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Abstract

Sequential Recommender Systems (SRSs) aim to predict the
next item that users will consume, by modeling the user in-
terests within their item sequences. While most existing SRSs
focus on a single type of user behavior, only a few pay atten-
tion to multi-behavior sequences, although they are very com-
mon in real-world scenarios. It is challenging to effectively
capture the user interests within multi-behavior sequences,
because the information about user interests is entangled
throughout the sequences in complex relationships. To this
end, we first address the characteristics of multi-behavior se-
quences that should be considered in SRSs, and then propose
novel methods for Dynamic Multi-behavior Sequence mod-
eling named DyMuS, which is a light version, and DyMuS+,
which is an improved version, considering the characteristics.
DyMuS first encodes each behavior sequence independently,
and then combines the encoded sequences using dynamic
routing, which dynamically integrates information required
in the final result from among many candidates, based on cor-
relations between the sequences. DyMuS+, furthermore, ap-
plies the dynamic routing even to encoding each behavior se-
quence to further capture the correlations at item-level. More-
over, we release a new, large and up-to-date dataset for multi-
behavior recommendation. Our experiments on DyMuS and
DyMuS+ show their superiority and the significance of cap-
turing the characteristics of multi-behavior sequences.

Introduction
In the era of information overload, Recommender Systems
(RSs) have played an important role in helping users to dis-
cover which items to consume from a large amount of items,
by modeling the user interests. As the user interests on items
drift over time, Sequential Recommender Systems (SRSs)
(Zhou et al. 2022; Cho et al. 2021b; Hyun et al. 2022) which
capture the sequential dynamics of user interests have shown
outstanding performance.

Although there have been many studies for SRSs, most
of them consider a single type of behavior and only a few
studies take into account multi-behavior sequences. In real-
world scenarios, however, users often take several kinds
of behaviors such as click, add-to-cart, add-to-favorite, and
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purchase. Compared to the single-behavior data, the multi-
behaviors of users provide diverse perspectives of user inter-
ests, which conjointly imply the context of user interests and
causal relationships between the user behaviors (Xia et al.
2022). For learning such various information and effectively
utilizing it to the next item recommendation, the sequence
modeling for multi-behavior sequences needs to consider
some unique characteristics of multi-behavior sequences.

In this paper, we first address the characteristics of multi-
behavior sequences that should be considered in SRSs: 1)
The data distribution of each behavior type is imbalanced.
For example, users usually perform more clicks than add-to-
carts or purchases. 2) The multi-behavior sequences involve
heterogeneous information about user interests, so each can
provide complementary information in predicting the users’
next item. For example, purchase data implies the user’s gen-
eral preferences while recent click data indicates the cate-
gory of the item the user is currently looking for. 3) The key
information involved in each type of behavior sequence and
its importance is personalized to the user. For example, a
behavior sequence may indicate the user interest on an item
category, brand or price, or it may not be important, depend-
ing on the user’s intention for that behavior. Therefore, the
model should be able to extract necessary information from
a behavior sequence according to the user. 4) There are cor-
relations between the behavior sequences. In other words,
important information of a behavior sequence may be deter-
mined according to the information of other sequences. For
example, if a user recently clicked on items in similar cate-
gories, it is also likely to affect on the purchase sequence.

The existing SRS models, for single-behavior or multi-
behavior sequences, do not take into account the charac-
teristics of multi-behavior sequences addressed above in
depth. For example, a single unified sequence for the multi-
behavior data is unmanageably too long to contain a suffi-
cient amount of sparse behaviors (). In addition, it is difficult
to learn heterogeneous and personalized information from
the various types of behavior sequences with some coarse-
grained vector representations (Shen, Ou, and Li 2022).

To this end, this paper proposes two novel modeling meth-
ods that captures the characteristics of multi-behavior se-
quences mentioned above, named DyMuS and DyMuS+.
Our proposing methods encode each behavior sequences and
combine them, rather than handling a single sequence con-
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taining all the behaviors in order to deal with the behavior
imbalance problem. DyMuS combines the information en-
coded from each behavior sequence using the concept of
dynamic routing (Sabour, Frosst, and Hinton 2017), which
dynamically combines important information required in the
combined result from among many candidates. The dynamic
routing in DyMuS integrates personalized information for
the user among candidate capsules (Hinton, Krizhevsky,
and Wang 2011) encoding heterogeneous information of
multi-behavior sequences, based on the correlations be-
tween them. DyMuS+, further applies the dynamic routing
to the modeling of each behavior sequence to consider item-
level heterogeneity and personalization based on the correla-
tions. We also resolve the scalability issue that occurs when
directly applying the dynamic routing to recommendation.
In brief, our methods dynamically determine the important
heterogeneous information of multi-behavior sequences for
the user at sequence- and item-level based on the corre-
lations between sequences, capturing all of the aforemen-
tioned characteristics of multi-behavior sequences.

This paper releases a new dataset, GS Retail, for Multi-
Behavior Recommender System (MBRS), which is col-
lected from a real-world e-commerce service in South
Korea. This dataset contains larger and more up-to-date
data than the existing public datasets commonly used for
MBRSs. Our extensive experiments on existing public
datasets as well as our new dataset demonstrate that our
proposed methods considerably outperform various state-of-
the-art baselines. Also, our analyses show that the ability of
DyMuS and DyMuS+ to capture the characteristics of multi-
behavior sequences presented above significantly affects the
recommendation performance.

Related Work
Sequential Recommender Systems
SRSs aim to predict the next item a user will consume using
the sequence of items consumed by the user. Many studies
on SRS focus on how to effectively learn the user’s long-
term and short-term interest from the sequence. For exam-
ple, GRU4Rec (Hidasi et al. 2016) models the user inter-
ests by encoding the sequence using GRU (Cho et al. 2014).
SASRec (Kang and McAuley 2018) uses self-attention
mechanism (Vaswani et al. 2017) to consider the long- and
short-term interest in the item sequence. Recently, FMLP-
Rec (Zhou et al. 2022) based on an all-MLP structure re-
duces the noises in the sequence using filtering algorithms.

Although there are many studies on SRS, only a few pay
attention to the multi-behavior scenario. Compared with the
SRSs based on single-behavior sequences, SRSs based on
multi-behavior sequences can take advantage of the fine-
grained information about user interests from the multi-
behavior sequences. For instance, MBN (Shen, Ou, and
Li 2022) uses a meta multi-behavior sequence encoder to
model meta-knowledge across behavior sequences, and a
recurring-item-aware predictor to predict duplicated items
in the sequences. TGT (Xia et al. 2022) utilizes a behavior-
aware transformer (Vaswani et al. 2017) network to capture
the short-term interest in multi-behavior sequences, and a

temporal graph neural network to capture the multi-behavior
dependencies. Although they utilize the multi-behavior se-
quences to capture the sequential patterns of user interests,
they cannot achieve optimal performance because they do
not fully consider the characteristics of multi-behavior se-
quences such as data imbalance and heterogeneity.

Multi-Behavior Recommender Systems
MBRSs predict the next item of users on a target behav-
ior, modeling the user interests from their multi-behavior
data. Some methods use the multi-behavior data as auxil-
iary information about the user interests on the target be-
havior: HMG-CR (Yang et al. 2021) uses graph neural net-
works based on hyper meta-paths between the user’s behav-
iors on an item, and a graph contrastive learning between
them. CML (Wei et al. 2022) uses a contrastive meta net-
work to model cross-type behavior dependencies via self-
supervised learning. On the other hand, others treat the
multi-behavior recommendation as a multi-task problem:
METAS (Lee et al. 2019) designs the user-item relations by
dividing them into an action space and an entity space, and
learns them with multi-task metric learning. EHCF (Chen
et al. 2020) learns the user-item relations through transfer
learning between the behaviors, and is trained with an effi-
cient non-sampling method and multi-task learning.

Lastly, some methods (Shen, Ou, and Li 2022; Xia et al.
2022) use the sequential information in multi-behavior se-
quences, as mentioned above. We note that the sequential in-
formation is significant in MBRS, as a user’s next item is de-
termined as a result of the drifts of various interests revealed
in the multi-behavior sequences. However, it is difficult to
effectively discover the various interests, as the high-level
information about the interests is involved in each sequence
in complex relationships between them. Therefore, we focus
on how to effectively capture the user interests in the multi-
behavior sequences considering their characteristics.

Dynamic Routing
Dynamic routing was proposed with CapsNet (Sabour,
Frosst, and Hinton 2017) to effectively combine several cap-
sules (Hinton, Krizhevsky, and Wang 2011), each of which
is a vector neuron in neural networks and encodes various
properties of an entity (e.g., an object in an image) in a high-
dimensional manner. It derives the final result considering
the various properties of entities, by dynamically integrating
the capsules required in the integration result via iterative
routing phases considering the influence of each capsule in
the result. In RSs, the dynamic routing is often used to in-
tegrate diverse information about user interests from data.
CARP (Li et al. 2019) extracts users’ sentiments from user
reviews by modeling various properties of the reviews with
the dynamic routing. JTCN (Liang et al. 2020) uses dynamic
routing to estimate high-level user preferences with the side
information for cold-start users. On the other hand, we em-
ploy the dynamic routing to extract personalized information
from multi-behavior sequences by dynamically integrating
the important capsules encoding heterogeneous information
about user interests, which is the first method that applies
the dynamic routing to multi-behavior sequence modeling.
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Figure 1: Overall architecture of DyMuS.

Method
This section explains the proposed methods that model the
multi-behavior sequences considering their characteristics.
We propose two methods: DyMuS, which extracts person-
alized and heterogeneous information from multi-behavior
sequences based on their correlations, and DyMuS+, which
further models item-level heterogeneity and personalization.

In this section, let I,B represent the set of indices of items
and behaviors, respectively. Our proposed methods use a set
of each behavior sequence of a user, S =

⋃
b∈B{sb}, where

sb = [ib1, i
b
2, ..., i

b
tb
] and ibk ∈ I is the k-th item on which the

user took behavior b, to predict the next item on the target
behavior. In this paper, we represent a vector as a bold small
letter (e.g., ibk,vd), a two-dimensional matrix as a bold cap-
ital letter (e.g., Wir,H

(l)
k ), and a three-dimensional tensor

as a calligraphic capital letter (e.g., Wir).

DyMuS
DyMuS (Fig. 1) first encodes each behavior sequence of a
user with GRU (Cho et al. 2014), which can capture the in-
terest drift of the user within the user-item interaction se-
quence (Hidasi et al. 2016), and then dynamically integrates
the encoded information through the dynamic routing.

Sequence Modeling For a sequence sb = [ib1, ..., i
b
tb ] of

behavior b, DyMuS first draws a encoded representation eb

from a GRU for b. Note that there is a separate GRU for each
behavior, although we omit the behavior expression b in the
equation for its GRU cell for simplification.

Specifically, the embedding ibk ∈ RD for the k-th item ibk
of behavior b is encoded in a GRU cell as follows:

rk = σ(Wiribk +Whrhk−1 + br)

zk = σ(Wizibk +Whzhk−1 + bz)

nk = tanh(Winibk + rk ∗Whnhk−1 + bn)

hk = zk ∗ nk + (1− zk) ∗ hk−1,

(1)

where W∗ ∈ RD×D are weight matrices, b∗ ∈ RD are
biases, σ is the sigmoid function and ∗ is the element-wise
multiplication. hk ∈ RD is the hidden state for the k-th in-
dex, which carries the information up to the k-th item in the
GRU. h0 is initialized to zeros. The last hidden state can be
the representation which summarizes the overall information
within the behavior sequence, that is, eb = htb .

Dynamic Routing DyMuS then combines the encoded se-
quences eb for all behaviors b ∈ B with the dynamic rout-
ing. Dynamic routing (Sabour, Frosst, and Hinton 2017) dy-
namically integrates the capsules from among several can-
didate capsules encoding heterogeneous information about

the input entities (e.g., objects in an image), through itera-
tive updates of weight of each candidate capsule based on
the integration result. Through the iterative updates of the
weights considering the result of integrating all information,
the model can learn to pay attention to the heterogeneous in-
formation important to the final result, and this procedure is
optimized for each individual input. Judging from these ad-
vantages, we think the dynamic routing is suitable for multi-
behavior sequence modeling, which needs to obtain person-
alized and heterogeneous information from each sequence
considering the correlations between the sequences.

We also modify the dynamic routing to be efficient
enough for the next item prediction. Specifically, DyMuS
creates the candidate capsules to be integrated into the fi-
nal capsules by multiplying a weight matrix to each primary
capsule, which is defined as the elements in a certain dimen-
sion of each encoded sequence so that each capsule can en-
code the heterogeneous information from multi-behavior se-
quences. This also involves our modified design for efficient
dynamic routing, where the candidate capsules are created
for only D final capsules (i.e., number of the final capsules
C = D), which is much smaller than |I| in general. That is,
the c-th candidate capsule ud

c for c = 1, ..., C , generated
from the d-th primary capsule, is

ud
c = Wdc ×

[
e1d ... e

|B|
d

]⊤
∈ RL, (2)

where ebd is the element in dimension d of eb, L is the length
(i.e., capacity) of a capsule vector, and Wdc ∈ RL×|B| is
the weight matrix for the c-th candidate capsule for the d-th
primary capsule: there are D2×L×|B| parameters in total.

Then, the coefficient c(l)dc , which determines which of the
C candidates capsules generated from the d-th primary cap-
sule will be important to the final capsules, is iteratively
computed for l = 1, ..., r:

c
(l)
dc =

exp
(
b
(l)
dc

)
∑C

c′ exp
(
b
(l)
dc′

) , (3)

where b
(l)
dc is the logit for coefficient. The number of itera-

tions r is a hyperparameter. The initial logit b(1)dc is initialized
to zero so that each candidate capsule is equally involved in
the final capsule, and is iteratively updated to dynamically
determine the coefficients when l > 1.

The final capsules v
(l)
c , for c = 1, ..., C(= D), are ob-

tained by integrating the candidate capsules using the coef-
ficients as follows:

v
(l)
c = α

D∑
d=1

c
(l)
dcu

d
c ∈ RC , (4)

where α is a learning parameter for scaling.
DyMuS then summarizes the values in each final capsule

using its length to sum up the heterogeneous information in
the capsule, to obtain the value of a dimension of the final
representation v(l):

v̄(l) =
[
∥v(l)

1 ∥2 ∥v(l)
2 ∥2 ... ∥v(l)

C ∥2
]⊤

∈ RC

v(l) = w · v̄(l) + b ∈ RC .

(5)
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Figure 2: Overall architecture of DyMuS+.

As the length of a capsule is positive, a weight vector w ∈
RC and a bias b ∈ RC is applied to the final representation
to extend the range of each value to all real numbers.

When l < r, the logit b(l)dc is updated for the subsequent
routing phase, reflecting the contribution of each candidate
capsule to the integration result, which is represented by a
similarity score (e.g., dot product) between them. As the in-
tegration result, which is a criterion for estimating the contri-
bution, we use both the final capsule and the predicted item
embedding p(l) based on the current final representation:

p(l) =
∑
i∈I

ii · softmax(v(l) · ii) =
∑
i∈I

ii ·
exp(v(l) · ii)∑

i′∈I

exp(v(l) · ii′ )

r
(l)
c = Wcoef

c ×
[
v
(l)
c ∥ p(l)

]⊤
b
(l+1)
dc = b

(l)
dc + ud

c · r(l)c ,

(6)

where p(l) ∈ RD is the predicted item embedding with the
l-th routing, r(l)c ∈ RL is the integration result to estimate
the contribution for the c-th candidate, Wcoef

c ∈ RL×(C+D)

is a weight matrix for the c-th candidates, ∥ is the vector
concatenation, and · is the dot product. If l < r, the subse-
quent routing starts again from Eq. 3 with the updated logits.
With iterative routings, the weight matrix learns how to give
attentions to the candidates important to the final capsule.

After r iterations of routing, DyMuS uses the final repre-
sentation v(r) to compute the score of each item as the next
item of the user. DyMuS is designed efficiently to obtain the
score of each item by creating only D final capsules, instead
of |I| capsules for solving it as a classification task. Given a
set of multi-behavior sequences of a user, S =

⋃
b∈B{sb},

the estimated probability ŷSi of an item i ∈ I to be the next
item on the target behavior is obtained as follows:

ŷSi = softmax(v(r) · ii) =
exp(v(r) · ii)∑

i′∈I exp(v
(r) · ii′ )

. (7)

where ii ∈ RD is the embedding of item i.

DyMuS+

Though DyMuS considers the correlations between multi-
behavior sequences via dynamic routing to discover the het-
erogeneous and personalized information of them, it has a
limitation in capturing the heterogeneous and personalized
information at item-level as it encodes each sequence inde-
pendently. Therefore, we propose DyMuS+ (Fig. 2), with dy-
namic GRU where the dynamic routing is also applied to

modeling each sequence to let the correlations affect model-
ing the heterogeneity and personalization at item-level.

Dynamic Sequence Modeling To take the advantages of
dynamic routing based on the capsules, a dynamic GRU in
DyMuS+ constructs its internal hidden state as capsules. To
be specific, the state of each input item is dynamically ad-
justed based on the final integration result of all information,
by the relation between the integration result and each item
which is updated through r iterations. As a result, the role of
each item in a sequence is affected by the other sequences.

Firstly, we define an operation for capsule-wise multipli-
cation using a weight tensor for the capsules in dynamic
GRU. Given a set of D capsules H = [h1 ... hD]⊤ ∈
RD×L1 and a weight tensor W = [W1 ... WD]⊤ ∈
RD×L2×L1 , the capsule-wise multiplication ⊗ is defined as:

W ⊗H = [W1h1 ... WDhD]⊤ ∈ RD×L2 . (8)

For each behavior b ∈ B, to make the encoded sequence
representation Eb(l) in the l-th iteration, our proposed dy-
namic GRU takes the embedding ibk ∈ RD of the k-th item
ibk to make the next hidden state as follows:

R
(l)
k = σ

(
Wiribk ∗ (Wcr ⊗C

(l)
k +Bcr) +Whr ⊗H

(l)
(k−1)

+Br
)

Z
(l)
k = σ

(
Wizibk ∗ (Wcz ⊗C

(l)
k +Bcz) +Whz ⊗H

(l)
(k−1)

+Bz
)

N
(l)
k = tanh

(
Winibk ∗ (Wcn ⊗C

(l)
k +Bcn)

+R
(l)
k ∗ (Whn ⊗H

(l)
(k−1)

) +Bn
)

H
(l)
k = Z

(l)
k ∗N

(l)
k + (1− Z

(l)
k ) ∗H

(l)
(k−1)

,

(9)

where H
(l)
k ∈ RD×L is the hidden state for the k-th index,

and C
(l)
k ∈ RD×L is the adjusting state based on the relation

between the k-th item and the integration result, which is
initialized to zeros when l = 1 and iteratively updated using
the integration result. The weight tensors Wir,Wiz,Win ∈
RD×L×D change the input embedding into the form of D
capsules. The other weight tensors (i.e., W∗ ∈ RD×L×L)
and biases (i.e., B∗ ∈ RD×L) are for the capsules.

The differences of the dynamic GRU in DyMuS+ com-
pared to the original GRU in DyMuS are 1) that the hid-
den state consists of capsules, and 2) that the adjusting state
C

(l)
k changes the state of input item over r iterations. It can

maintain various properties of items within multi-behavior
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sequences in the capsules from inside the dynamic GRU,
and dynamically emphasize the important information con-
sidering the correlations with other sequences.

Similarly to DyMuS, the last hidden state H(l)

tb
is the sum-

marized information of the sequence of behavior b in the l-th
iteration, that is, Eb(l) = H

(l)

tb
∈ RD×L. Using each row of

Eb(l) for all behaviors b ∈ B, the candidate capsules u
d(l)
c

for c = 1, ..., C(= D) for the d-th dimension are defined as:

[u
d(l)
1 ... u

d(l)
c ... u

d(l)
C ] = Wd ⊗

[
e
1(l)
d ... e

|B|(l)
d

]
∈ RL×C (10)

where e
b(l)
d ∈ RL is the d-th row of Eb(l), and Wd ∈

RL×C×|B| is the weight tensor.
The other parts for integrating the candidate capsules (i.e.,

c
(l)
dc ,v

(l)
c ,v(l), r

(l)
c ,p(l), and b

(l+1)
dc ) are similar as in Dy-

MuS. Finally, for each dynamic GRU, the adjusting state for
the k-th item for dynamic routing is updated when l < r.
To maintain the adjusting state in the form of capsules, it is
updated with element-wise multiplication between the inte-
gration result and N

(l)
k , which is the new gate in the dynamic

GRU encoding the information about the input item:

C
(l+1)
k = C

(l)
k +N

(l)
k ∗ [r

(l)
1 ... r

(l)
C ] ∈ RD×C . (11)

The adjusting state C
(l+1)
k learns to adjust the input state in

each dynamic GRU in the next iteration to encode important
information in the capsules, with the relation between the
integration result in the l-th iteration and the k-th item on
behavior b. Finally, the estimated probability ŷSi are also
defined similarly to DyMuS.

Prediction
We use the binary cross-entropy loss as the loss function L:

L = −
1

|ST |
∑

S∈ST

∑
i∈I

(ySi log ŷSi + (1− ySi) log(1− ŷSi)) , (12)

where ST is the sets of a user’s multi-behavior sequences in
the training set, and ySi ∈ {0, 1} is the ground-truth label
which indicates whether item i is the true next item of the
set of multi-behavior sequences S.

Experiments
Experimental Settings
Dataset Our experiments were conducted on two public
datasets: Taobao1 and Tmall2, and a new dataset we release:
GS Retail3. Table 1 provides the statistics of the datasets.
For all datasets, we filtered out users and items that have less
than five interactions on the target behavior (i.e., Purchase),
and used recent 500 interactions of each user.

GS Retail is a new dataset we release. User behavior data
of GS SHOP, which is an e-commerce and home-shopping
brand of GS Retail, was collected for a month in 2021. This
dataset contains three types of user behaviors: Purchase,
Add-to-cart, and Click. Compared with the other datasets,
this dataset has the largest and the most up-to-date data.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=47
3http://di.postech.ac.kr

Taobao Tmall GS Retail
#Users 987,994 424,170 13,334,687
#Items 4,162,024 1,090,390 3,477,502
#Purchases 2,015,839 3,292,144 6,510,474
#Favorites 2,888,258 3,005,723 -
#Add-to-carts 5,530,446 76,750 15,283,350
#Clicks 89,716,264 48,550,713 158,567,115
Time period 9 days 186 days 32 days
Year 2017 ≤2014 2021

Table 1: Statistics of datasets.

Evaluation We used the most recent interacted item on the
target behavior of each user as the test item, and the second
most recent one as the validation item, and trained the model
with the rest of the data. For accurate performance compar-
ison, we ranked the test item by comparing it with all other
negative items. The ranking metrics are Hit Ratio@n (H@n)
and NDCG@n (N@n) which are commonly used for top-n
recommendation (Cho et al. 2021a; Kang et al. 2022), and
we used 10, 20 for n.

Baselines We compared DyMuS and DyMuS+ with sev-
eral types of baselines. We adopted the single-behavior-
based methods, which use only data on the target behav-
ior: BPR-MF (Rendle et al. 2009) is a matrix factoriza-
tion method, with a pair-wise loss for personalized rank-
ing. GRU4Rec (Hidasi et al. 2016) and SASRec (Kang and
McAuley 2018) learns the user interests in item sequences,
with GRU and a self-attentive network, respectively. FMLP-
Rec (Zhou et al. 2022), which is one of the state-of-the-art
SRSs, utilizes an all-MLP structure and filtering algorithms
to denoise the item sequence. We also revised these methods
into straightforward multi-behavior versions, in which a uni-
fied sequence of the multi-behavior data that consists of the
sum of item embedding and behavior embedding is used.

We also adopted the multi-behavior-based methods:
METAS (Lee et al. 2019) designs the relationships between
users and items in an action space and an entity space,
and learns them with multi-task metric learning. EHCF
(Chen et al. 2020) learns user-item relationships with trans-
fer learning between the behaviors, a non-sampling opti-
mization and multi-task learning. HMG-CR (Yang et al.
2021) adopts graph neural networks based on hyper meta-
paths between a user’s behaviors, and a graph contrastive
learning. CML (Wei et al. 2022) uses contrastive meta
network to model the cross-type behavior dependencies.
MBN (Shen, Ou, and Li 2022) is a multi-behavior SRS
with an RNN-based meta multi-behavior sequence encoder
to capture meta-knowledge between the sequences and a
recurring-item-aware predictor. TGT (Xia et al. 2022) is a
multi-behavior SRS that captures short-term user interests
with a behavior-aware transformer network and long-term
user interests via a temporal graph neural network.

Implementation Details We used Adam optimizer
(Kingma and Ba 2015) to optimize all models, and tuned
the hyperparameters based on the validation N@10 per-
formance: learning rate η ∈ {1e-02, 3e-03, 1e-03, 3e-04,
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Dataset Metric BPR-MF GRU4Rec SASRec FMLP-Rec METAS EHCF HMG-CR CML MBN TGT DyMuS DyMuS+ Imp.(%)

Ta
ob

ao
H@10 0.0105 0.0945 0.1391 0.2286 0.0062 0.0315 0.0023 0.0017 0.2089 0.1768 0.2758∗ 0.3166∗ 38.5%
H@20 0.0151 0.1095 0.1565 0.2509 0.0097 0.0425 0.0041 0.0026 0.2259 0.2147 0.2947∗ 0.3358∗ 33.8%
N@10 0.0058 0.0659 0.1030 0.1772 0.0034 0.0184 0.0013 0.0009 0.1630 0.1239 0.2101∗ 0.2369∗ 33.7%
N@20 0.0070 0.0696 0.1074 0.1828 0.0043 0.0212 0.0017 0.0012 0.1674 0.1335 0.2149∗ 0.2418∗ 32.3%
#Prm 89.1M 153.4M 19.1M 76.6M 44.6M 37.1M 11.2M 22.3M 89.4M 77.4M 77.4M 81.7M -
Inf.t 17.2 15.6 14.2 15.8 20.8 25.0 20.2 17.4 32.5 23.5 20.4 28.6 -

T
m

al
l

H@10 0.0092 0.0554 0.0720 0.0862 0.0049 0.0319 0.0052 0.0028 0.0980 0.0331 0.0982 0.1380∗ 40.8%
H@20 0.0160 0.0689 0.0789 0.1026 0.0086 0.0428 0.0084 0.0040 0.1189 0.0465 0.1152 0.1576∗ 32.6%
N@10 0.0044 0.0380 0.0608 0.0612 0.0023 0.0186 0.0021 0.0013 0.0630 0.0204 0.0694∗ 0.0941∗ 49.4%
N@20 0.0061 0.0413 0.0625 0.0654 0.0033 0.0203 0.0029 0.0018 0.0692 0.0237 0.0737∗ 0.0990∗ 43.1%
#Prm 18.5M 23.0M 2.9M 5.8M 18.6M 37.1M 4.7M 9.3M 37.3M 5.7M 12.5M 13.9M -
Inf.t 4.3 5.7 5.0 6.2 6.7 25.7 19.4 8.8 23.1 11.4 10.6 18.0 -

G
S

R
et

ai
l

H@10 0.0315 0.4150 0.4119 0.4061 0.0248 0.0649 0.0241 0.0038 0.4345 0.2661 0.4988∗ 0.5409∗ 24.5%
H@20 0.0485 0.4341 0.4152 0.4470 0.0427 0.0842 0.0364 0.0067 0.4694 0.3135 0.5287∗ 0.5692∗ 21.3%
N@10 0.0164 0.3774 0.4036 0.3253 0.0118 0.0402 0.0125 0.0018 0.3443 0.1948 0.4103∗ 0.4270∗ 5.8%
N@20 0.0207 0.3822 0.4044 0.3356 0.0163 0.0451 0.0156 0.0024 0.3531 0.2068 0.4179∗ 0.4342∗ 7.4%
#Prm 42.3M 20.5M 5.1M 10.4M 21.2M 42.4M 5.3M 10.6M 42.5M 5.1M 10.7M 12.0M -
Inf.t 7.2 5.1 5.5 7.1 8.1 27.4 60.3 7.6 32.6 12.5 10.8 19.4 -

Table 2: Overall performance of multi-behavior-based methods on the next item prediction. For each dataset and metric, the best
performance is highlighted in boldface, and the best performance among the competitors is underlined. Imp. is the improvement
of DyMuS+ over the best competitor. #Prm is the number of parameters in the model, and Inf.t is the inference time (in seconds).
* indicates the improvement over the best competitor is statistically significant with p < 0.01, using the student t-test.

Dataset Metric BPR-MF GRU4Rec SASRec FMLP-Rec

Ta
ob

ao

H@10 0.0414 0.0190 0.0409 0.0464
H@20 0.0487 0.0225 0.0431 0.0489
N@10 0.0264 0.0136 0.0347 0.0412
N@20 0.0282 0.0144 0.0352 0.0418
#Prm 89.1M 153.4M 19.1M 38.2M
Inf.t 17.4 15.8 14.1 15.6

T
m

al
l

H@10 0.0101 0.0067 0.0093 0.0092
H@20 0.0170 0.0104 0.0130 0.0131
N@10 0.0050 0.0039 0.0064 0.0062
N@20 0.0068 0.0048 0.0073 0.0072
#Prm 37.1M 23.0M 5.7M 5.8M
Inf.t 4.3 5.6 5.1 6.0

G
S

R
et

ai
l

H@10 0.0329 0.1028 0.1225 0.1081
H@20 0.0485 0.1247 0.1399 0.1322
N@10 0.0174 0.0741 0.0992 0.0766
N@20 0.0214 0.0796 0.1036 0.0827
#Prm 42.3M 20.4M 2.5M 5.1M
Inf.t 7.0 5.2 5.5 6.9

Table 3: Performance of single-behavior-based methods.

1e-04}, dropout rate p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5},
coefficient for L2 regularization λ ∈ {0.0, 0.001, 0.01, 0.1},
embedding dimension D ∈ {16, 32, 64, 128}, batch size
B ∈ {64, 128, 256, 512}. For SRSs, we tuned the length of
sequence L ∈ {10, 20, 50, 100}. For DyMuS and DyMuS+,
the capsule length L is tuned in {2, 4, 8, 16, 32} and the
number of iterations for dynamic routing r = 2.

Performance Comparison
Table 2 and 3 shows the overall performance of the multi-
behavior-based and the single-behavior-based methods, re-

spectively. According to the results, firstly, DyMuS+ showed
the best performance on all datasets, and DyMuS was sec-
ond in most of the results (except for H@20 on Tmall). This
verifies the superiority of DyMuS and DyMuS+ to model
the user interests within multi-behavior sequences consider-
ing the characteristics of them. Also, DyMuS+, using the dy-
namic GRUs to capture at item-level heterogeneity and per-
sonalization, outperformed DyMuS, which shows the sig-
nificance of modeling the heterogeneous and personalized
information both at sequence- and item-level based on the
correlations between the behavior sequences. Moreover, our
efficient dynamic routing makes our methods have superior
performance without too many parameters or much infer-
ence time compared to other methods.

Generally, the methods using multi-behavior data, even in
a simple manner, have better performance than using only
single-behavior data, which means that it is important to ex-
ploit the various information of multi-behavior data. How-
ever, the methods that adopt multi-task learning strategy, es-
pecially BPR-MF for multi-behavior and METAS, perform
worse than the methods using single-behavior as the mod-
els overfit in predicting the items on the most behavior (i.e.,
Click) rather than the target behavior. Also, the methods that
model the sequential information provide more accurate pre-
dictions than the methods that do not, and the differences
are more evident in the multi-behavior scenario. These re-
sults support our claim that it is important to consider the
sequential information, especially in multi-behavior data.

Analyses on DyMuS and DyMuS+

Hyperparameter Study We analyse the effects of hyper-
parameters of DyMuS and DyMuS+: the number of itera-
tions for dynamic routing r and the capsule length L. Fig. 3
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Figure 3: NDCG@10 performance with various combina-
tions of the capsule length and the number of iterations.
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Figure 4: Rates of change of the weights on each behavior
compared to the first iteration in DyMuS when r = 2 and
r = 4 for 1,000 users with the largest total rate of change.
P: Purchase, A: Add-to-cart, F: Favorite, C: Click.

demonstrates the performance of DyMuS and DyMuS+ with
various combinations of r and l on Taobao. Note that the
results on the other datasets showed similar trends. On both
methods, the performance increases as r increases to some
extent, which shows the effectiveness of the dynamic rout-
ing which makes the model pay attention to the important
capsules. When r > 2, the model can refer to more accurate
integration results after the dynamic routing in the earlier
phases, which leads a further improvement of performance.
Also, a sufficiently large L increases the performance by
providing enough space for the capsules to encode heteroge-
neous information of the multi-behavior sequences. Finally,
the optimal capsule length is larger in DyMuS+ than in Dy-
MuS, which implies the dynamic GRUs can encode more
informative and heterogeneous information via its capsule-
based structure. However, the model overfits and the perfor-
mance decreases if r or L becomes too large, which implies
it is important to select r and L properly.

Analysis on Dynamic Routing To show the dynamic
routing in DyMuS effectively pays attention to specific in-
formation for each user to obtain personalized information,
we show the weights on each behavior varying over itera-
tions through the dynamic routing. Each value in a column in
Fig. 4 represents the rate of change of the weight applied to
each behavior type in the last iteration of the dynamic rout-
ing compared to the first iteration for a user, and a figure re-
ports the 1,000 users with the largest total rate of change. In
other words, each value represents the rate of change of the
weight Wdc for the first row of the final capsules (i.e., v(l)

1 ),
which varies according to candidate capsules ud

c emphasized
by the coefficient c(l)dc updated through the routing iterations.

Original Sum Self-att -P -A -F -C
DyMuS 0.2101 0.1805 0.1820 0.1212 0.2078 0.1947 0.0872
DyMuS+ 0.2369 0.2057 0.2187 0.1643 0.2163 0.2011 0.1027

MBN 0.1630 - - 0.1622 0.1627 0.1631 0.0535

Table 4: Ablation study on Taobao (N@10). P: Purchase, A:
Add-to-cart, F: Favorite, C: Click.

The results tell that for both cases, there is a personalized
change in the weights on behaviors for each user compared
to the first iteration, and the weight change with r = 4 is
greater than that with r = 2, with a higher performance.
Note that compared to when r = 1 (N@10 = 0.1971)
where all candidate capsules are integrated equally with-
out the dynamic routing, the only difference with r = 2
(N@10 = 0.2101) and r = 4 (N@10 = 0.2151) is that the
coefficients can pay attention to specific capsules through
the dynamic routing. Therefore, the results indicate that to
train DyMuS to pay attention to specific capsules to obtain
the personalized information for each user through the dy-
namic routing improves performance, and the weights can
be personalized more effectively with sufficient iterations.

Ablation Study To show that the dynamic routing in Dy-
MuS and DyMuS+ is more effective than other integration
methods, and our methods effectively encode heterogeneous
information of the multi-behavior sequences, we performed
ablation studies on them. The results on Taobao are reported
in Table 4. Note that the results on the other datasets showed
similar trends. Firstly, when the outputs from the behav-
ior GRUs are integrated using sum or self-attention instead
of the dynamic routing, the performance decreases because
they cannot sufficiently encode the heterogeneous informa-
tion or personalize the information from the encoded se-
quences. Also, the performance decreases when the influ-
ence of each behavior data is removed. This phenomenon
is more evident on DyMuS and DyMuS+ than MBN (Shen,
Ou, and Li 2022) which is a state-of-the-art SRS for multi-
behavior, which shows the ability of our methods to extract
meaningful information from each behavior sequence.

Conclusion
In this paper, we summarize the characteristics of multi-
behavior sequences that have to be considered in SRSs, and
propose two novel methods for modeling multi-behavior se-
quences, DyMuS and DyMuS+, which consider the charac-
teristics thoroughly. DyMuS adopts the dynamic routing to
consider the correlations between the behavior sequences to
model the heterogeneous and personalized information, and
DyMuS+ extends the dynamic routing to dynamic GRUs to
model them even at item-level. We also release a new, large
and up-to-date dataset for MBRS, which can contribute to
the future MBRS studies. Our experiments show the supe-
riority of DyMuS and DyMuS+ compared with the several
state-of-the-art baselines, and our analyses on the behaviors
of the proposed methods verify the importance of modeling
the addressed characteristics of multi-behavior sequences,
and the abilities of the proposed methods to model them.
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