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Abstract

The rise of AI methods to make predictions and decisions has
led to a pressing need for more explainable artificial intelli-
gence (XAI) methods. One common approach for XAI is to
produce a post-hoc explanation, explaining why a black box
ML model made a certain prediction. Formal approaches to
post-hoc explanations provide succinct reasons for why a pre-
diction was made, as well as why not another prediction was
made. But these approaches assume that features are indepen-
dent and uniformly distributed. While this means that “why”
explanations are correct, they may be longer than required.
It also means the “why not” explanations may be suspect as
the counterexamples they rely on may not be meaningful. In
this paper, we show how one can apply background knowl-
edge to give more succinct “why” formal explanations, that
are presumably easier to interpret by humans, and give more
accurate “why not” explanations. In addition, we show how
to use existing rule induction techniques to efficiently extract
background information from a dataset.

1 Introduction
Recent years have witnessed rapid advances in Artificial In-
telligence (AI) and Machine Learning (ML) algorithms rev-
olutionizing all aspects of human lives (LeCun, Bengio, and
Hinton 2015; ACM 2018). An ever growing range of practi-
cal applications of AI and ML, on the one hand, and a num-
ber of critical issues observed in modern AI systems (e.g.
decision bias (Angwin et al. 2016) and brittleness (Szegedy
et al. 2014)), on the other hand, gave rise to the quickly ad-
vancing area of theory and practice of Explainable AI (XAI).

Several major approaches to XAI exist. Besides tack-
ling XAI through computing interpretable ML models di-
rectly (Rudin 2019), or through the use of interpretable
models for approximating complex black-box ML mod-
els (Ribeiro, Singh, and Guestrin 2016), the most prominent
approach to XAI is to compute post-hoc explanations to ML
predictions on demand (Lundberg and Lee 2017; Ribeiro,
Singh, and Guestrin 2018). Prior work distinguishes post-
hoc (abductive) explanations answering a “why?” question
and (contrastive) explanations targeting a “why not?” ques-
tion (Miller 2019). Heuristic approaches to post-hoc ex-
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plainability are known to suffer from a number of funda-
mental explanation quality issues (Narodytska et al. 2019;
Ignatiev, Narodytska, and Marques-Silva 2019c; Camburu
et al. 2019; Ignatiev 2020), including the existence of out-
of-distribution attacks (Slack et al. 2020). A promising alter-
native is formal explainability where explanations are com-
puted as prime implicants of the decision function associated
with ML predictions (Shih, Choi, and Darwiche 2018). For-
mal explanations have also been related with abductive rea-
soning (Ignatiev, Narodytska, and Marques-Silva 2019a,b).

Although provably correct and minimal, formal explana-
tions have a few limitations. To provide provable correctness
guarantees, formal approaches have to take into account the
complete feature space assuming that the features are inde-
pendent and uniformly distributed (Wäldchen et al. 2021).
This makes a formal reasoner check all the combinations of
feature values, including those that realistically can never
appear in practice. This leads to unnecessarily long expla-
nations that are hard for a human decision maker to interpret.

Motivated by this limitation, our work focuses on comput-
ing both abductive and contrastive formal explanations mak-
ing use of background knowledge, and makes the following
contributions. First, given a training data, we propose an effi-
cient generic approach to extracting background knowledge
in the form of highly accurate if-then rules, building on a re-
cent formal method for learning decision sets (Ignatiev et al.
2021). Second, we propose a novel approach to computing
formal explanations subject to background knowledge, inde-
pendent of the nature of the background knowledge. Third,
we prove theoretically that the use of background knowl-
edge positively affects the quality of both abductive and con-
trastive explanations, thus, helping to build trust in the un-
derlying AI systems. Finally, motivated by (Ignatiev 2020),
we argue that background knowledge helps one assess the
correctness of heuristic ML explainers more accurately since
it blocks impossible combinations of features values.

2 Preliminaries
SAT and MaxSAT. Definitions standard in propositional
satisfiability (SAT) and maximum satisfiability (MaxSAT)
solving are assumed (Biere et al. 2021). SAT and MaxSAT
formulas are assumed to be propositional. A propositional
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Edu. Status Occup. Rel. Sex Hrs/w Target
H-School Married Sales Husband M 40-45 ≥ 50k

Bachelors Married Sales Wife F ≤ 40 ≥ 50k

Masters Married Prof Wife F ≥ 45 ≥ 50k

Masters Married Prof Wife F ≤ 40 ≥ 50k

Dropout Separated Service Not-in-fam M ≤ 40 < 50k

Dropout Never B-Collar Unmarried M ≥ 45 ≥ 50k

Table 1: Several examples extracted from adult dataset.

formula ϕ is considered to be in conjunctive normal form
(CNF) if it is a conjunction (logical “and”) of clauses, where
a clause is a disjunction (logical “or”) of literals, and a
literal is either a Boolean variable b or its negation ¬b.
Whenever convenient, a clause is treated as a set of liter-
als. In the context of unsatisfiable formulas, i.e. when there
is no way to assign the values 0 or 1 to all the variables
of formula ϕ s.t. ϕ evaluates to 1, the maximum satisfia-
bility problem is to find a truth assignment that maximizes
the number of satisfied clauses. Hereinafter, we use a vari-
ant of MaxSAT called Partial (Unweighted) MaxSAT (Biere
et al. 2021, Chapters 23 and 24). The formula ϕ in Partial
(Unweighted) MaxSAT is a conjunction of hard clauses H,
which must be satisfied, and soft clauses S , which represent
a preference to satisfy them, i.e. ϕ = H ∧ S . The aim is to
find a truth assignment that satisfies all hard clauses while
maximizing the total number of satisfied soft clauses.

Hereinafter, propositional formulas are applied for rea-
soning about the behavior of machine learning models used
as well as to represent background knowledge constraints.

Classification Problems. Classification problems con-
sider a set of classes K = {c1, c2, . . . , ck}, and a set of fea-
tures F = {1, . . . ,m}. The value of each feature i ∈ F is
taken from a domain Di, which can be integer, real-valued
or Boolean. Therefore, the complete feature space is defined
as F ,

∏m
i=1Di. A concrete point in feature space is rep-

resented by v = (v1, . . . , vm) ∈ F, where each vi ∈ v is
a constant taken by feature i ∈ F . An instance or example
is denoted by a specific point v ∈ F in feature space and
its corresponding class c ∈ K, i.e. a pair (v, c) represents an
instance. Moreover, the notation x = (x1, . . . , xm) denotes
an arbitrary point in feature space, where each xi ∈ x is
a variable taking values from its corresponding domain Di

and representing feature i ∈ F .
A classifier defines a classification function τ : F→K.

There are many ways to learn classifiers for a given dataset.
In this paper, we consider: decision lists (DLs) (Rivest 1987;
Clark and Niblett 1989), boosted trees (BTs) (Friedman
2001; Chen and Guestrin 2016), and binarized neural net-
works (BNNs) (Hubara et al. 2016).

Example 1. Consider the data shown in Table 1. It rep-
resents a snapshot of instances taken from a simplified
version1 of the adult dataset (Kohavi 1996). Figure 1 il-

1For simplicity, the running example used throughout the text
will correspond to a simplified version of the adult dataset (Kohavi

lustrates DL and BT models trained for this dataset. Ob-
serve that for instance v = {Education = HighSchool,
Status = Married, Occupation = Sales, Relationship =
Husband, Sex = Male, Hours/w = 40 to 45} from Table 1,
rule R2 in the DL in Figure 1a predicts≥ 50k. Similarly, the
sum of the weights (0.1063, 0.0707 and −0.0128 in the 3
trees, respectively) for prediction ≥ 50k is positive (0.1642)
in the BT in Figure 1b, and so the BT model also predicts
≥ 50k for the aforementioned instance v.

Interpretability and Explanations. Interpretability is not
formally defined since it is a subjective concept (Lipton
2018). In this paper, we define interpretability as the con-
ciseness of the computed explanations for an ML model to
justify a provided prediction. The definition of explanation
for an ML model is built on earlier work (Shih, Choi, and
Darwiche 2018; Ignatiev, Narodytska, and Marques-Silva
2019a; Darwiche and Hirth 2020; Audemard, Koriche, and
Marquis 2020; Marques-Silva and Ignatiev 2022), where ex-
planations are equated with abductive explanations (AXps),
which are subset-minimal sets of features sufficing to ex-
plain a given ML prediction. Concretely, given an instance
v ∈ F and a computed prediction c ∈ K, i.e. τ(v) = c, an
AXp is a subset-minimal set of features X ⊆ F , such that

∀(x ∈ F).
∧

i∈X
(xi = vi)→(τ(x) = c) (1)

Abductive explanations are also prime implicants of the
decision predicate τc and hence a prime implicant (PI) ex-
planation is another name for an AXp.
Example 2. Consider the models in Figure 1 and instance
v from Example 1. By examining the DL model, specifying
Education = HighSchool, Status = Married, Occupation =
Sales, and Relationship = Husband guarantees that any
compatible instance is classified by R2 independent of the
values of other features, i.e. Sex and Hours/w. Similarly, the
prediction of an instance is guaranteed to be ≥ 50k in Fig-
ure 1b as long as the feature values above are used, since
the sum of weights is promised to be 0.1063 + 0.0707 +
−0.0128 = 0.1642 for class ≥ 50k. Therefore, the (only)
AXp X for the prediction of v is {Education, Status, Occu-
pation, Relationship} in both models.

We also consider contrastive explanations (CXps) de-
fined as subset-minimal sets of features that are necessary to
change the prediction if the features of a CXp are allowed to
take arbitrary values from their domains. Formally and fol-
lowing (Ignatiev et al. 2020), a CXp for prediction τ(v) = c
is defined as a minimal subset Y ⊆ F s.t.

∃(x ∈ F).
∧

i6∈Y
(xi = vi) ∧ (τ(x) 6= c) (2)

Example 3. Consider the setup of Example 2. Given either
model, Y = {Occupation} is a CXp for instance v because
the prediction for v can be changed if feature ‘Occupation’
is allowed to take another value, e.g. if the value is changed
to ‘Service’. Similarly, changing the value of feature ‘Occu-
pation’ to ‘Service’ triggers that the weights in the 3 trees
become 0.1063, −0.2231 and −0.0128. Therefore, the total

1996), where some of the features are dropped.
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R0: IF Education = Dropout THEN Target < 50k
R1: ELSE IF Occupation = Service THEN Target < 50k
R2: ELSE IF Status = Married ∧ Relationship = Husband THEN Target ≥ 50k
R3: ELSE IF Status = Married ∧ Relationship = Wife THEN Target ≥ 50k
RDEF: ELSE THEN Target < 50k

(a) Decision list.
T1 (≥ 50k)

Marital Status = Married?

Education = Dropout? Relationship = Not-in-family?

-0.2192 0.1063 -0.1561 -0.3850

yes no

yes no yes no

T2 (≥ 50k)

Marital Status = Married?

Occupation = Service? Hours/w > 45?

-0.2231 0.0707 -0.0080 -0.2549

yes no

yes no yes no

T3 (≥ 50k)

Relationship = Own-child?

Education = Master? Education = Dropout?

0.1186 -0.3483 -0.2844 -0.0128

yes no

yes no yes no

(b) Boosted tree (Chen and Guestrin 2016) consisting of 3 trees with the depth of each tree at most 2.

Figure 1: Example DL and BT models trained on the well-known adult classification dataset.

weight is −0.0982, i.e. the prediction is changed. By fur-
ther examining the two models, other subsets of features
can be identified as CXps for v. The set of CXps is Y =
{{Education}, {Status}, {Occupation}, {Relationship}},
while the set of AXps demonstrated in Example 2 is X =
{{Education, Status, Occupation, Relationship}}.

(Ignatiev et al. 2020) builds on the seminal work of Re-
iter (Reiter 1987) to establish a minimal hitting set (MHS)
duality relationship between AXps and CXps, i.e. each CXp
minimally hit every AXp, and vice-versa.
Example 4. Observe how the MHS duality holds for the sets
of AXps X and the set of CXps Y shown in Example 3. The
only AXp minimally hits all the CXps and vice versa.

There is a growing body of recent work on formal expla-
nations (Marques-Silva et al. 2020, 2021; Izza and Marques-
Silva 2021; Ignatiev and Marques-Silva 2021; Arenas et al.
2021; Wäldchen et al. 2021; Darwiche and Marquis 2021;
Malfa et al. 2021; Boumazouza et al. 2021; Blanc, Lange,
and Tan 2021; Izza, Ignatiev, and Marques-Silva 2022; Gorji
and Rubin 2022; Ignatiev et al. 2022; Huang et al. 2022;
Marques-Silva and Ignatiev 2022; Amgoud and Ben-Naim
2022; Ferreira et al. 2022; Arenas et al. 2022).

3 Extracting Background Knowledge
Recent work (Gorji and Rubin 2022) argues that background
knowledge is helpful in the context of formal explanations.
If identified, background knowledge may help forbid some
of the combinations of feature values that would otherwise
have to be taken into account by a formal reasoner, thus,
slowing the reasoner down and making the explanations un-
necessarily long. But the question of how such knowledge
can be obtained in an automated way remains open.
Example 5. Assume that Table 1 represents trustable infor-
mation. The following two rules can be extracted:
• IF Relationship = Husband THEN Status = Married
• IF Relationship = Wife THEN Status = Married

These rules may be used to discard feature Status when com-
puting explanations as long as Relationship equals either
Husband or Wife because of the implications identified.

We describe the MaxSAT approach to extract background
knowledge representing implicit relations between features
of a dataset if the dataset is assumed to be trustable. It builds
on the recent two-stage approach (Ignatiev et al. 2021) to
learning smallest size decision sets. Concretely, we apply
the first stage of (Ignatiev et al. 2021) which enumerates in-
dividual decision rules given a dataset, using MaxSAT.

Without diving into the details, the idea of (Ignatiev et al.
2021) is as follows. Given training data E and target class
c ∈ K, a MaxSAT solver is invoked multiple times, each
producing a unique subset-minimal (irreducible) rule in the
form of “IF antecedent THEN prediction c”, where the an-
tecedent is a set of feature values. The MaxSAT solver is fed
with various CNF constraints and an objective function tar-
geting rule size minimization. The approach also detects and
blocks symmetric rules, i.e. those that do not contribute new
information to the rule-based representation of class c ∈ K.

We can modify the MaxSAT approach outlined above
to learning background knowledge in the form of decision
rules, i.e. identifying the dependency of a feature i ∈ F on
other features j ∈ F \ {i}. For this, we need to discard
the prediction column from the dataset E and instead focus
on a feature i ∈ F , consider some of its values vij ∈ Di

and “pretend” to compute decision rules for a “fake class”
xi = vij . Thanks to the properties of the approach of (Ig-
natiev et al. 2021), all the rules computed are guaranteed to
be subset-minimal and to respect training data E . Once all
the rules for feature i ∈ F and value vij ∈ Di are com-
puted, the same exercise can be repeated for all the values in
Di \ {vij} but, more importantly, all the other features.

Example 6. Consider again Table 1. The two rules shown
in Example 5 are computed by our rule learning approach if
we focus on feature Status. The following two rules can be
extracted when feature Relationship is focused on instead:

• IF Status = Married ∧ Sex = M. THEN Rel. = Husband
• IF Status = Married ∧ Sex = F. THEN Rel. = Wife

Duplicate Rules. As mentioned above, all rules gener-
ated with the MaxSAT approach of (Ignatiev et al. 2021)
are guaranteed to be subset-minimal. Furthermore, none of
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Algorithm 1: Rule Extraction
Input: Dataset E , extraction limit λ
Output: Rules ϕ

1: Ef ,F ← DropClass(E),ExtractFeatures(E)
2: ϕ,B ← ∅, ∅ # to extract and block rules, resp.
3: for i ∈ F do
4: for rule ∈ EnumerateRules(Ef , i, B) do
5: if limit(rule, λ) is true then
6: break
7: ϕ← ϕ ∪ rule
8: B ← ϕ
9: return ϕ

the rules enumerated is symmetric with another rule if con-
sidered in the if-then form. However, when the rules are
treated as clauses, i.e. a disjunction of Boolean literals, some
rules may duplicate the other. Indeed, recall that a rule of
size k ≤ |F| is of the form (f1 ∧ . . . ∧ fk−1) → fk
where each fi represents a literal (xi = viji ), i ∈ F and
viji ∈ Di. Clearly, this same proposition can be equiva-
lently represented as a clause (¬f1 ∨ . . . ∨ ¬fk−1 ∨ fk).
Observe that the same clause can be used to represent an-
other rule (f1∧ . . .∧fk−2∧¬fk)→ ¬fk−1, which can thus
be seen as symmetric in the clausal form. This way, a clause
of size k represents k possible rules. However, due to sym-
metry, it suffices to compute only one of them and block all
the “duplicates” by adding its clausal representation to the
MaxSAT solver. This novel symmetry breaking mechanism
significantly improves the scalability of our approach.
Example 7. Consider a rule { IF Status = Married ∧ Sex =
Male THEN Relationship = Husband } computed for feature
Relationship. This rule is represented as a clause

(Status 6= Married ∨ Sex 6= M. ∨ Relationship = Husband)

There are two duplicates in other contexts:
• IF Status = Married ∧ Rel. 6= Husband THEN Sex = F.
• IF Sex = M. ∧ Rel. 6= Husband THEN Status 6= Married

Extraction limit. Even if we remove duplicate rules,
there can still be many rules to enumerate for an entire
dataset. Many of them will never, or only rarely, contribute
to reducing the size of explanations of the classifier. Extract-
ing these low value rules is unnecessary in the rule extracting
process. In practice, we noticed that some rules (e.g. long
rules or rules having a low support) never contribute to ex-
planation reduction. Hence, we apply an extraction limit to
prevent exhaustive rule enumeration, which enables us to fo-
cus only on most useful rules. Here, extraction limit can be a
restriction of a user’s choice, e.g. a total extraction runtime,
a limit on the number of rules, rule support or size, etc.

A high-level view on the overall rule extraction approach
is provided in Algorithm 1. Initially, the class column from
the original dataset E is dropped and the features F in E are
acquired. For each feature i ∈ F , the algorithm enumerates
the decision rules targeting i until the extraction limit is met
or no more rules can be found. The rules previously learned
are blocked in the clausal form to avoid computing their du-
plicates. Finally, the algorithm returns the rules extracted.

Our approach computes only rules that are perfectly con-
sistent with the known data, which makes sense if the data
is extensive and trustworthy. In practical settings, however,
some of the data are unknown, i.e. the rules computed may
be inconsistent with unseen parts of the feature space F. If
testing and validation data are available, then the rules can
be tested against them. We can then exclude the rules that
are not sufficiently accurate wrt. test and/or validation data.

4 Knowledge-Assisted Explanations
We assume the obtained background knowledge can be rep-
resented as a formula ϕ. Under that assumption, (Gorji and
Rubin 2022) proposes to compute AXps for positive predic-
tions of a Boolean classifier τ : F → {0, 1} taking into
account constraints ϕ. Observe that formula ϕ can be seen
as representing a predicate ϕ : F → {0, 1}, the truth value
of which, i.e. ϕ(x), can be tested for an instance v ∈ F. The
approach of (Gorji and Rubin 2022) relies on compiling a
Boolean classifier τ(x) into a tractable representation (Shih,
Choi, and Darwiche 2018) and proposes to compute an AXp
X ⊆ F for prediction τ(v) = 1, v ∈ F, subject to con-
straints ϕ as a prime implicant of [ϕ(x)→ τ(x) = 1].

Observe that we can generalize this idea to the context of
computing formal AXps and CXps for any classifier that ad-
mits a logical representation suitable for making reasoning
oracle calls wrt. formulas (1) and (2). Namely, given a pre-
diction τ(x) = c, v ∈ F, c ∈ K, an abductive explanation
X ⊆ F subject to background knowledge ϕ is such that:

∀(x ∈ F).
∧

j∈X
(xj = vj)→ [ϕ(x)→(τ(x) = c)] (3)

More importantly, the same can be done with respect
to contrastive explanations. Given a prediction τ(x) = c,
v ∈ F, c ∈ K, a contrastive explanation Y ⊆ F subject to
background knowledge ϕ is such that the following holds:

∃(x ∈ F).
∧

i6∈Y
(xi = vi) ∧ [ϕ(x) ∧ (τ(x) 6= c)] (4)

Note that (3) and (4) are the negation of each other, i.e. a
subset of features Y ⊆ F is a CXp for prediction τ(x) = c
iff X = F \Y is not an AXp. This means when dealing with
either AXps or CXps, one can reason about (un)satisfiability
of formula

∧
i∈Z(xi = vi)∧[ϕ(x) ∧ (τ(x) 6= c)] withZ be-

ing either X or F \Y depending on the kind of target expla-
nation. Therefore, if background knowledge ϕ is a conjunc-
tion of constraints, e.g. rules, we can integrate them in the
existing formal explainability setup of (Ignatiev, Narodyt-
ska, and Marques-Silva 2019a) with no additional overhead.

Following (Ignatiev et al. 2020) and applying the same
arguments, an immediate observation to make is that in the
presence of background knowledge, the minimal hitting set
duality between AXps and CXps holds:

Proposition 1. Let v ∈ F be an instance such that τ(v) =
c, c ∈ K, and background knowledge ϕ is compatible with
v. Then any AXp X for prediction τ(v) = c minimally hits
any CXp for this prediction, and vice versa.

Proposition 1 enables us to apply algorithms originally
studied in the context of over-constrained systems (Bailey

4126



IF Status = Married THEN Target ≥ 50k
ELSE IF Sex = M ∧ Rel. 6= Husband THEN Target < 50k
ELSE THEN Target ≥ 50k

Figure 2: A DL for selected examples of adult dataset.

and Stuckey 2005; Liffiton and Sakallah 2008; Belov, Lynce,
and Marques-Silva 2012; Marques-Silva et al. 2013; Men-
cia, Previti, and Marques-Silva 2015; Ignatiev et al. 2015;
Liffiton et al. 2016; Bendı́k, Cerná, and Benes 2018) to ex-
plore all AXps and CXps for ML predictions. In particu-
lar, the existing explanation extraction and enumeration al-
gorithms (Ignatiev, Narodytska, and Marques-Silva 2019a;
Ignatiev et al. 2020) can be readily applied by taking into
account background knowledge, as shown in (3) and (4).

Gorji et al. (Gorji and Rubin 2022) proved that subset-
minimal AXps computed subject to additional constraints
for Boolean classifiers tend to be smaller than their un-
constrained “counterparts”. The rationale is that when ad-
ditional constraints are imposed, some of the features i ∈ F
may be dropped from an AXp because the equalities xi = vi
falsify the constraints, i.e. they represent data instances that
are not permitted by the constraints. Based on their result,
the following generalization can be proved to hold:

Proposition 2. Consider v ∈ F such that τ(v) = c, c ∈ K,
and background knowledge ϕ is compatible with v. Then for
any subset-minimal AXp X ⊆ F for prediction τ(v) = c,
there is a subset-minimal AXp X ′ ⊆ F for τ(v) = c subject
to background knowledge ϕ such that X ′ ⊆ X .

Remark 1. The opposite, i.e. that given AXp X ′ subject to
background knowledge ϕ, there must exist a subset-minimal
AXpX ⊇ X ′ without knowledgeϕ, in general does not hold.

Example 8. Consider the DL in Figure 2. Given an in-
stance v = {Education = Dropout, Status = Separated,
Occupation = Service, Relationship = Not-in-Family, Sex =
Male, Hours/w = ≤ 40}, the prediction enforced by R1 is
≤ 50k and the AXp is X = {Status, Relationship, Sex}. Let
a single constraint ϕ be {Sex = Male ∧ Relationship =
Not-in-Family → Status = Separated}. Feature ‘Status’
can be dropped because the constraint ϕ ensures it to be
set to the “right value” if the other two features are set as
required, and hence R0 is guaranteed not to fire. Thus, we
can compute a smaller AXp X ′ = { Relationship, Sex }.

While using background knowledge ϕ pays off in terms of
interpretability of abductive explanations, this cannot be said
wrt. contrastive explanations. Surprisingly and as the fol-
lowing result proves, background knowledge can only con-
tribute to increase the size of contrastive explanations.

Proposition 3. Consider v ∈ F such that τ(v) = c, c ∈ K,
and background knowledge ϕ is compatible with v. Then for
any subset-minimal CXp Y ′ ⊆ F for prediction τ(v) = c
subject to knowledge ϕ, there is subset-minimal CXp Y ⊆ F
is a CXp for prediction τ(v) = c such that Y ′ ⊇ Y .

Remark 2. The reverse direction: given a CXp Y generated

without using background knowledge, there must exist a CXp
Y ′ ⊇ Y using background knowledge, does not hold.

One may wonder then why background knowledge is use-
ful when computing CXps. The reason is that the CXps
generated using background knowledge are correct under
the assumption that the background knowledge describes
the actual relationships between features. On the contrary,
CXps generated without using background knowledge are
only correct under the assumption that every combination of
feature values is possible, i.e. all features are independent
and their values are uniformly distributed across the feature
space, which hardly ever occurs in practice.

Example 9. Consider the setup of Example 8. Observe
that a CXp for the prediction is Y = { Status }. Its cor-
rectness relies on the fact that changing Status to Mar-
ried changes the prediction to ≥ 50k. But given the back-
ground knowledge ϕ, this is clearly erroneous. Since the
other fixed features in instance v are { Sex = Male, Edu-
cation = Dropout, Occupation = Service, Relationship =
Not-in-family, Hours/w =≤ 40 }, the modification is incon-
sistent with knowledge ϕ. This demonstrates the weakness
of CXps as they rely on the assumption that any tuple of fea-
ture values in F is possible. Applying constraint ϕ leads to a
larger CXp Y ′ , { Status, Relationship }. This clearly does
allow the prediction to change and it is compatible with ϕ.

5 Experimental Results
Here we provide a summary of the experimental results. The
full experimental analysis can be found in (Yu et al. 2022).

Setup and Prototype Implementation. The experiments
were run on an Intel Xeon 8260 CPU running Ubuntu
20.04.2 LTS, with a memory limit of 8 GByte. A prototype
of the approach to extracting background knowledge and
computing AXps and CXps applying background knowl-
edge was developed as a set of Python scripts.2 The imple-
mentation of knowledge extraction builds on (Ignatiev et al.
2021) and extensively uses modern SAT technology (Ig-
natiev, Morgado, and Marques-Silva 2018, 2019). Also, ex-
planation enumeration for DLs and BNNs makes use of the
SAT technology while for BTs we apply satisfiability mod-
ulo theories (SMT) solvers (Gario and Micheli 2015).

A few words should be said about the competition con-
sidered. First, we compared our knowledge extraction ap-
proach to the Apriori and Eclat algorithms (Agrawal and
Srikant 1994; Zaki et al. 1997). In our experiments, these
algorithms behave almost identically with Eclat solving one
more instance; as a result, we use Eclat as the best com-
petitor. When running Eclat, we apply the same setup as
used for our approach. Finally, heuristic explainers are rep-
resented by LIME (Ribeiro, Singh, and Guestrin 2016),
SHAP (Lundberg and Lee 2017), and Anchor (Ribeiro,
Singh, and Guestrin 2018) in their default configurations.

Datasets. The benchmarks considered include a selection
of datasets publicly available from UCI Machine Learning
Repository (Dua and Graff 2017) and Penn Machine Learn-
ing Benchmarks (Olson et al. 2017). In total, 24 datasets

2https://github.com/jinqiang-yu/xcon
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rule1 rule2 rule3 rule4 rule5 ruleall
Accuracy (%) 99.22 99.35 99.29 99.16 99.06 99.08

Table 2: Average accuracy of individual rules over test data.
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Figure 3: Eclat vs. xcon – performance comparison.

are selected. Whenever applicable, numeric features in all
benchmarks were quantized into 4, 5, or 6 intervals. There-
fore, the total number of quantized datasets considered is 62.

Machine Learning Models. We used CN2 (Clark and
Niblett 1989) to train the DL models studied. BTs were com-
puted by XGBoost (Ribeiro, Singh, and Guestrin 2016) s.t.
each class is represented by 25 trees of depth 3. BNNs were
trained by PyTorch (Paszke et al. 2019). Three configura-
tions of hidden layers3 were used when training BNNs to
achieve sufficient test accuracy. As usual, each of the 62
datasets was randomly split into 80% of training and 20% of
test data, respectively. The average test accuracy of the DL,
BT, and BNN models was 76.47%, 76.17%, and 80.31%.

5.1 Knowledge Extraction
Knowledge extraction is tested using 5-fold cross validation.
The average accuracy of each rule is measured as the propor-
tion of test instances that violate that rule, averaged over the
folds. We consider rules of length 1 to 5, and extracting all
possible rules (all). Table 2 compares the average accuracy
of the background knowledge extracted. The average accu-
racy of all rules and ruless, s ∈ {1, . . . , 5}, exceeds 99%.

Additionally, we compare the overall performance of ex-
haustive rule extraction against rule extraction with the size
limit 5. On average, exhaustive (limited, resp.) rule enumer-
ation ends up computing 2116.29 (1964.24, resp.) rules per
dataset. We also compare xcon against Eclat in terms of
the overall performance. For a fair comparison, we set Eclat
to extract only rules of confidence 100%, i.e. all the rules
extracted are perfectly consistent with the known data. Fig-
ure 3a compares the runtime of rule extraction and the num-
ber of extracted rules of size up to 5 across all 5 train-test
pairs. Clearly xcon can extract rules on par with Eclat, and
is able to tackle all 62 datasets, while Eclat fails on 4.

Figure 3b shows the number of extracted rules for the 58

3The 3 configurations are classified as small, medium and large.
The size of the hidden layers of these 3 configurations is as follows:
large: (64, 32, 24, 2); medium: (32, 16, 8, 2); small: (10, 5, 5, 2).

datasets solved by both approaches. Eclat always extracts
more rules because it uses a less expressive language, i.e. it
cannot use the negation of feature literals.

5.2 Knowledge-Assisted Explanations
Let us evaluate the benefit of computing formal explations
using background knowledge, once more restricting to back-
ground rules of size at most 5. For each of the 62 datasets,
we selected all test instances and enumerated 20 smallest
size AXps or CXps for each such instance. Let xcon∗ s.t.
∗ ∈ {dl, bt, bnn} denote the approaches for formally ex-
plaining DL, BT, and BNN models, and xconr∗ is the ap-
proach taking into account background knowledge.

Scalability. Figures 4a and 4b compare the average run-
time for computing a single AXp or CXp for the DL models.
Clearly background knowledge quickens AXp explanation,
while slowing CXp explanation. The slowdown for CXps is
caused by the fact that the CXps get much larger, which re-
quires a larger number of oracle calls. For BTs and BNNs
the use of background knowledge neither substantially im-
proves nor degrades the computation of AXps or CXps.

Explanation Quality. The change of smallest size of
AXps and CXps in an instance for DLs is shown in Fig-
ure 4c, and 4d. Clearly background knowledge substantially
reduces the size of AXps, and substantially increases the size
of CXps. Similar results arise for BTs and BNNs. The exper-
iments above were repeated using background knowledge
extracted with Eclat. The results are similar.

5.3 Formal vs. Heuristic Explanations
Following (Ignatiev, Narodytska, and Marques-Silva 2019a;
Narodytska et al. 2019; Ignatiev 2020), we apply formal ex-
planations to assess the runtime and explanation quality for
the heuristic approaches LIME, SHAP, and Anchor. The idea
is to show the importance of trustable background knowl-
edge when targeting a more accurate quality assessment.

Scalability. Table 3 illustrates the runtime of a single ex-
planation extraction for a data instance across the 62 datasets
performed by LIME, SHAP, Anchor, xcon∗, and xconr∗.
Here, xconr∗ and xcon∗ represent the proposed approach to
computing AXps or CXps with/without background knowl-
edge, s.t. ∗ ∈ {axp, cxp}. Observe that both xcon∗ and
xconr∗ outperform LIME and Anchor for all the 3 models,
explaining a data instance in a fraction of a second. LIME
and Anchor are 1-2 orders of magnitude slower for DL and
BNN models, while LIME outweighs Anchor when generat-
ing explanations for BTs. The worst performance for DL and
BNN models is demonstrated by SHAP while, surprisingly,
SHAP outperforms the other competitors for BTs models.

Correctness. The average correctness of computed expla-
nations is shown in Table 4. 4 Here, an explanation is said to
be correct if it answers a “why” question and satisfies (1) (or
(3) in the presence of background knowledge) or it answers
a “why not” question and satisfies (2) (or (4) in the presence
of background knowledge). Table 4 shows that the average

4LIME/SHAP assign weights to all the features. We use only
those whose weight contributes to the decision made based on sign.
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(a) AXp runtime for DLs. (b) CXp runtime for DLs. (c) AXp size for DLs. (d) CXp size for DLs.

Figure 4: Impact of xcon rules on runtime (ms) and explanation size for DLs.

Model Runtime per explanation (ms)

xconaxpxconraxpxconcxpxconrcxp LIME SHAP Anchor

DL 2 1 1 2 3755 42 555 3800
BT 80 82 97 151 98 6 351

BNN 196 152 179 199 15 607183 058 11 384

Table 3: Average runtime per explanation.

Explainer
Correctness (%)

Without knowledge With knowledge

DL BT BNN DL BT BNN

LIME 6.06 38.26 8.2 31.06 60.63 47.88
SHAP 49.47 72.89 58.89 91.72 93.75 95.0
Anchor 24.03 13.85 6.57 73.85 73.0 70.1

Table 4: Average correctness of LIME, SHAP and Anchor.

correctness is higher when background knowledge is applied
as the number of features required in a minimal correct ex-
planation answering a “why” question can drop, which is
demonstrated in Section 5.2. However, heuristic approaches
are not able to achieve 100% correctness.

Heuristic explainers consistently demonstrate low cor-
rectness when no background knowledge is applied, which
confirms the earlier results of (Ignatiev 2020). This changes
dramatically when we apply the background knowledge be-
cause some of the counterexamples invalidating heuristic ex-
planations are forbidden by the knowledge extracted. As-
suming that this knowledge is valid, these correctness results
better reflect the reality and so are more trustable.

6 Related Work
Many methods for extracting knowledge from a dataset of
rules exist (Hipp, Güntzer, and Nakhaeizadeh 2000; Zhang
and Zhang 2002; Agrawal and Srikant 1994; Zaki et al.
1997; Izza et al. 2020; Belaid, Bessiere, and Lazaar 2019).
For use as background knowledge, we aim at very high con-
fidence in the rules, ideally they should be completely valid
for the feature space. Traditional rule mining is more inter-
ested in rules with high support and less focused on validity,
although it can be adapted to this case (see our experimental

results above). Although the explanation methods we apply
in the presence of background knowledge are agnostic about
where it comes from, the motivation for our rule extraction
method is twofold: (1) the rules are computed in a clausal
form and (2) their high quality is guaranteed by the use of
the strict optimization problem formulation.

The most prominent approaches to post-hoc explainabil-
ity are of heuristic nature (Ribeiro, Singh, and Guestrin
2016; Lundberg and Lee 2017; Ribeiro, Singh, and Guestrin
2018) and based on sampling in the vicinity of the instances
being explained. None of these approaches can handle back-
ground knowledge. Approaches to formal explainability are
represented by compilation of classifiers into tractable repre-
sentations (Shih, Choi, and Darwiche 2018) and reasoning-
based explanation approaches (Ignatiev, Narodytska, and
Marques-Silva 2019a; Marques-Silva and Ignatiev 2022).
The closest related work is (Gorji and Rubin 2022). Based
on compilation of a binary classifier into a binary decision
diagram (BDD), it conjoins concocted background knowl-
edge to give more succinct “why” explanations for the clas-
sifier. This approach is restricted to much smaller examples
than we consider here, since the compilation of a classifier
into a BDD tends to explode with the feature space. The
SAT and SMT based approaches to explanation we use are
far more scalable. Finally, we consider a much broader class
of classifiers, and also examine “why not” explanations and
how they can be improved by using background knowledge.

7 Conclusions

Using background knowledge is highly advantageous for
producing formal explanations of machine learning mod-
els. For abductive explanations (AXps), the use of back-
ground knowledge substantially shortens explanations, mak-
ing them easier to understand, and improves the speed
of producing explanations. For contrastive explanations
(CXps), while the background knowledge lengthens them
and may increase the time required to generate an expla-
nation, the resulting explanations are far more useful since
they do not rely on the (usually unsupportable) assumption
that all tuples in the feature space are possible. Furthermore
and as this paper shows, background knowledge can be ap-
plied in the context of heuristic explanations when an accu-
rate analysis of their correctness is required.
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caseaux, B. 2021. Foundations of Symbolic Languages for
Model Interpretability. In NeurIPS.
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