Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation
DOI:
https://doi.org/10.1609/aaai.v37i4.25540Keywords:
DMKM: Recommender Systems, DMKM: Web Personalization & User ModelingAbstract
Sequential recommendation is an important task to predict the next-item to access based on a sequence of interacted items. Most existing works learn user preference as the transition pattern from the previous item to the next one, ignoring the time interval between these two items. However, we observe that the time interval in a sequence may vary significantly different, and thus result in the ineffectiveness of user modeling due to the issue of preference drift. In fact, we conducted an empirical study to validate this observation, and found that a sequence with uniformly distributed time interval (denoted as uniform sequence) is more beneficial for performance improvement than that with greatly varying time interval. Therefore, we propose to augment sequence data from the perspective of time interval, which is not studied in the literature. Specifically, we design five operators (Ti-Crop, Ti-Reorder, Ti-Mask, Ti-Substitute, Ti-Insert) to transform the original non-uniform sequence to uniform sequence with the consideration of variance of time intervals. Then, we devise a control strategy to execute data augmentation on item sequences in different lengths. Finally, we implement these improvements on a state-of-the-art model CoSeRec and validate our approach on four real datasets. The experimental results show that our approach reaches significantly better performance than the other 9 competing methods. Our implementation is available: https://github.com/KingGugu/TiCoSeRec.Downloads
Published
2023-06-26
How to Cite
Dang, Y., Yang, E., Guo, G., Jiang, L., Wang, X., Xu, X., Sun, Q., & Liu, H. (2023). Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4), 4225-4232. https://doi.org/10.1609/aaai.v37i4.25540
Issue
Section
AAAI Technical Track on Data Mining and Knowledge Management