uddin 2018). According
to Shannon’s source coding theorem, the more accurately
the distribution of the data can be estimated, the better the
limits of compression can be reached (MacKay 2003). Hence,
deep generative models, such as VAEs (Kingma and Welling
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2013; Rezende, Mohamed, and Wierstra 2014; Ho, Lohn, and
Abbeel 2019), normalizing flows (Rezende and Mohamed
2015; Tran et al. 2019), and autoregressive models (Uria, Mur-
ray, and Larochelle 2013; Van den Oord et al. 2016; Salimans
et al. 2017), have shown great potential in improving lossless
compression ratio due to their powerful ability in modeling
the distribution of various types of data, and various lossless
compression algorithms (Zhang et al. 2021c,b,a; Kang et al.
2022) have been proposed based on deep generative models.

One primary assumption, ensuring these models are
effective, is training and test data being Independent and
Identically Distributed (IID). However, data to be compressed
in real-world scenarios follow very different distributions and
are usually OoD samples that cannot be known in advance.
To cope with it, previous works in context mixing attempt to
adaptively mix different compression algorithms. This idea
has been widely used in non-AI compression algorithms to
combine multiple statistical models to yield a prediction that
is often more accurate than any of the individual predictions.
PNG (Boutell 1997) makes use of 5 models to predict each
pixel and mix them simply by selecting one of them for
each line. WebP increases the number of models to 13,
one of which is chosen for each block. For more advanced
techniques, linear mixing and logistic mixing are applied
in PAQ to mix 1000+ models. CMIX (Knoll 2007) further
improves by introducing an LSTM Mixer with a gated linear
network (Veness et al. 2017). However, none of them can be
naturally applied to AI lossless compression.

On the other hand, recent works (Hendrycks et al. 2020;
Albuquerque et al. 2020; Yi et al. 2021; Radford et al. 2021)
have shown the advantages of pre-training for improving OoD
generalization, i.e., learning from multiple training domains
and being well applied to an unseen domain. Yi et al. (2021)
prove that adversarially pre-trained models perform better
for OoD generalization. Yu et al. (2021) show that the right
choice of pre-trained models can achieve SOTA OoD results.
Radford et al. (2021) demonstrate that large-scale pre-training
on a dataset of image-text pairs results in much more robust
models for downstream tasks with various distribution shifts.
For data compression, Zhang et al. (2021c) and Zhang et al.
(2021b) also show that large-scale pre-training can alleviate
the performance degradation on OoD data. Naturally, we
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expect a model zoo containing a large number of pre-trained
models can further improve OoD generalization.

In this paper, we design a model zoo with large-scale pre-
trained models covering possible distribution shifts to improve
OoD generalization for lossless image compression. To max-
imally exploit our zoo of deep generative models, two impor-
tant issues need to be addressed. First, given an image to be
compressed, we need to quickly select a small subset of suit-
able models, since we do not want “wrong” expert models to be
involved in subsequent aggregation, especially when the size
of the model zoo is large. Second, we need to make adaptive
adjustments to multiple models when dealing with the sequen-
tial pixels, since different local parts may follow different
distributions (Fang et al. 2021; Zhang, Zhang, and McDon-
agh 2021). For example, an expert model trained on a vehicle
dataset may predict unbiasedly on the vehicle part of an OoD
image containing a variety of objects, but biasedly on the rest
parts. If we can train different deep expert models on purpose
to deal with different distributions, and dynamically select the
most appropriate models for specific local image areas, we
may be able to deal with image data with diverse distributions.

However, several challenges raise as many context mixing
algorithms are based on simple weighted averaging and do
not lead to unbiased predictions. In addition, it is technically
difficult to build a sophisticated meta-probabilistic model
to aggregate the model zoo, since the data we are dealing
with are constrained in a simplex, e.g. the outputs from
expert models are Multinomial distributions, which makes
modeling using common distributions like Gaussian invalid.
On the other hand, we build a model zoo with the spatially
autoregressive model like PixelCNN++ (Salimans et al. 2017)
since it is powerful in modeling image density and leads to
outstanding performance in lossless compression. However,
such models are usually blamed for slow inference. Thus,
the proposed algorithm must be efficient enough to prevent
additional computational burden.

To tackle the aforementioned problems and challenges, we
propose DAMix, a Deep Autoregressive model zoo with quick
model selection and model Mixing for lossless compression.
We pre-train multiple PixelCNN++ based on diverse datasets,
one model corresponding to one dataset. In the model selection
phase, the model score is evaluated based on the log-likelihood
of a patch sampled from a given test image. A few models with
higher scores are then selected for subsequent aggregation.
Then, we treat the outputs of a PixelCNN++ as sequential data
and obtain locally unbiased predictions for OoD images via a
von Mises-Fisher (vMF) filter, whose concentration param-
eters in vMF act as the mixing weights of pre-trained mod-
els’ outputs. Finally, to infer the posterior distribution of mix-
ing weights, we propose a novel Temporal Stein Variational
Gradient Descent (TSVGD) algorithm for online Bayesian
inference. We give theoretical guarantees that the empirical
distribution of the concentration parameters approaches the
true posterior as TSVGD iterations progress, which implies
that our algorithm converges to an optimal mixing scheme.

Our main contributions can be summarized as follows:
1) We build a zoo of deep autoregressive models trained

by different datasets to improve compression on OoD data.
Our model zoo can cover diverse distributions and empirically

outperform single-model methods.
2) We propose a novel implicit mixing scheme to discover

the unbiased density of local areas. Our method inspires a
new probabilistic view for model ensemble that we prove
inferring the posterior distribution of unbiased predictions in
our vMF filter is equivalent to adaptively assembling models
with weighted averaging.

3) We propose TSVGD, a general Bayesian inference
method for sequential data. We provide the theoretical
guarantee that empirical distributions of latent concentration
parameters will converge to the true posterior leading to the
optimal mixing scheme. We also analyze the complexity of
TSVGD and show it does not increase the computational
burden of PixelCNN++.

4) Extensive experiments on 22 datasets show DAMix
effectively utilizes the model zoo to improve the OoD
generalization of neural compression. The compression
benchmark of 22 datasets is helpful for future research.

Preliminaries
Von Mises-Fisher Distribution. We denote the unit sphere
by Sd−1 =

{
x∈Rd :∥x∥=1

}
. We say a random variable

x ∈ Sd−1 follows a von Mises-Fisher (vMF) distribution if
its density function is

vMF(x |µ,κ)=Cd(κ)exp
(
κµTx

)
,

where µ∈Sd−1, κ≥0 and Cd(κ) denotes the normalization
constant. The parameters µ and κ are called the mean
direction and the concentration parameter, respectively. The
greater the value of κ, the higher the concentration of the
distribution around the mean direction µ.
Kalman Filter. Given a series of observed measurements
{xt}Tt=1 and the corresponding unknown values {zt}Tt=1 with
xt,zt∈Rd, Kalman filter assumes

zt=Azt−1+wt xt=Czt+vt,

with white noise: w∼N (0,Γ) and v∼N (0,Σ). Noted that
Kalman filter defines a linear dynamic system by the Gaussian-
linear model. Thus the inference problem is tractably solved.
Variational Inference. Variational Inference (VI) (Blei,
Kucukelbir, and McAuliffe 2017) works as a faster alternative
to MCMC (Gelfand and Smith 1990) for Bayesian inference.
Recent developments in VI have tried to combine classic
variational inference with MCMC (Liu et al. 2019; Liu and
Wang 2016; Saeedi et al. 2017), leading to Particle Variational
Inference (PVI), among which, one interesting method is
Stein Variational Gradient Descent (SVGD) (Liu and Wang
2016). Given an arbitrary empirical distribution {θ0i }ni=1
and target distribution p(θ), the particles from empirical
distribution {θℓi}ni=1 will converge towards target distribution
in a gradient descent manner: θℓ+1

i ←θℓi+ϵℓϕ̂
∗(θℓi), where

ϕ̂∗(θ)=
1

n

n∑
j=1

[
k
(
θℓj ,θ

)
∇θℓ

j
logp

(
θℓj
)
+∇θℓ

j
k
(
θℓj ,θ

)]
and k(·,·) is a kernel function.
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Methodology
Model Zoo of PixelCNN++
For input data x= [x1,...,xT ], neural compression methods
involve a deep generative model to estimate the density
p(x), and the data is encoded with codelength − log2p(x).
Therefore, the quality of density estimation determines how
well the data is compressed. Based on the success of previous
AI compression, building an AI compression model zoo, i.e.
DAMix, is a promising attempt for practical lossless com-
pression. We use PixelCNN++ (Salimans et al. 2017) as the
base model, which is a deep autoregressive model that outputs
the distribution p(xt|x1, ...,xt−1) of each discrete variable
xt in a recursive manner. Thus we can apply PixelCNN++ to
data compression by encoding using predicted distribution
with codelength − log2 p(xt|x1, ..., xt−1) with Arithemic
Coder (Rissanen and Langdon 1979).

Model Selection by Log-Likelihood
Given an image, we want to remove inappropriate experts.
Here we propose a simple evaluation score for quick model
selection. He et al. (2021) illustrate the global semantic can
be inferred using only a small set of pixels from the local area.
Thus, we evaluate each expert model by sampling a small
patch from the image. The performance of an expert model
over this patch should be similar to that over the entire image.
We estimate the log-likelihood of this patch as an evaluation
score. The models with high scores are then selected for
the next phase. In the experiment, we find model selection
by log-likelihood is highly consistent and much faster than
evaluating each model over the entire image.

Model Mixing via vMF Filter
Given an image with 256-level gray, PixelCNN++ predicts
a Multinomial distribution with class 256 for each pixel. Thus
each observed distribution is constrained in a 255-simplex:

∆255=
{
p=[p1,...,p256] :p∈R256

+ ,

256∑
i=1

pi=1
}

=
{
p′=[

√
p
1
,...,

√
p
256

] :p′∈R256
+ ,∥p′∥2=1

}
.

By simply taking the square root, we convert the summation
constrain of a simplex to the constrain of ℓ2-norm. This
transformation allows us to use polar coordinates to model
the randomness of distributions (Davidson et al. 2018).
Following this idea, we assume the outputs of PixelCNN++
follow a von Mises-Fisher (vMF) distribution.

Let x= [x1,...,xT ] be an image with 256-level gray and
xt ∈ {0,1,...,255} is the value of the t-th pixel.1 We denote
pm
t ∈∆255 be the output of the m-th model on the t-th pixel

and write the results for the t-th pixel and the whole image as

pt=[p1
t ,...,p

M
t ]∈RM×D

+ , P =[p1,...,pT ]∈RT×M×D
+

respectively. Here D=256 and M is the size of the model
zoo. We denote µt ∈ ∆255 as the unbiased (ground-truth)

1Although the proposed method is illustrated with the image
example, it can fit easily to any types of sequential data with deep
autoregressive models, e.g., text or video.

density for the t-th pixel. Here µt is a latent variable behind
the observed outputs pt. Motivated by Kalman Filter, we
approximate the generation ofpm

t with the following dynamic
mechanism (vMF filter):

µt∼vMF
(
µt−1,κ

0
t

)
, pm

t ∼vMF(µt,κ
m
t ), (1)

where κ0
t ,...,κ

M
t are concentration parameters. It is easy to see

the likelihood of pt given µt is
∏M

m=1vMF(pm
t |µt,κ

m
t ). In

this work, we propose an algorithm to infer the ground-truth
distributions µt,t=1,...,T from the observed outputs P and
the vMF filter.

Using vMF distribution. Gaussian distribution fails to
model the outputs of PixelCNN++ due to the norm constrain.
Although studies in compositional data analysis (Aitchison
1982) show alternatives like Dirichlet and log-normal distribu-
tion are well-defined on the simplex, those distributions lose
the analytical properties of Gaussian that given a joint Gaus-
sian distribution, its conditional and marginal distribution are
also Gaussian. Meanwhile, tractable inference of Kalman filter
relies heavily on this property to impose. Strictly speaking, the
truncated vMF distribution is the best to match the data, since
the square root transformation restricts its support to the non-
negative region. However, the truncated posterior distribution
is not tractable. We thus relax it to original vMF distribution to
enjoy analytical properties and computational efficiency. Such
relaxation has little influence on the performance of DAMix,
because the main vMF posterior density still concentrates on
the non-negative region.

Relationship to Model Mixing. In the next section, we
propose a novel Stein variational gradient descent for online
Bayesian inference by introducing the prior distribution of
κt=[κ0

t ,κ
1
t ,...,κ

M
t ]. One can estimate the posterior density of

µt concentrates in direction of:

κ0
tE[µt−1 |Pt−1,xt−2]+

M∑
m=1

κm
t pm

t .

Therefore, the concentration parameters κ1
t ,...,κ

m
t plays a

role as “mixing weights” for expert models at pixel t and κ0
t

controls inheritance from the previous pixel.

Posterior Inference
Prior Distributions of κ
We complete the specification of the proposed filter by intro-
ducing the prior distributions for concentration parameters
κt. In the first level of the prior distribution, we introduce
a similar temporal transition κt ∼ p (κt |κt−1) consistent
with the dynamic mechanism in vMF filter. In the second
level, a hierarchical Dirichlet prior is adopted to leverage the
information of the current true pixel value xt:

Dir(κt+1)=
1

B(κt+1)

M∏
m=1

p̃m
t (xt)

κm
t+1 ·µ̃t(xt)

κ0
t+1 , (2)

where B(·) is a multivariate beta function.
Notice that prior knowledge helps adaptively adjust the

posterior distributions of κt for different local image areas,
such that higher weights will be assigned to the expert
models that predict unbiasedly on the current image patch.
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Figure 1: An overview of the proposed filter. DAMix forward propagates current pixel and projects the predicted distributions to
a hyperball. The pixel t is compressed using the unbiased predictions µt which is inferred by the observed projected directions and
prior directionsµt−1 with concentration parametersκt. We updateκt+1 by prior informationxt for the next iteration using TSVGD.

In Eq. (2), [p̃1
t (xt),...,p̃

M
t (xt),µ̃t(xt)] is a normalized vector

consisting of xt-th element of observed likelihood pm
t and

previous E[µt |Pt,xt−1]. It’s easy to see with high posterior
probability, the estimated κm

t+1 is larger when the model m
has larger likelihood p̃mxt

. Therefore, the posterior distribution
of κt+1 can be adaptively updated in favor of previously
better-performed models.

Unbiased Density Estimation
Since the unbiased density µ1, ... ,µT is what we need but
unknown for compression, we present an inference algorithm
for joint posterior p(µ1,...,µT ,κ1,...,κT |P ,x). An overview
of the posterior inference is illustrated in Figure 1. 2 We
start by inferring the posterior distribution of µt. To proceed
further, we need more notations:

xt=[x1,...,xt] and Pt=[p1,...,pt], (3)

which are the previous pixels and outputs before the (t+1)-th
pixel. The following Theorem shows the connection with the
Kalman filter.
Theorem 1. Given all observations {Pt, xt−1} at the
t-th pixel, the joint posterior distributions of {µi}ti=1 are
proportional to the following joint distribution:

p(µ1,...,µt |Pt,xt−1)

∝
t∏

i=1

p(pi |µi,E[κi|xi−1])·p(µi |µi−1,E[κi|xi−1]),

where E[κi|xi−1] denotes the posterior expectation of κi

given xi−1.
This shows the posterior of µt has the same joint posterior

distribution structure as Kalman filter (Welch, Bishop et al.

2Note that the same algorithm can also be derived from the
perspective of mean-field variational inference(Blei, Kucukelbir, and
McAuliffe 2017). We leave it to the Appendix.

1995). Since the Kalman filter simply replaces all above
emission distributions p(·) with Gaussian, its posterior
distributions have analytical Gaussian forms. Naturally, we
expect the same nice property from the von-Mises Fisher
filter. Fortunately, the likelihood and conjugate prior for vMF
distribution are of the same form, which leads to a tractable
posterior. We consider the forward message passing from the
initial state µ0. According to Theorem 1, the unnormalized
marginal distributions p(µt |Pt,xt−1) are given by:

p(µt |Pt,xt−1)∝p(pt |µt,E[κt|xt−1])

×
∫

p(µt |µt−1,E[κt|xt−1])·p
(
µt−1 |Pt−1,xt−2

)
dµt−1.

However, unlike Kalman filter, the above integral is intractable
for vMF distribution with t>2. We can avoid computing the in-
tegral by sampling from its predecessor p(µt−1 |Pt−1,xt−2).
The technique of sampling from vMF is referred to (Davidson
et al. 2018). Using the conjugate property, the marginal
posterior distribution now has the analytical mixture of vMF
form using S previous posterior samples {µs

t−1}Ss=1:

p(µt |Pt,xt−1)≈
1

S

S∑
s=1

1

Cs
t

vMF(µt |µs
t−1,E[κt|xt−1])

×vMF(pt |µt,E[κt|xt−1])

=
1

S

S∑
s=1

vMF

(
µt |

λs
t

∥λs
t∥2

,∥λs
t∥2

)
,

(4)

where λs
t =κ0

t ·µs
t−1+

∑M
m=1κ

m
t ·pm

t and Cs
t =CD(λs

t ) is
the normalization constant. The last equality comes from the
tractability of vMF distribution. The term λs

t corresponds to
the direction of the main posterior mass for each mixture com-
ponent of µt and is determined by weighted averaging of each
prediction pm

t and µt−1. This shows our filter can be viewed
as a recursive model ensemble procedure (Lakshminarayanan,
Pritzel, and Blundell 2017) with adaptive mixing weights κt.
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Temporal Stein Variational Gradient Descent
So far, the marginal distribution ofµt depends on the posterior
expectation E[κt|xt−1]. Since the choice of prior in our
method is flexible, we seek the non-parametric inference
method for the posterior of κt (Gershman, Hoffman, and
Blei 2012; Liu and Wang 2016; Ranganath, Gerrish, and Blei
2014), which generalizes the inference procedure instead
of derivation on a model-by-model basis. Furthermore, the
inference method should support online updating, while
traditional methods (Andrieu et al. 2003; Blei, Kucukelbir,
and McAuliffe 2017) involve full-data iterations, and thus
they can not be adapted to sequential data.

We propose Temporal Stein variational gradient descent
(TSVGD) to allow online approximate Bayesian inference.
The proposed method is a general algorithm that can be
applied to any sequential data. Let

f(xn |θ)=f(x1 |θ)f(x2 |x1,θ)···f(xn |xn−1,θ)

be the likelihood function of unknown parameter θ on sequen-
tial data xn=[x1,...,xn]. The posterior of θ at time n is

πn(θ)=f(θ |xn)∝π(θ)f(xn |θ).

The following results form the main idea of TSVGD.

Theorem 2. Let T (θ)=θ+ϵϕ(θ) be the update operator of
θ with the direction ϕ(θ). We write Π[T ](θ) as the distribution
of T (θ). Give xn and the variational posterior Πn−1(θ)
given xn−1, the direction of steepest descent that maximizes
the negative gradient ∇ϵKL

(
Π[T ]∥πn

)∣∣
ϵ=0

is given by

ϕ∗
Π,πn

(θ)=Eθ′∼Πn−1

[
k(θ,θ′)∇θ′ logf(xn |xn−1,θ

′)

+
1

n
∇θk(θ,θ

′)
]
,

where ϕ∗ ∈
{
ϕ∈Hd :∥ϕ∥2Hd≤rn

}
is in the zero-centered

unit ball of vector-valued Reproducing Kernel Hilbert Space
(RKHS)Hd with unique kernel k(θ,θ′).

Theorem 3. For θ0∼p0(θ), each time a new xn is observed,
let θn =T n(θn−1) = θn−1+ϵϕ∗

Π,πn
(θn−1) be a sequential

updating procedure using steepest descent direction ϕ∗
Π,πn

(·).
Then KL

(
Π[Tn+1]∥πn+1

)
≤KL

(
Π[Tn]∥πn

)
.

We apply TSVGD for the inference of the posterior of
κt in our vMF filter (1). Theorem 3 shows the empirical
distribution {κs

t}Ss=1 will gradually approach the true
posterior p(κt | xt−1). Using the above results, we obtain
the progressive updating formula for κt as follows.

Corollary 1. Given {κs
t}Ss=1 from the variational posterior

of κt at the pixel xt, the update of TSVGD at the pixel xt+1

is given by κs
t+1←κs

t+τ ϕ̂∗(κs
t ), where τ is the pre-defined

stepsize and

ϕ̂∗(κ)=
1

S

S∑
s=1

[
k(κs

t ,κ)∇κs
t
log

[
q(xt |κs

t ,Pt)·E
κt

p(κs
t |κt)

]

+
1

T
∇κs

t
k(κs

t ,κ)

]
.

(5)

Algorithm 1: Unbiased Prediction using DAMix
Input: Maximum sequence length T ; Number of selected models

M ; Measurement dimension D; The observed measurements
tensor p1 ∈RM×D for the first pixel; Step size τ ; Number of
posterior samples S;

Output: Posterior sample means {µ̄t}Tt=1 = { 1
S

∑
sµ

s
t}Tt=1 and

{κ̄t}Tt=1={ 1
S

∑
sκ

s
t}Tt=1;

1: Initialization of {µs
0}Ss=1 as µs

0=
1
M

∑M
m=1p

m
1 ; Initialization

of {κs
1}Ss=1;

2: for 1≤ t≤T do
3: Update λs

t = κ̄0
t ·µs

t−1+
∑M

m=1κ̄
m
t ·pm

t ;
4: Sampling {µs

t}Ss=1 from the mixture distribution of
Equation (4) based on {µs

t−1}Ss=1;
5: Observe the true pixel value xt at time t and predict pt+1;
6: Updating variational samples {κs

t}Ss=1 to new {κs
t+1}Ss=1

using TSVGD according to Equation (5);
7: Normalize {κs

t+1}Ss=1 such that
∑S

s=1κ
s
t+1=

∑S
s=1κ

s
t ;

8: end for

The complete algorithm for model aggregation is given in
Algorithm 1. Although Bayesian methods usually inherit high
computational complexity, Algorithm 1 does not have this
problem and enjoys a solid theoretical foundation. Theorem 2
indicates each updating step only involves current values
of pt and xt. Thus, the complexity of TSVGD is much
smaller than traditional Bayesian methods (Andrieu et al.
2003; Liu and Wang 2016) which involve full data iterations.
The direct implementation of Algorithm 1 has a complexity
per-step of O

(
(M+1)DS+S2

)
and overall complexity

O
(
(M+1)TDS+TS2

)
. Typically for a grayscale image

patch with T = 1024, M = 5, D = 256 and S = 3, the
complexity is around 107. Notice that we can further reduce
the computational cost of T times for-loop (Step 2-8 in
Algorithm 1). Since nearby pixel values are basically the
same, it is unnecessary to update the posterior for every pixel.
Then the for-loop can only update over pt and xt at the fixed
interval. In our experiments, the time-consuming Bayesian
approach is fast enough, decreasing the processing time for
each image patch to around 3 seconds.

Experiments
In this section, we evaluate DAMix on 22 datasets, including
both low-resolution and high-resolution images, to demon-
strate the OoD generalization performance of DAMix. We
first compare the compression performance of DAMix with
that of other neural compression methods and that of a single
PixelCNN++ (Salimans et al. 2017) pre-trained by ourselves.
We show the effectiveness and robustness of DAMix in terms
of compression ratio on in-distribution and OoD datasets. And
then we conduct ablation studies to examine the contributions
of the proposed model selection and vMF filter.

Implementation
Datasets. Following the previous lossless compres-
sion works (Ho et al. 2019; van den Berg et al. 2021;
Zhang et al. 2021b; Kang et al. 2022), we conduct ex-
periments on CIFAR10 (Krizhevsky and Hinton 2009),
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Dataset PNG FLIF JPEG2000 L3C iVPF iFlow PILC Pixel Pixel Pixel DAMixCNN++ 1 CNN++ 2 CNN++ 3

In
-D

is
tr

ib
ut

io
n ImageNet32 6.41 5.06 7.50 5.19 4.03 3.88 5.10 4.32 4.31 3.97 3.98

CIFAR10 5.91 4.27 6.75 4.55 3.49 3.36 4.23 2.95 2.96 3.29 2.92
CIFAR100 5.82 4.41 5.43 4.26 3.51 3.36 4.23 2.99 2.98 3.30 2.95
GTA5 3.17 2.26 2.57 2.87 2.10 1.86 2.91 2.06 2.05 1.86 1.80
Camelyon17D1 5.27 4.85 5.03 5.19 4.45 4.34 5.09 4.44 4.42 4.35 3.25
RxRx1D0 2.20 1.66 2.22 2.10 1.49 1.23 2.29 1.40 1.34 1.22 1.10
DIV2K 4.23 3.24 4.11 3.13 2.60 2.77 3.41 2.61 2.60 2.55 2.51
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CLIC.mobile 3.80 2.82 3.94 2.65 2.47 2.26 3.00 2.23 2.22 2.17 2.12
CLIC.pro 3.90 3.03 3.79 2.96 2.63 2.45 3.23 2.46 2.45 2.39 2.34
SYNTHIA 4.11 2.71 3.12 3.57 2.49 2.28 3.37 2.54 2.51 2.30 2.29
Camelyon17D0 4.73 4.48 4.75 4.67 4.03 3.92 4.70 3.93 3.92 3.89 2.74
Camelyon17D2 5.43 5.23 5.43 5.48 4.81 4.73 5.42 4.80 4.79 4.73 3.49
Camelyon17D3 5.03 5.30 5.61 6.00 4.83 4.75 5.74 4.90 4.87 4.74 3.54
Camelyon17D4 4.82 4.67 4.85 4.92 4.27 4.16 4.92 4.17 4.16 4.12 2.83
Cityscapes 2.99 2.19 2.38 2.42 2.13 1.93 2.64 1.95 1.94 1.89 1.88
Glomeruli 2.55 2.14 2.42 2.68 2.16 1.92 2.91 1.89 1.85 1.76 1.43
RxRx1D1 2.45 1.82 2.52 2.25 1.65 1.37 2.50 1.63 1.55 1.38 1.26
RxRx1D2 2.27 1.76 2.27 2.07 1.54 1.26 2.34 1.47 1.40 1.25 1.15
RxRx1D3 2.06 1.54 1.96 1.94 1.44 1.16 2.19 1.33 1.27 1.15 1.04
GlobalWheat 3.32 3.30 3.71 3.62 3.35 3.20 3.89 3.27 3.25 3.15 3.12
Manga109 3.84 2.71 3.10 3.39 2.67 2.43 3.46 2.37 2.36 2.25 2.22
Urban100 4.49 3.02 3.40 3.53 2.98 2.78 3.74 2.84 2.82 2.69 2.66

1Trained on CIFAR10; 2Trained on CIFAR100; 3Trained on ImageNet32.

Table 1: Compression performance in BPD on 22 datasets.

ImageNet32 (Chrabaszcz, Loshchilov, and Hutter 2017),
CLIC.mobile, CLIC.pro, and DIV2K (Agustsson and Timofte
2017). In addition to these commonly used datasets, we
have collected datasets with diverse distributions to better
examine the proposed method. Specifically, we use CI-
FAR100 (Krizhevsky and Hinton 2009), GTA5 (Richter et al.
2016) (car perspective in the streets of virtual cities), Came-
lyon17 (Koh et al. 2021) (regions of tissues), RxRx1 (Koh
et al. 2021) (cells obtained by fluorescent microscopy),
SYNTHIA (Ros et al. 2016) (multi-viewpoint of a virtual
city), Cityscapes (Cordts et al. 2016) (urban street scenes),
Glomeruli (Bueno et al. 2020) (regions of tissues), Global-
Wheat (Koh et al. 2021) (wheat fields), Manga109 (Matsui
et al. 2017) (manga volumes), Urban100 (Huang, Singh, and
Ahuja 2015) (urban scenes). Camelyon17 and RxRx1 are used
to evaluate the domain generalization performance of deep
models in (Koh et al. 2021), and we split them into five (Came-
lyon17D0 - Camelyon17D4) and four (RxRx1D0 - RxRx1D3)
subsets according to the domains proposed in (Koh et al. 2021),
respectively. For datasets that have already been divided into
training and test sets, we divide them in the original way,
while for other datasets, we split them into 80% training and
20% test. We sample 100 images from the test set for each
dataset (21 for Manga109 and 20 for Urban100 because of
the limited number of total images) to form the final test data.
Model zoo. DAMix is a general framework that can be used for
various deep autoregressive models. We choose the most repre-
sentative one, PixelCNN++ (Salimans et al. 2017), as the basic
model to form the model zoo. For each dataset, we pre-train
a PixelCNN++ on 32×32 patches sampled from the training
images. We follow the original settings in PixelCNN++ (Sal-
imans et al. 2017) to train the models. In order to expand di-
versity, we select 7 models trained on ImageNet32, CIFAR10,
CIFAR100, GTA5, Camelyon17D1, RxRx1D0, and DIV2K

to form the model zoo and test on 22 datasets. We regard those
test data from the datasets involved in training the models in the
zoo as in-distribution data and the other test data as OoD data.
Test phase. We first select suitable expert models using the
evaluation score in the test phase. Given a test image, a
32×32 patch is sampled from the center of the image. Eval-
uated on this patch, the pre-trained models can get the esti-
mated negative log-likelihood {li}7i=1. The evaluation score
si = pi/max{pi}, where pi =−log(l′i/

∑
i l

′
i) and l′i = li−

min{li}. The model with si>0.25 is selected. Then test image
is divided into32×32patches. For each patch, we use the same
initialization of κ1, i.e., κ0

1 = 1×104 and κi
1 = si ·6×104.

After obtaining the values of κ1, the sample set {κs
1}Ss=1 is

initialized for TSVGD by adding Gaussian noise for each
κs
1=κ1+ϵs, where S is set to 3. For µ0, we simply use the

mean value of predictions P1 of the selected models on each
patch as a non-informative start. The measurement dimension
D is 256 and step size τ is set to 5×102. The experiment is con-
ducted with PyTorch framework using one Tesla V100 GPU.

Main Results
To demonstrate the effectiveness and robustness of DAMix,
we compare DAMix with a variety of conventional methods,
including PNG (Boutell 1997), FLIF (Sneyers and Wuille
2016), and JPEG2000 (Taubman and Marcellin 2002), and
neural compression methods, including L3C (Mentzer et al.
2019), iVPF (Zhang et al. 2021c), iFlow (Zhang et al. 2021b),
PILC (Kang et al. 2022), and single PixelCNN++ (Salimans
et al. 2017) model. For iVPF and iFlow, we adopt the models
trained on ImageNet32 while for PILC, we adopt the model
trained on Open Image (Kuznetsova et al. 2020).

The compression results in terms of average Bit Per Dimen-
sion (BPD) are reported in Table 1. It can be seen that DAMix
outperforms other methods on all datasets except on Ima-
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PixelCNN++ ImprovementPre-trained on

ImageNet32 13.3%
CIFAR10 19.0%
CIFAR100 17.6%
GTA5 20.2%
Camelyon17D1 81.0%
RxRx1D0 71.4%
DIV2K 17.9%

Table 2: Relative improvement of DAMix in terms of
compression ratio averaged on 22 datasets.

geNet32. On CIFAR10 and CIFAR100, compared with other
methods, PixelCNN++ achieves very good results. On this
basis, our method achieves even better results by adaptively
aggregating the predictions of multiple models. This shows
that although the other pre-trained models perform worse than
PixelCNN++ trained on CIFAR10/100 on average, they can
also contribute to the final results when adaptively aggregating
them to predict pixel-by-pixel. ImageNet32 pre-trained
models are often selected to test generalizability (Zhang
et al. 2021c,b). Compared with PixelCNN++ trained on
ImageNet32, DAMix achieves superior performance on
all OoD data and has at most 45.6% relative improvement
in terms of compression ratio on Camelyon17D4. Table 2
summarizes the relative improvement of DAMix averaged
on 22 datasets compared with the single models in the zoo.
Moreover, DAMix is more stable and consistent on all datasets.
PixelCNN++ trained on ImageNet32 performs poorly on
Camelyon17 and RxRx1, since the distributions of these
two datasets are quite different from that of ImageNet32. By
leveraging a zoo of pre-trained models, neural compression
is likely to deal with data of diverse distributions.

Ablation Studies
Model evaluation score. Our method selects expert models
by evaluating them on a sampled 32 × 32 patch for every
image. To examine the effectiveness of this evaluating method,
we first compare it with selecting expert models for every
32×32 patch (Fine-selection). Then we use all the models
in the zoo and 1) assign them the same initial score for every
patch (Uniform); 2) assign them the same initial score for the
first patch of every image and update the weights across the
entire image (Uniform-trans). The results are illustrated in
Table 3. Fine selection provides a more granular evaluation
of the model, but increases the computing cost, especially
when the number of pre-trained models is large. Compared
with it, our simple evaluation approach achieves almost
the same results. Due to the effectiveness of the following
adaptive aggregation of the expert models, DAMix performs
well even in the case of a biased initial evaluation score. We
observe the performance degradation when using Uniform,
which shows model selection is necessary. Uniform-trans
improves the performance of Uniform on most of the datasets.
However, when using Uniform-trans, the computations
between different patches can only be serial but not parallel.
Model mixing. In the framework of DAMix, the proposed
vMF filter can be regarded as model ensemble. We conduct
contrast experiments by using linear mixing and adapting the

Dataset Fine- Uniform Uniform- Linear- Best- DAMixselection trans mixing single

In
-D

is
tr

ib
ut

io
n ImageNet32 3.98 4.27 4.27 4.10 3.97 3.98

CIFAR10 2.92 3.33 3.33 3.00 2.94 2.92
CIFAR100 2.95 3.34 3.34 3.02 2.97 2.95
GTA5 1.80 1.99 1.82 1.85 1.80 1.80
Camelyon17D1 3.25 3.61 3.28 3.27 3.25 3.25
RxRx1D0 1.09 1.23 1.08 1.13 1.08 1.10
DIV2K 2.50 2.64 2.53 2.54 2.52 2.51

O
ut
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n

CLIC.mobile 2.11 2.27 2.18 2.15 2.13 2.12
CLIC.pro 2.33 2.46 2.47 2.37 2.35 2.34
SYNTHIA 2.27 2.47 2.33 2.33 2.29 2.29
Camelyon17D0 2.74 3.08 2.77 2.75 2.74 2.74
Cityscapes 1.88 1.99 1.92 1.91 1.89 1.88
Glomeruli 1.42 1.56 1.69 1.48 1.42 1.43
RxRx1D1 1.26 1.40 1.25 1.32 1.25 1.26
GlobalWheat 3.11 3.25 3.27 3.14 3.13 3.12
Manga109 2.20 2.35 2.56 2.26 2.24 2.22
Urban100 2.65 2.80 2.90 2.70 2.67 2.66

Table 3: Ablation studies on model evaluation and vMF filter.

mixing weights online to the most accurate models(Linear-
mixing). We also compare our method with selecting the
best single model in the zoo for every patch of the image
(Best-single). The results are reported in Table 3. We observe
that DAMix performs consistently better than Linear-mixing.
However, Linear-mixing still outperforms single PixelCNN++
trained on ImageNet32 on most of the datasets, which shows
that even with a simple model mixing approach, using a
model zoo can still provide generalization gains over a single
model. Even when compared with Best-single, our method
achieves performance gains on part of the datasets. Best-single
computes all the models in the zoo on every patch while our
method involves a small subset of the zoo in the subsequent ag-
gregation. Note that the results of our method only leverage the
information of Gt, while more prior information can be used
in mixing weight updating like image type and pixel locations,
which will surely improve the performance reported here.

Conclusion
In this work, we propose DAMix, a zoo of Deep Autoregres-
sive models associated with expert models aggregation for
lossless compression. Through extensive experiments, we
show the potential of building a collection of expert models
trained on local image patches for handling OoD data. A sim-
ple log-likelihood score is proposed to evaluate each expert
model and a subset of promising experts is selected to recover
unbiased density using a vMF filter. To adaptively adjust the
mixing weights, a novel TSVGD is proposed as a general
Bayesian inference method with theoretical guarantees. Ex-
perimental results show DAMix achieves a much higher com-
pression ratio on both low and high-resolution images than
previous neural compression models trained on a large-scale
dataset. One limitation of the current work is that the proposed
model aggregation is only accessible to autoregressive mod-
els. However, recent advances in generative models, such as
VAEs (Kingma and Welling 2013; Rezende, Mohamed, and
Wierstra 2014; Ho, Lohn, and Abbeel 2019) and flow mod-
els (Rezende and Mohamed 2015; Tran et al. 2019), show great
potential for data compression. We will consider the aggrega-
tion of different types of generative models for future work.
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