
End-to-End Entity Linking with Hierarchical Reinforcement Learning

Lihan Chen1, Tinghui Zhu1, Jingping Liu2, Jiaqing Liang3, Yanghua Xiao1, 4*

1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
2 East China University of Science and Technology, Shanghai, China

3 School of Data Science, Fudan University, China
4 Fudan-Aishu Cognitive Intelligence Joint Research Center

lhc825@gmail.com, thzhu22@fudan.edu.cn, jingpingliu@ecust.edu.cn, liangjiaqing@fudan.edu.cn, shawyh@fudan.edu.cn

Abstract

Entity linking (EL) is the task of linking the text segments
to the referring entities in the knowledge graph, typically de-
composed into mention detection, and entity disambiguation.
Compared to traditional methods treating the two tasks sep-
arately, recent end-to-end entity linking methods exploit the
mutual dependency between mentions and entities to achieve
better performance. However, existing end-to-end EL meth-
ods have problems utilizing the dependency of mentions and
entities in the task. To this end, we propose to model the
EL task as a hierarchical decision-making process and de-
sign a hierarchical reinforcement learning algorithm to solve
the problem. We conduct extensive experiments to show that
the proposed method achieves state-of-the-art performance in
several EL benchmark datasets. Our code is publicly available
at https://github.com/lhlclhl/he2eel.

Introduction
Entity linking (EL) is the task of linking the text segments
to the referring entities in the knowledge graphs (KG). EL
is a fundamental task for machines to understand natural
language via KGs; thus, it has been drawing much interest
in research in the past decade (Hoffart et al. 2011; Kolit-
sas et al. 2018; Zhang et al. 2022). EL consists of two ma-
jor steps: mention detection (MD, which identifies text seg-
ments referring to entities) and entity disambiguation (ED,
which disambiguates mentions to respective entities). Tra-
ditional methods (Steinmetz et al. 2013; Moro et al. 2014)
solve EL in a pipeline manner, treating MD and ED indepen-
dently, which ignores the mutual dependency between these
two tasks. To overcome this weakness, end-to-end solutions
dominate recent efforts by solving EL with one model via
joint training (Févry et al. 2020; De Cao et al. 2021b) or
joint modeling (De Cao et al. 2021a; Mrini et al. 2022).

However, existing end-to-end EL methods have difficulty
in fully exploiting the dependency residing in mentions and
entities. First, the mutual inter-dependency between men-
tions and entities is not easy to be exploited. Most methods
with MD-to-ED inference order ignore the dependency of
mentions on entities. For example, typical multi-task learn-
ing models (Martins et al. 2019; Ravi et al. 2021) only

*Corresponding authors.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exploit the dependency between MD and ED implied by
the shared representation. However, these models are only
trained with independent objectives for individual tasks,
leaving the detection of mentions independent from ED re-
sults. Other works (Kolitsas et al. 2018; Zhang et al. 2022)
perform ED for all candidate mentions and use ED scores
to identify mentions. These methods take advantage of the
explicit effects of entities on mentions but ignore that ED
actually depends on the accurate identification of mention
boundaries. Without considering MD results, they will pro-
duce ED errors due to noisy candidate mentions. Second,
existing EL methods also have problems in utilizing the
intra-dependency within mentions (or entities). Most meth-
ods model MD/ED in a document as multiple independent
tasks (De Cao et al. 2021b; Zhang et al. 2022) instead of
a single joint task. They obviously ignore that the detec-
tion/disambiguation of individual mentions/entities depends
on other mentions/entities in a context. Other methods utiliz-
ing global context information suffer from either noisy can-
didate mentions and entities (Kolitsas et al. 2018) or the ex-
posure bias problem of long-term decision-making (De Cao
et al. 2021a; Mrini et al. 2022).

To address the above dependency problems, we propose
to model the EL task as a hierarchical sequential decision-
making process. Considering human readers annotating en-
tities in the text (e.g., “Jobs founded Apple”), as shown in
Figure 1, instead of detecting all the mentions first and then
linking them to a knowledge graph, they will spot one men-
tion first (e.g., “Jobs”) and try to decide what it refers to
(e.g., “Steve Jobs”), after that they will then repeatedly spot
another one (e.g., “Apple”) and do the same thing. Thus, for
a human, the EL task is a sequence of subtasks (Pateria et al.
2021) of linking individual mentions to entities. Based on
this intuition, MD is a high-level sequential decision-making
process with each step choosing a subtask (i.e., identifying a
mention to link), while ED for the mention can be viewed as
making low-level decisions by completing the subtask. For
low-level ED, we adopt the state-of-the-art generative entity
retrieval (GENRE) (De Cao et al. 2021a), which is also a
sequential decision-making process.

We then formalize the EL task as a Markov decision pro-
cess (MDP) and adopt hierarchical reinforcement learning
(HRL) algorithms (Pateria et al. 2021) to solve it. This so-
lution deals with the above dependency problems from two

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4173

𝑠0: “Jobs founded Apple”

High-level
Policy

𝑠4: “[Jobs](Steve Jobs)
founded Apple”

subtask 𝑜0 : linking “Jobs”
…

a1: “Steve” a2: “Jobs” a3: <eos>

𝑠1: … Jobs …
<s>

𝑠2: … Jobs …
<s> Steve

𝑠3: … Jobs …
<s> Steve Jobs

High-level Mention Detection

Low-level Entity Disambiguation

High-level
Policy

Low-level
Policy

Low-level
Policy

Low-level
Policy

subtask 𝑜4 : linking “Apple”

Figure 1: End-to-end entity linking task as a hierarchical
decision-making process.

aspects. First, the hierarchical framework fully expresses the
two-way inter-dependency between mentions and entities.
The low-level ED depends on the mention detected by the
high-level decision, while the high-level RL for MD will
be optimized to maximize the EL task reward in terms of
the outcome of ED, which enforces MD to be dependent on
the low-level ED. Second, the intra-dependency within men-
tions (or entities) is exploited by the mention-by-mention se-
quential decision-making process.

Based on the HRL framework, we construct a deep RL
agent with a hierarchical policy optimized for EL. In gen-
eral, the intrinsic properties of EL tasks pose great chal-
lenges for hierarchical policy learning. First, high-level pol-
icy learning is unstable due to the variant extrinsic cumu-
lative reward caused by the variant number of mentions in
a document. A standard solution is to utilize the value func-
tion as a baseline in policy learning (Sutton and Barto 2018),
but learning a robust value function via a naive approach is
still difficult. We propose a novel value function approxima-
tion approach specifically for EL to achieve more accurate
value estimation and further reduce the influence of variant
reward during training. Second, in order to adapt the low-
level policy for ED as generative entity retrieval, we adopt
offline reinforcement learning (Levine et al. 2020) to take
advantage of candidate entities for efficient optimization.

In summary, our contribution is threefold.
• As far as we know, we are the first to model EL task as

a hierarchical decision-making process. This framework
fully exploits the dependency in mentions and entities.

• Based on the proposed framework, we design a novel
HRL algorithm to solve the EL problem. We propose a
specific value function approximation method for EL to
tackle the challenges of variant extrinsic reward in hier-
archical policy optimization.

• Extensive experiments show that our method achieves
state-of-the-art performance in EL benchmark datasets.

Overview
Problem Definition
The input of EL is a text document (including short phrases,
like a query or a tweet) given as a sequence X = x1x2...xn

of words from a dictionary, i.e., xk ∈ V . The goal of EL is
to detect the mentions, M = [m1,m2, ...,mT], where each
mention is a word subsequence of the input document, i.e.
mi = xp...xq (1 ≤ p ≤ q ≤ n), ∀1 ≤ i ≤ T , referring to
entities, and to link the mentions to corresponding entities,
E = [e1, e2, ..., eT], where each entity is an entry in the
given KG, i.e., ei ∈ E , ∀1 ≤ i ≤ T . For example, given a
text “Jobs founded Apple” as input, the output of the task
is [(Jobs, Steve Jobs), (Apple, Apple Inc.)], where “Jobs”
and “Apple” are mentions in the text and “Steve Jobs” and
“Apple Inc.” are entities in KG.

Solution Framework
As shown in Figure 1, we model the EL task as a hierar-
chical decision-making process. Specifically, we define the
subtask as linking a given mention to an entity in KG (e.g.,
linking “Jobs” to the correct entity). Then, the MD proce-
dure is a high-level decision-making process of sequentially
identifying mentions as subtasks, and the ED procedure is
a low-level decision-making process of finishing subtasks
by autoregressively generating entity names. To this end, we
formalize EL as an MDP and design a hierarchical reinforce-
ment learning algorithm to solve it. We build an HRL agent
consisting of two primary modules, as shown in Figure 2.
The agent is trained to find an optimized high-level policy
for mention detection and a low-level policy for entity dis-
ambiguation. For each episode (EL process for a document),
the agent first identifies a mention as a subtask according to
the high-level policy. After the mention is chosen, the agent
then disambiguates the mention as a specific entity by se-
quentially generating the entity name according to the low-
level policy. Once the low-level policy arrives at a terminal,
the high-level policy retakes control and resumes the above
procedure until the high-level terminal action is chosen. Un-
like those architectures only considers the separate task in-
formation for MD, this high-level policy aims to maximize
the reward of the global task objective (Pateria et al. 2021),
which takes into account the results of low-level ED.

Methodology
We elaborate on the details of our method in this section.
We first describe the MDP components of the hierarchical
decision-making process. After that, we then introduce our
algorithm for hierarchical policy learning.

High-level Mention Detection
The process of high-level decision-making is to detect men-
tions from the text sequentially. This section first introduces
the definition and corresponding representation for its MDP
components, including state, action and reward, then formal-
izes the parameterized high-level policy πω .

State The high-level decision points exist only in part of
MDP states (s0 and s4 in the example of Figure 1). Thus,
from the view of high-level policy, the state contains the in-
put sequence as well as the detected mentions (e.g., “Jobs”)
and corresponding linked entities (e.g., “Steve Jobs”) from
past actions. To represent the state st ∈ S of high-level

4174

entity name tokens

+
start token

end token
LSTM

<s> 𝑧1 𝑧2 Softm
ax

𝜋𝜃

start token end token+

start token end token+

start token end token+
…

Feedforw
ard

Softm
ax

𝜋𝜔

subtask 𝑜

…

High-level Policy Low-level Policy

Low-level State EncodingHigh-level Actions

𝒙𝒊 𝒙𝒋 Feedforw
ard

𝒙𝒊

𝒙𝒋

terminal

token 𝑧𝑡
terminal

𝑚𝑖𝑗

High-level State Encoding
𝑥1 𝑥2 𝑥𝑛

Transformer Encoder

𝒙𝟏 𝒙𝟐 𝒙𝒏

…

… LM
 H

ead
mention

…

vocabulary
as actions

Figure 2: The architecture of the hierarchical policy of the HRL agent. The high-level policy identifies mentions as subtasks,
and the low-level policy executes the given subtasks by linking mentions via generative entity retrieval.

decision points at time step t, we adopt the markup lan-
guage (De Cao et al. 2021a) that marks the detected men-
tion and adds the corresponding linked entities in the input
text sequence. Figure 1 presents an example. From the high-
level view, the procedure usually starts with an initial state
of plain text without any markups (“Jobs founded Apple” as
s0). Then, after the first subtask (o0 to link “Jobs”) is chosen
and finished (via low-level policy), the next state of high-
level view is represented as a markup text (“[Jobs] (Steve
Jobs) founded Apple” as s4). To provide a rich state rep-
resentation for long input texts like documents, we encode
it using a Longformer (Beltagy, Peters, and Cohan 2020),
which is a Transformer pre-trained with a masked language
model objective designed to support long sequences. Thus,
as shown in Figure 2, the encoding of a state s ∈ S is a se-
quence of contextualized token embeddings computed from
the Longformer encoder, i.e., s = [x1, x2, ..., xn].

Action For a state st ∈ S in a high-level decision point,
an action ot ∈ O is to choose a mention as a subtask, e.g.,
linking “Jobs” as o0 in Figure 1. As a subtask, the high-
level action ot is technically the action defined in the Semi-
Markov decision process (SMDP) (Baykal-Gürsoy 2010),
where the concept of time is involved for the execution of
an action after it has been chosen, e.g., the execution of o0
takes four time steps. We then denote c(ot) as the number
of time steps for which ot is executed. Specifically, ot is
chosen from the set Ot of all the candidate mentions plus
a terminal action, i.e., Ot = {ot|ot = mij ∨ ot = η} ⊂ O,
where mij = xi...xj (1 ≤ i ≤ j ≤ n) denotes a possible
mention from the input text and η is a special token indicat-
ing terminal. The possible mentions come from all the text
spans within a specific length limit, except for the mentions
and entities already marked up in the state representation.
As shown in Figure 2, an action encoding ot corresponding
to a mention mij is calculated as the concatenation of con-
textualized encodings of the start token xi and the end token
xj , i.e., ot = [xi; xj]. For the encoding of the terminal action
η, we use the “CLS” token encoding in state representation.

Reward The reward is defined as the feedback after an ac-
tion is executed. For an agent that only performs mention de-
tection, the feedback can be immediately received when an
action o is chosen. However, in the hierarchical framework,
the function of the high-level policy is not only detecting a
mention, but acting as a global strategy optimizing for the
whole EL task. Thus, the high-level reward should respond

to the outcome of performing the subtask, i.e., the execution
of the low-level actions (Pateria et al. 2021). We define the
reward received from choosing and executing o based on s
and arriving at s′ as:

rh(s, o, s′)

1, if the linked entity for o is correct
0, if o = η

δh, if the linked entity for o is wrong
, (1)

where δh ≤ 0 is the hyper-parameter as the negative re-
ward for incorrectly linked entities. For a high-level state-
action trajectory s0, o0, sc(o0), ..., we use rht to denote
rh(st, ot, st+c(ot)) for simplicity.

Policy The policy is a mapping from state to action. The
stochastic high-level policy πω : S × O 7→ [0, 1] specifies a
probability distribution over actions given the state:

πω(o|st) =
exp f(o)∑

o′∈Ot
exp f(o′)

, (2)

where f is a feedforward neural network (FNN) with out-
put dimension one and ω represents parameters of the policy
network, including the parameters of f and the encoder.

Low-level Entity Disambiguation
Once the high-level policy has chosen a mention, the low-
level policy will be triggered to link the detected mention to
an entity. To this end, we adopt state-of-the-art generative
entity retrieval (De Cao et al. 2021a) and present the details
of this process from the view of the low-level policy πθ. The
notation t in this section is re-used as the low-level time step.

State After a subtask o is chosen, the agent takes a special
transition to a low-level state so1 (shown as s1 in Figure 1).
The low-level state sot ∈ S under subtask o consists of the
context of the mention and the generated token sequence of
entity name before the low-level time step t from the start
of this subtask, i.e., z0z1...zt−1, where z0 = ⟨s⟩ is a pre-
defined start token. Following (De Cao et al. 2021b), we use
a long-short term memory (LSTM) network (Hochreiter and
Schmidhuber 1997) to represent the entity token sequence,
as shown in Figure 2. Specifically, we first project the sub-
task encoding o with an FNN g to the initial state of LSTM,
i.e., h0 = g(o). Then we represent sot as the LSTM output
state at time step t: ⟨sot , ht⟩ = LSTM(ht−1, zt−1).

4175

Action The action of the low-level decision-making pro-
cess is to generate the next word of the entity. Thus, the ac-
tion space is defined as A = V , where V denotes the token
vocabulary, including an end-of-sentence token (EOS) rep-
resenting the termination of the low-level decision process.

Reward For low-level actions, the reward is zero until the
entity name generation procedure is complete; thus, the low-
level reward ro(so, a) on subtask o is defined as:

ro(so, a)

{
I(so) + δl(1− I(so)), if a = EOS

0, otherwise
, (3)

where I(so) ∈ {0, 1} is the identifier determining whether
the generated entity in so is equal to the ground truth entity
of subtask o, and δl ≤ 1 is a hyper-parameter representing
the reward for an incorrectly linked entity.

Policy Similar to high-level policy, we define the low-level
policy as a stochastic policy, i.e., πθ : S×A 7→ [0, 1]. Specif-
ically, we use the language model head of Longformer, with
parameter matrix W and b, to project the state encoding to
the action distribution:

a ∼ πθ(·|sot) = softmax(Wsot + b), (4)

where θ represents parameters of this policy network, in-
cluding W, b, and parameters of LSTM, g, and the Long-
former encoder.

Hierarchical Policy Optimization
In this section, we first elaborate on the details of high-level
and low-level policy learning, respectively, then introduce
the training algorithm for hierarchical policy optimization.

High-level Policy Learning Objective The objective of
the high-level policy is to acquire the maximum expected
cumulative reward rh from the environment. Thus, the opti-
mization objective of the high-level policy is directly formal-
ized as finding the parameters ω that maximizes the expected
cumulative reward of trajectories1 under πω:

J(πω) = Es0,o0,s1,...,sT∼πω
[
T−1∑
t=0

γtrht], (5)

where πω is parameterized by ω, γ is a discount factor,
and T is the terminal time step of an episode. An intu-
itive solution to optimize this objective is REINFORCE al-
gorithm (Williams 1992), which updates the policy with its
gradients via Monte Carlo sampling:

∇ωJ(πω) = Es0,o0,s1,...,sT∼πω
[
T−1∑
t=0

Gt∇ω log πω(ot|st)],

(6)
where Gt =

∑T−1
k=t γk−trhk is the return, i.e., discounted

cumulative reward, from t to terminal time step T .
However, in our EL problem, the return Gt is of high vari-

ance because the number of mentions in input documents

1Note that state subscript indices for a high-level trajectory are
not consecutive, we write like that here for simplicity.

is various. We adopt actor-critic methods to address this
problem and to further enable bootstrapping with temporal-
difference learning (Sutton and Barto 2018). Specifically, in
order to update the policy πω , i.e., the actor, we optimize the
objective by introducing an estimated value function Vϕ pa-
rameterized by ϕ, as a critic, and further use the current state
value as a baseline:

∇ωJ(πω) = Est,ot,st+c(ot)
,rht ∼πω

[(rht + γVϕ(st+c(ot))−
Vϕ(st))∇ω log πω(ot|st)]

.

(7)

The estimated value function Vϕ(s) approximates the ex-
pected return from state s under policy πω , i.e. V (s) =
Eπω

(Gt|st = s). Actor-critic methods usually simultane-
ously learn the policy πω and the value function Vϕ.

In fact, in the entity linking task, the state value is hard
to estimate because the representation of state s is based on
the average encoding of the sequence, while the state value
is of high variance and depends on many factors such as
the length of the text and the number of mentions. To this
end, we design a novel approach to compute the value func-
tion Vϕ(s) via a pipeline inference for the state. Specifically,
we obtain a mention set Ms = [m1,m2, ...] by sequentially
choosing non-overlapping mentions with maximum proba-
bility and the probability larger than the terminal action, i.e.,
πω(o|s) > πω(η|s), only based on state s. Then, for each
o ∈ Ms, we execute πθ to perform ED and obtain a cor-
responding set of low-level terminal states of linked enti-
ties, Es = [sm1

t1 , sm2
t2 , ...]. Note that the low-level ED for

those mentions is based on the same state, which can be ef-
ficiently computed in parallel. Thus, the value function can
be approximated as:

Vϕ(s) =

|Es|∑
i=1

[D(smi
ti) + δh(1−D(smi

ti))], (8)

where D(smi
ti) ∈ [0, 1] is a discriminator realized by an FNN

ϕ. We directly train D(·) for each subtask with the ground
truth entity via binary cross-entropy objective. This formal-
ization of the value function is easy to estimate since only
a discriminator for the individual mention-entity pair is ad-
ditionally required. Moreover, it makes the policy learning
algorithm more intuitive. Based on this design, the intuition
of the term rht + γVϕ(st+c(ot)) − Vϕ(st) can be regarded
as the performance gain of completing a subtask (ot) first
(rht + γVϕ(st+c(ot))) over directly performing a pipeline in-
ference (Vϕ(st)). As a result, Eq (7) encourages the subtask
ot that is helpful for future linking decisions and discourages
those that are not.

Low-level Policy Learning Objective The policy learn-
ing for the low-level entity disambiguation is a much sim-
pler task because the number of the decision time step is
much smaller. Since the gold entities and candidate entities
are generated in the training set, we treat them as trajec-
tories that have already been acquired in the RL problem.
Thus, the optimization of the low-level policy is an offline
reinforcement learning (Levine et al. 2020) problem where
we can optimize the policy with off-policy policy gradient

4176

Algorithm 1: Hierarchical Policy Optimization for EL
Input: Training set with samples {(X,Y)}
Output: Model parameters ω, ϕ, θ

1: Initialize parameters ω, ϕ, and θ
2: for each sample (X,Y) do
3: Initial state s← X
4: while s is non-terminal do
5: Select a high-level subtask o based on πω

6: Execute subtask o based on πθ obtaining entity e
7: s′ ← s with annotation o, e
8: r ← rh(s, o, s′)
9: M ←M ∪ {(s, o, s′, r, Y)}

10: Sample a batch B = (sB , oB , s
′
B , rB , YB) from M

11: Update ω using B with Eq (7)
12: Update ϕ and θ using subtasks in sB with YB

13: s← s′

14: end while
15: end for

via importance sampling based on these acquired trajecto-
ries without more exploration:

∇θJ(πθ) =
∑

so1,a
o
1,...,s

o
T∼D

T−1∑
t=1

Go
t

πθ(at|sot)
πβ(at|sot)

∇θ log πθ(at|sot),

(9)
where o is the chosen mention, and D is the offline acquired
trajectory set. Since the reward is 0 except for the final state,
the low-level return Go

t is the final low-level reward of that
trajectory. πβ is the behavior policy that acquires the trajec-
tories, which we estimate with another network trained by
candidate entities in the training set via supervised learning.

Algorithm for Hierarchical Policy Learning We illus-
trate our training process in Algorithm 1. We regard each
document-annotation sample in the dataset as an episode
(line 2). For each high-level step in an episode (line 4), we
first choose a mention o as a subtask via the high-level policy
πω (line 5) and then complete the subtask via the low-level
policy πθ by generating the entity name (line 6). After that,
the agent get to the next state s′ (line 7) and receives a re-
ward r (line 8). We push the high-level tuple with the label
Y (s, o, s′, r, Y) into the replay memory (line 9) and sam-
ple a batch of tuples from it (line 10). We first update the
high-level policy πω by Eq (7) with the batch of tuples (line
11). Then, with the states of the sampled batch, we update
the low-level policy πθ and the discriminator D of the value
function on all the annotated mentions (subtasks) (line 12).

Experiments
In this section, we present empirical results of our method
and verifications of our designs on several benchmark
datasets compared with state-of-the-art EL methods.

Experimental Setup
We use the standard English AIDA-CoNLL splits (Hof-
fart et al. 2011) for training, validation, and in-domain test.
AIDA provides full supervision for both MD and ED. In

Method Micro-F1

Pipeline Entity Linking
(Hoffart et al. 2011) 72.8
(Steinmetz et al. 2013) 42.3
(Moro et al. 2014) 48.5
(Kolitsas et al. 2018) w/ NER 74.6
(van Hulst et al. 2020) 80.5

End-to-end Entity Linking
(Kolitsas et al. 2018) 82.4
(Broscheit 2019) 79.3
(Martins et al. 2019) 81.9
(Févry et al. 2020) 76.7
(Ravi et al. 2021) 83.1
(De Cao et al. 2021a) 83.7
(De Cao et al. 2021b) 85.5
(Mrini et al. 2022) 85.7
(Zhang et al. 2022) 85.8
Ours (PI) 87.1
Ours (HI) 87.6

Table 1: Evaluation results on in-domain test set.

addition, we further evaluate our method on four out-of-
domain test sets: N3-RSS-500 (R500) (Röder et al. 2014),
OKE challenge 2015 and 2016 (OKE15 and OKE16) (Nuz-
zolese et al. 2015), and Derczynski (Der) (Derczynski et al.
2015). Following most previous works (Zhang et al. 2022;
Mrini et al. 2022), we report the InKB Micro-F1 score as
the evaluation metric. As in previous approaches, we as-
sume the availability of a pre-computed set of candidates
for entity disambiguation, for which we use the same candi-
date generation as (Kolitsas et al. 2018). We also use these
candidates for offline RL training of low-level policy and to
provide negative samples for training D in the value func-
tion. For pre-training, we use the Wikipedia corpus (De Cao
et al. 2021a) with supervised multi-task learning objectives
like (De Cao et al. 2021b). The detailed settings including
dataset statistics, training details and hyper-parameters set-
tings are presented in supplementary materials.

Overall Evaluation
Table 1 summarizes the results of our method on the in-
domain AIDA test set. We provide two inference settings
for our methods, pipeline inference (PI) and hierarchical in-
ference (HI). The first setting is the same as previous multi-
task learning methods (Févry et al. 2020; Ravi et al. 2021),
where we first predict all the mentions using the high-level
policy and then predict entities for the detected mentions.
The second setting follows the procedure during our HRL
training, where we switch the high-level mention detection
and low-level ED iteratively. The advantage of the first set-
ting is efficiency since it only has to encode the context once.
The advantage of the second setting is effectiveness since it
makes decisions at each time step by relying on the results
of previous decisions. Results show that our method with HI
reduces the Micro-F1 error from the previous state-of-the-
art method by 12%. We find that our RL training can also

4177

Method R500 OKE15 OKE16 Der Avg.

(Hoffart et al. 2011) 42.4 63.1 0.0 32.6 34.5
(Steinmetz et al. 2013) 20.5 46.2 46.4 26.5 34.9
(Moro et al. 2014) 29.1 41.9 37.7 29.8 34.6
(Kolitsas et al. 2018) 38.2 61.9 52.7 34.1 46.7
(van Hulst et al. 2020) 35.0 63.1 58.3 41.1 49.4
(De Cao et al. 2021a) 40.3 56.1 50.0 54.1 50.1
(Zhang et al. 2022) 41.9 61.1 51.3 52.9 51.8

Ours 42.8 61.9 52.9 55.9 53.4

Table 2: Micro-F1 score on out-of-domain test sets. Bold in-
dicates the best, and underline indicates the second best.

improve the performance in PI setting, which is useful in
practice because the sequential decision-making of mention
detection is a time-consuming inference process. Due to the
similar architecture, the pipeline inference is as efficient as
(De Cao et al. 2021b); the hierarchical inference is around
20 times slower than the pipeline inference on the validation
set because of its mention-by-mention prediction.

To validate the generalization ability of our method, we
further conduct experiments on out-of-domain datasets. The
results are presented in Table 2. Our method achieves the
best macro-averaged Micro-F1 score across the four out-of-
domain evaluation datasets (+1.6). Specifically, our method
achieves the best test Micro-F1 scores for Derczynski (+1.8)
and N3-RSS-500 (+0.4) and is also competitive on the
other two (close second-best on OKE15 and OKE16). We
observe that the performance of our method lags behind
pipeline methods (e.g., (van Hulst et al. 2020)) in OKE15
and OKE16. It is because of the domain shift of the entity
annotation rules between these two datasets and the train-
ing set. These datasets are annotated with many coreferences
(e.g., pronouns) and common nouns (e.g., “professors” and
“director”), while our model was not explicitly trained for
them. Nevertheless, pipeline methods with more generalized
MD modules are more robust to those changes.

Decomposed Task Evaluation
To provide a clear view of how our method works, we
present its performance on decomposed tasks, i.e., MD and
ED, for a detailed analysis of the AIDA test set. The EL task
scores a prediction correct when both MD and ED are done
correctly, i.e., FEL

1 ≈ FMD
1 ×FED

1 . Unfortunately, this decom-
position is not usually reported in previous end-to-end EL
literature, so it is not easy to systematically investigate how
our method performs from the decomposed views of MD
and ED. Thus, we compare several systems that report the
ED performance (Kolitsas et al. 2018; Broscheit 2019; van
Hulst et al. 2020; Ravi et al. 2021; De Cao et al. 2021a), and
the re-run version of paralleled autoregressive EL (De Cao
et al. 2021b) with pre-training on Wikipedia anchor texts.
The results are presented in Table 3. The upper part of the
table reports results from previous literature; the lower part
presents the results from our experiments. The results of
baselines (De Cao et al. 2021b) in the lower part are pro-
duced by re-running their source code in our experiments.

Method FMD
1 FED

1

(Kolitsas et al. 2018) - 87.3
(Broscheit 2019) - 87.9
(van Hulst et al. 2020) - 89.4
(Ravi et al. 2021) - 85.7
(De Cao et al. 2021a) - 93.3

(De Cao et al. 2021b) 93.5 91.5
(De Cao et al. 2021b) w/ pre-training 93.5 92.1
HRL (PI) 94.3 92.4
HRL (HI) 94.4 92.8

Table 3: Decomposed task results on the AIDA test set.

Our method achieves the best performance on MD and com-
petitive performance on ED. The inferior performance on
ED results from the limited capacity of our generative entity
retriever. Our low-level policy based on LSTM (around 10M
parameters) is much smaller than the BART (Lewis et al.
2020) decoder (over 50M parameters) used in (De Cao et al.
2021a)). We believe a larger model for ED can bridge the
performance gap, which we will leave for future work.

Ablation Study We further conduct ablation analysis
based on the comparison with (De Cao et al. 2021b) which
has the similar model architecture to ours while different in
the training and inference mechanism. First, the pre-training
improves the performance of ED (91.5 → 92.1) while hav-
ing no effects on MD. The performance gain in ED is pre-
dictable because autoregressive generation of entity names
heavily relies on seen entities from a large corpus. Since
the annotation rule for mentions varies from different tasks
(AIDA only concerns named entities), the invariance of MD
performance is also reasonable. Second, in the context of the
same pipeline inference mechanism, the superiority of our
method over paralleled autoregressive EL is mainly on MD
(93.5 → 94.3). It is because our RL training strategy gives
the mention detector a high-level view, optimized based on
the global task with the consideration of the dependency
on low-level ED. It thus validates the effectiveness of our
method in exploiting the inter-dependency between men-
tions and entities. Third, in the context of the same model,
the hierarchical inference strategy has mainly positive influ-
ence on the performance of ED (92.4 → 92.8). The rea-
son is that the hierarchical inference takes the global ED
assumption (Ratinov et al. 2011) and considers the depen-
dency among the linking decisions of different mentions in
a context instead of treating each linking task independently
like PI. It thus validates the effectiveness of our method in
exploiting the intra-dependency within entities.

Value Function Evaluation
To overcome the problem of value function approximation,
we propose a particular design to estimate the value via a
pipeline inference. In this section, we conduct experiments
to show the advantage of our design compared to naive
value function approximation. We consider two baselines
for comparison, the naive actor-critic method with baseline
(AC+BL), where we replace our value function in Eq (8)

4178

0 100 200 300 400 500
episode

50

100

va
lu

e
L2

Ours
AC+BL
AC

0 100 200 300 400 500
episode

5

10

15

re
w

ar
d Ours

AC+BL
AC

Figure 3: Comparison between our value function approxi-
mation and the standard baselines.

with a naive value network, and the actor-critic method with-
out baseline (AC), where we train a naive value network for
bootstrapping but not use it as a baseline in Eq (7). The naive
value network implemented as an FNN takes the “CLS” to-
ken encoding of the state as input and outputs a scalar as
the estimated value. We approximate the naive value func-
tion with a standard actor-critic algorithm (Sutton and Barto
2018). To prove the effectiveness of our value function de-
sign, we evaluate them with two metrics on the validation set
during training, 1) L2 distance between the estimated value
and the actual return, and 2) average reward. The former
shows the fidelity of value networks, and the latter shows
the effects of value networks on high-level policy learning.
We present the results in Figure 3. The results show that the
learning process quickly fails without the variance control of
the baseline, and our design of the value network has better
fidelity and more positive influence on policy learning.

Error Analysis
We conduct a qualitative experiment and analyze typical er-
rors of our method in this section. Although achieving a high
Micro-F1 score of 95.5% on MD and 91.2% on EL, our
method still got some typical errors. To better understand
those errors, we examine the error cases and divide them
into three categories: 1) MD miss, where the gold mentions
are not detected by our method; 2) MD error, where our
method detects wrong mentions; and 3) ED error, where the
detected mentions are correct, but linked entities are wrong.
We present the qualitative results in Table 4. Most mentions
our method misses are those sharing the same form of pol-
ysemous words. Many MD errors come from missing anno-
tations or out-of-KB annotations we do not count for the EL
evaluation. Another typical MD error is the nested annota-
tion, where our method detects a part of a gold mention. Fi-
nally, ED errors are induced by various reasons. We hypoth-
esize that it is because of the limited capacity of low-level
policy. We believe a larger model will bring a performance
gain, which we will leave for future work.

Related Work
End-to-end Entity Linking EL is composed of mention
detection (MD) and entity disambiguation (ED). Traditional
methods (Hoffart et al. 2011; Steinmetz et al. 2013; Moro
et al. 2014; van Hulst et al. 2020) treat these sub-tasks sepa-
rately, training different modules. More modern approaches
adopt multi-task learning of MD and ED to enforce them
to benefit from each other (Martins et al. 2019; Broscheit

Error Example (G: ground truth; P: prediction)

MD miss G: off-spinner [such]Peter Such had scuttled their ...
(150) P: off-spinner such had scuttled their hopes

MD error G: another against [british universities]BU cricket team
(288) P: another against [british]United Kingdom universities

ED error G: the team is as follows: [given]Shay Given, ...
(208) P: the team is as follows: [given]Given name, ...

Table 4: Error analysis on the validation set.

2019; De Cao et al. 2021b; Ravi et al. 2021). Because of
the separate training objective and pipeline inference pro-
cess, they only consider the dependency in the representa-
tion while ignoring the dependency in the goals. To make
MD explicitly benefits from ED, some works (Kolitsas et al.
2018; Chen et al. 2018; Zhang et al. 2022) first perform ED
for all possible mentions and then use the linking score to
guide the mention detection. Without considering MD, the
mention boundary is hard to identify accurately, and the ex-
plicit effect from MD to ED is usually ignored. Another line
of work (De Cao et al. 2021a; Mrini et al. 2022) utilizes EL
for all mention-entity pairs jointly by autoregressively gen-
erating a version of the input markup-annotated with the en-
tities’ unique identifiers expressed in natural language. But
this complicated formalization will suffer from the exposure
bias problem of generation models.

Reinforcement Learning Previous works have shown
that reinforcement learning methods are good at explor-
ing and making decisions in large search spaces (Mnih
et al. 2013; Silver et al. 2017). It has been widely ap-
plied in NLP and KG-related tasks that can be modeled as
sequential decision-making problems, such as text gener-
ation (Kostrikov, Nair, and Levine 2021), reasoning (Hou
et al. 2021) and recommendation (Xian et al. 2019). It has
also been used to solve the global entity disambiguation
problem (Fang et al. 2019), where an RL agent is trained
to disambiguate mentions in the context sequentially. As far
as we know, we are the first to apply RL in end-to-end EL
literature. Hierarchical RL (Pateria et al. 2021) has also been
applied to tasks with complicated formalization, such as re-
lation extraction (Takanobu et al. 2019), and KG reasoning
with fine-grained relations (Wan et al. 2020).

Conclusion
This paper presents a novel hierarchical framework to for-
malize the entity linking problem. In the proposed frame-
work, mention detection is a high-level decision-making
process that identifies mentions as subtasks; entity disam-
biguation is a low-level decision-making process that fin-
ishes subtasks by linking mentions to entities. This hier-
archical framework fully exploits the dependency lying in
mentions and entities. Based on the novel framework, we
design a hierarchical RL algorithm to solve EL. Extensive
experiments prove the effectiveness of our approach. Future
work could further improve the performance of low-level
ED via high-capacity generative entity retrievers.

4179

Acknowledgements
We thank anonymous reviewers for their comments and
suggestions. This work was supported by Shanghai Sail-
ing Program (No. 23YF1409400), National Key Research
and Development Project (No. 2020AAA0109302), Shang-
hai Municipal Science and Technology Major Project (No.
2021SHZDZX0103), Science and Technology Commission
of Shanghai Municipality Grant (No. 22511105902), Na-
tional Natural Science Foundation of China (No. 62102095),
and Shanghai Municipal Special Fund for Promoting High-
quality Development of Industries (No. 2021-GZL-RGZN-
01018). Yanghua Xiao is also a member of Research Group
of Computational and AI Communication at Institute for
Global Communications and Integrated Media, Fudan Uni-
versity.

References
Baykal-Gürsoy, M. 2010. Semi-Markov Decision Processes.
Wiley Encyclopedia of Operations Research and Manage-
ment Science.
Beltagy, I.; Peters, M. E.; and Cohan, A. 2020. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150.
Broscheit, S. 2019. Investigating Entity Knowledge in
BERT with Simple Neural End-To-End Entity Linking. In
Proceedings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), 677–685.
Chen, L.; Liang, J.; Xie, C.; and Xiao, Y. 2018. Short text
entity linking with fine-grained topics. In Proceedings of
the 27th ACM International Conference on Information and
Knowledge Management, 457–466.
De Cao, N.; Izacard, G.; Riedel, S.; and Petroni, F. 2021a.
Autoregressive Entity Retrieval. In International Confer-
ence on Learning Representations.
De Cao, N.; et al. 2021b. Highly Parallel Autoregressive En-
tity Linking with Discriminative Correction. In Proceedings
of the 2021 Conference on Empirical Methods in Natural
Language Processing, 7662–7669.
Derczynski, L.; Maynard, D.; Rizzo, G.; Van Erp, M.; Gor-
rell, G.; Troncy, R.; Petrak, J.; and Bontcheva, K. 2015.
Analysis of named entity recognition and linking for tweets.
Information Processing & Management, 51(2): 32–49.
Fang, Z.; et al. 2019. Joint entity linking with deep rein-
forcement learning. In The World Wide Web Conference,
438–447.
Févry, T.; FitzGerald, N.; Soares, L. B.; and Kwiatkowski,
T. 2020. Empirical evaluation of pretraining strategies for
supervised entity linking. arXiv preprint arXiv:2005.14253.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Hoffart, J.; et al. 2011. Robust disambiguation of named en-
tities in text. In Proceedings of the 2011 conference on em-
pirical methods in natural language processing, 782–792.
Hou, Z.; Jin, X.; Li, Z.; and Bai, L. 2021. Rule-Aware Re-
inforcement Learning for Knowledge Graph Reasoning. In
Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, 4687–4692.

Kolitsas, N.; et al. 2018. End-to-End Neural Entity Linking.
In Proceedings of the 22nd Conference on Computational
Natural Language Learning, 519–529.
Kostrikov, I.; Nair, A.; and Levine, S. 2021. Offline Rein-
forcement Learning with Implicit Q-Learning. In Deep RL
Workshop NeurIPS 2021.
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 7871–7880.
Martins, P. H.; et al. 2019. Joint Learning of Named En-
tity Recognition and Entity Linking. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, 190–196.
Mnih, V.; et al. 2013. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.
Moro, A.; et al. 2014. Entity linking meets word sense dis-
ambiguation: a unified approach. Transactions of the Asso-
ciation for Computational Linguistics, 2: 231–244.
Mrini, K.; et al. 2022. Detection, Disambiguation, Re-
ranking: Autoregressive Entity Linking as a Multi-Task
Problem. In Findings of the Association for Computational
Linguistics: ACL 2022, 1972–1983.
Nuzzolese, A. G.; Gentile, A. L.; Presutti, V.; Gangemi, A.;
Garigliotti, D.; and Navigli, R. 2015. Open knowledge ex-
traction challenge. In Semantic Web Evaluation Challenges,
3–15. Springer.
Pateria, S.; Subagdja, B.; Tan, A.-h.; and Quek, C. 2021. Hi-
erarchical reinforcement learning: A comprehensive survey.
ACM Computing Surveys (CSUR), 54(5): 1–35.
Ratinov, L.; Roth, D.; Downey, D.; and Anderson, M.
2011. Local and global algorithms for disambiguation to
wikipedia. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language
technologies, 1375–1384.
Ravi, M. P. K.; et al. 2021. CHOLAN: A Modular Approach
for Neural Entity Linking on Wikipedia and Wikidata. In
Proceedings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics: Main
Volume, 504–514.
Röder, M.; Usbeck, R.; Hellmann, S.; Gerber, D.; and Both,
A. 2014. N3-a collection of datasets for named entity recog-
nition and disambiguation in the nlp interchange format. In
Proceedings of the ninth international conference on lan-
guage resources and evaluation (LREC’14), 3529–3533.
Silver, D.; et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676): 354–359.
Steinmetz, N.; et al. 2013. Semantic multimedia informa-
tion retrieval based on contextual descriptions. In Extended
Semantic Web Conference, 382–396. Springer.

4180

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Takanobu, R.; Zhang, T.; Liu, J.; and Huang, M. 2019. A hi-
erarchical framework for relation extraction with reinforce-
ment learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, 7072–7079.
van Hulst, J. M.; et al. 2020. Rel: An entity linker stand-
ing on the shoulders of giants. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 2197–2200.
Wan, G.; et al. 2020. Reasoning Like Human: Hierarchical
Reinforcement Learning for Knowledge Graph Reasoning.
In International Joint Conference on Artificial Intelligence
2020, 1926–1932. Association for the Advancement of Ar-
tificial Intelligence (AAAI).
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3): 229–256.
Xian, Y.; et al. 2019. Reinforcement Knowledge Graph Rea-
soning for Explainable Recommendation. Proceedings of
the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval.
Zhang, W.; et al. 2022. EntQA: Entity Linking as Question
Answering. In International Conference on Learning Rep-
resentations.

4181

