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Abstract
Ad-hoc constraints (also called generic constraints) are
important for modelling Constraint Satisfaction Problems
(CSPs). Many representations have been proposed to define
ad-hoc constraints, such as tables, decision diagrams, binary
constraint trees, automata and context-free grammars. How-
ever, prior works mainly focus on efficient Generalized Arc
Consistency (GAC) propagators of ad-hoc constraints using
the representations. In this paper, we ask a more fundamen-
tal question which bears on modelling constraints in a CSP
as ad-hoc constraints, how the choice of constraints and op-
erations affect tractability. Rather than ad-hoc constraints and
their GAC propagators, our focus is on their expressive power
in terms of succinctness (polysize) and cost of operations/
queries (polytime). We use a large set of constraint families
to investigate the expressive power of 14 existing ad-hoc con-
straints. We show a complete map of the succinctness of the
ad-hoc constraints. We also present results on the tractabil-
ity of applying various operations and queries on the ad-hoc
constraints. Finally, we give case studies illustrating how our
results can be useful for questions in the modelling of CSPs.

Introduction
A wide range of combinatorial problems in real life can be
modelled with Constraint Satisfaction Problems (CSPs) us-
ing a diverse of constraints. We will focus on ad-hoc con-
straints (also called generic constraints) that can be defined
with various representations, such as tables (Bessière and
Régin 1997; Lecoutre 2011; Lecoutre, Likitvivatanavong,
and Yap 2015; Wang et al. 2016; Demeulenaere et al. 2016;
Verhaeghe, Lecoutre, and Schaus 2017; Wang and Yap 2019,
2020), automatas (Pesant 2004; Quimper and Walsh 2006;
Cheng, Xia, and Yap 2012), context-free grammars (Sell-
mann 2006; Quimper and Walsh 2006, 2007; Kadioglu and
Sellmann 2008), decision diagrams (Cheng and Yap 2010;
Gange, Stuckey, and Szymanek 2011; Perez and Régin
2014; Vion and Piechowiak 2018; Verhaeghe, Lecoutre, and
Schaus 2018, 2019), and binary constraint trees (Wang and
Yap 2022b). Ad-hoc constraints are very useful for mod-
elling specific constraints which do not fit well with com-
mon global constraints.

Many algorithms (Yap, Xia, and Wang 2020) have been
proposed to efficiently enforce Generalized Arc Consistency
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(GAC) on ad-hoc constraints. However, there is less work
studying the constraint expressive power that can be useful
for modelling CSPs, such as the constraint succinctness and
the cost of operations/queries on constraints. In this paper,
we investigate ad-hoc constraints with a knowledge com-
pilation (KC) approach which has been mainly developed
to study Boolean functions (Darwiche and Marquis 2002).
Note that although we use a KC approach, we are concerned
about questions arising from modelling CSPs which do not
normally occur in the KC literature.

To solve a problem using CSP solvers, one needs to model
the problem as constraints, where ad-hoc constraints provide
the most modelling flexibility. However, there are many dif-
ferent choices for the ad-hoc constraints and their specific
representation. A basic question we address is when is an
ad-hoc constraint defined with a certain representation worse
than another one. For this, we first use 15 families of con-
straints to analyze 14 existing ad-hoc constraints, showing
ad-hoc constraints have very different properties, e.g. some
can model a constraint family in polysize while others can-
not. Going further, we give a complete map of succinctness
for the 14 ad-hoc constraints.

Besides primitive constraints, constraint modelling lan-
guages (Nethercote et al. 2007; Frisch et al. 2008) also pro-
vide a higher level of modelling, such as the use of logical
operators to combine constraints. We study whether the ad-
hoc constraints can provide tractable conjunction, disjunc-
tion, negation, projection and conditioning operations. This
can give guidance on how to model combinations of con-
straints in a CSP solver supporting certain ad-hoc constraints
taking into account tractability considerations.

In addition, we may want to ask various queries on the
constraints in a CSP model. For instance, we may want
to count the solutions/tuples of a constraint (Pesant 2005)
or check whether some constraints are equivalent. We also
study whether the ad-hoc constraints provide tractable con-
sistency, entailment, validity, implicant, equivalence, count-
ing and model enumeration queries.

In summary, we present a KC approach to investigate
the succinctness of ad-hoc constraints and associated oper-
ations/queries. Our results deepen our understanding of the
fundamental properties of ad-hoc constraints. It also helps
to give insights into when a certain ad-hoc constraint can be
used given the context of its usage.
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Preliminaries
A CSP P is a pair (X,C) where X is a set of variables,
D(x) is the domain of a variable x, and C is a set of
constraints. A literal of a variable x is a pair (x, a). A
tuple over variables {xi1 , xi2 , . . . , xir} is a set of literals
{(xi1 , a1), (xi2 , a2), . . . , (xir , ar)}. A tuple τ is an assign-
ment if a ∈ D(x) for all (x, a) ∈ τ . Then U(S) denotes
the set of all assignments over variables S. Each constraint c
has a constraint scope scp(c) ⊆ X and a constraint relation
rel(c) ⊆ U(scp(c)). The arity of a constraint c is |scp(c)|.
c is a binary constraint if |scp(c)| = 2. A CSP is called a
binary CSP if the largest constraint arity is 2. A binary CSP
is normalized if all constraints have different scopes.

Given any variables V and literals τ , we use τ [V ] =
{(x, a) ∈ τ |x ∈ V } to denote a subset of τ , and T [V ] =
{τ [V ]|τ ∈ T} is the projection of the tuples T on V . An
assignment τ over X is a solution of P if τ [scp(c)] ∈ rel(c)
for all c ∈ C. sol(X,C) or sol(P ) denotes the solutions of
P , and sol(C) = sol(

⋃
c∈C scp(c), C).

Ad-Hoc Constraints
Many representations R can be used to encode a set rel(R)
of tuples over some variables scp(R), and R is regarded as
a kind of ad-hoc constraints (generic constraints) if rel(R)
can have arbitrary tuples over scp(R). The size of the vari-
ables scp(R) is defined as size(scp(R)) =

∑
x∈scp(R)(1 +

|D(x)|). We introduce 14 existing ad-hoc constraints de-
fined with different representations which come with effi-
cient GAC propagators. We classified them into 4 categories.

Table and Non-ordinary Tables. A table R over vari-
ables X is a set of tuples over X , we also call this ordi-
nary tuples. In addition, many generalizations of tuples have
been proposed, which we call non-ordinary tuples over X .
Table 1 summarises the non-ordinary tuples used in the non-
ordinary tables: c-table (c-T), short table (shoT), smart ta-
ble (smaT), basic smart table (bsmaT) and segmented table
(segT).

The c-T (Katsirelos and Walsh 2007; Xia and Yap 2013),
shoT (Jefferson and Nightingale 2013), sliT (Gharbi et al.
2014), smaT (Mairy, Deville, and Lecoutre 2015), bsmaT
(Verhaeghe et al. 2017) and segT (Audemard, Lecoutre, and
Maamar 2020) over variables X are respectively defined as
a set of c-tuples, short supports, entries, smart tuples, basic
smart tuples and segmented tuples X . These various repre-
sentations R all encode the tuples rel(R) =

⋃
t∈R rel(t).

The size of a table or a non-ordinary table constraint R
is the sum of size(scp(R)) and the number of literals, unary
equalities, unary tautologies, and comparisons used in R.

Example 1. The constraint
∨3

k=1

∧2
i=0 xi = y(i+k)%3 can

be modelled as a smaT R over 6 variables {x0, x1, x2, y0, y1,
y2}, where R consists of 3 smart tuples {x0 = y0, x1 = y1,
x2 = y2} and {x0 = y1, x1 = y2, x2 = y0} and {x0 = y2,
x1 = y0, x2 = y1}. Each smart tuple includes 3 binary
constraints of which the constraint scopes do not share any
variables. Correspondingly, these smart tuples can also be
encoded as segmented tuples by encoding each binary con-
straint in the smart tuples as a binary table constraint.

Tuple Possible constraints in a tuple Structure
entry unary equalities and a table separated

short support unary equalities and unary tautologies separated
c-tuple unary tables separated

segmented tuple tables, unary equalities and separatedunary tautologies
basic smart unary comparisons, unary tables, separatedtuple unary equalities and unary tautologies

smart tuple comparisons, unary tables, acyclicunary equalities and unary tautologies

Table 1: Non-ordinary tuples t over variables X: t is a set of
constraints and X=

⋃
c∈t scp(c) and t encodes tuples rel(t)=

sol(t). “separated” means scp(ci)∩scp(cj)=∅ for all ci, cj ∈
t such that ci ̸= cj . “acyclic” means the constraint graph of
(X, t) is acyclic. Then x = a, x = ∗ (and x − y ▷ a, x ▷ a)
are unary equality, tautology (and comparisons) relations,
where x, y ∈ X and a is a constant and ▷ ∈ {=, ̸=, <,>,≤
,≥} and rel(x = ∗) is {{(x, b)}|b ∈ D(x)}.

Decision Diagrams. We study 3 kinds of decision dia-
grams w.r.t. an order O over a set of r variables X , i.e.
OMVD (Amilhastre et al. 2014), OMDD (Srinivasan et al.
1990) and sMDD (Verhaeghe, Lecoutre, and Schaus 2018):
• An Ordered Multi-valued Variable Diagram (OMVD)

is a directed acyclic graph which has r + 1 layers
{L1, · · · , Lr+1} of nodes and a root node in L1 and a
terminal node in Lr+1 such that each arc pointing from
a node in Li to a node in Li+1 is labelled with a value
in D(Oi) for 1 ≤ i ≤ r. out(v, a) (in(v, a)) denotes the
arcs labelled with a which point from v (point to v).

• An Ordered Multi-valued Decision Diagram (OMDD) is
an OMVD such that |out(v, a)| ≤ 1 for any 1 ≤ i ≤ r
and a value a ∈ D(Oi) and a node v in Li.

• A semi-OMDD (sMDD) is an OMVD such that for any
1 ≤ i ≤ ⌊ r

2⌋ (⌊ r
2⌋+ 2 < i ≤ r + 1) and a ∈ D(Oi) and

a node v in Li, |out(v, a)| ≤ 1 (|in(v, a)| ≤ 1).
where Oi denotes the ith variable in O and every path from
root to the terminal node corresponds to a tuple over X . We
remark that OMVD is also called non-deterministic OMDD.
A representation R w.r.t. an order O1 uses an order O2 if O1

is a subsequence of O2.
Following (Amilhastre et al. 2014), the size of an OMVD

constraint R is defined as the sum of size(scp(R)) and the
number of edges and nodes in R.

In this paper, OMVD does not have any jumping arcs be-
tween nodes in 2 non-consecutive layers. Note that w.l.o.g.
jumping arcs can be removed by adding polysize new arcs.
Example 2. Figure 1 gives two decision diagrams encoding
x1 = x2 ∧ h1 = a12 w.r.t. the variable order h1 < x1 <
x2 < x3 with D(h1) = {a12} and D(xi) = {1, 2, 3}. Figure
1(a) is an OMDD. For each node v in the OMDD and a value
a, |out(v, a)| ≤ 1. Then Figure 1(b) is a sMDD. sMDD
can be regarded as the combination of an OMDD and the
transpose of another OMDD. We can see that for each node
v in the layers L1, L2, the arcs pointing from v have different
labels, and for each node v in the L5 layer, the arcs pointing
to v have different labels.
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Figure 1: An OMDD and sMDD, where the dash-dotted
(dashed, solid, dotted) lines denote the values 1 (2, 3, a12).

Binary Constraint Tree. A Binary Constraint Tree (BCT)
(Wang and Yap 2022b) is a normalized binary CSP which
has a tree structured constraint graph (Dechter 1987, 1990a).
It is well known that BCT can be solved by Arc Consistency
algorithms (Freuder 1982).

A BCT (V,C) can also be used to model the constraints R
over variables scp(R) such that scp(R) is a subset of V and
the constraint relation rel(R) is equal to sol(V,C)[scp(R)]
where the variables in V \ scp(R) and scp(R) are respec-
tively called hidden variables and original variables. The
size of a BCT (V,C) is the sum of size(V ) and the sizes
of binary constraints in C, where binary constraint size fol-
lows table constraint size.

A BCT R = (V,C) over variables scp(R) uses a graph
G = (H ∪Y,E), where G is a tree and the vertices in Y are
variables, if the variables scp(R) is a subset of the leaves Y
in G,1 and there is a BCT G(R)=(G(V ), G(C)) encoding
rel(R) and a bijective function fR from the vertices H ∪ Y
and edges E in G to the variables G(V ) and binary con-
straints G(C) in G(R) such that

• V ⊆ G(V ), Y ⊆ G(V ), C ⊆ G(C), and
• rel(c) = U(scp(c)) for all c ∈ G(C) \ C, and
• every v in H ∪Y is mapped to a variable fR(v) ∈ G(V )

with fR(v) = v for all v ∈ Y , and
• each e in E is mapped to a constraint fR(e) ∈ G(C)

with scp(fR(e)) = {fR(v)|v ∈ e},

We remark that a BCT R over variables scp(R) denotes a
constraint over scp(R) encoded by a BCT.

Example 3. The constraint x1 ̸= x2 ∧ x1 ̸= x3 ∧ x2 ̸=
x3 ∧x2 ̸= x4 ∧x3 ̸= x4, where D(x1)=D(x4)={1,2,3} and
D(x2)=D(x3)={1,2}, can be encoded as a BCT ({x1, x2,
x3, x4, h}, {c1, c2, c3, c4}) such that scp(ci) = {h, xi}, D(h)
= {1,2}, rel(c1) = {t113, t123}, rel(c2) = {t211, t222}, rel(c3)
= {t312, t321} and rel(c4) = {t413, t423}, where tijk = {(h,j),
(xi,k)}, and h is the only hidden variable in the BCT.

1Note that any non-leaf variable x in a BCT can be encoded as
a leaf by replacing x with a copy x′ and adding an equality x = x′.

Grammars. The strings with a length r in a language can
also be used to model a constraint over r variables. Formally,
a constraint c can be encoded as a language L w.r.t. an order
O over r variables scp(c) such that {(O1, a1),· · · , (Or, ar)}
is in rel(c) iff a1 · · · ar is a string in L. As the order is sig-
nificant, a constraint can be encoded as different languages
depending on the order.

A context free language (CFL) is generated by a context
free grammar (CFG) consisting of terminals, non-terminals,
productions and a start non-terminal. The size of a CFG con-
straint R is defined as the sum of size(scp(R)) and the num-
ber of terminals, non-terminals, productions used in R.

A CFG R w.r.t. O can be encoded in Chomsky normal
form (Lange and Leiß 2009) which can be encoded into an
acyclic CFG AR (Katsirelos, Narodytska, and Walsh 2009)
such that rel(AR) = rel(R), the right hand site (RHS) of
each production in AR has 2 non-terminals or 1 terminal,
and each non-terminal α in AR encodes the tuples rel(α)
over variables scp(α) ⊆ scp(R) where scp(α)∩scp(β) = ∅
if α, β are in the same RHS of a production in AR.

Deterministic finite state automata (DFA) (Pesant 2004)
and non-deterministic finite state automata (NFA) (Quimper
and Walsh 2006) are two subsets of CFG, where any OMVD
(OMDD) constraint can be expressed as a NFA (DFA) con-
straint, while the NFA (DFA) constraint can be directly ex-
panded into the OMVD (OMDD) constraint using the same
order (Amilhastre et al. 2014).

Example 4. The CFG ({0,1, #}, {S0, S1}, {S0 → S1#S1,
S1 → 0S10, S1 → 1S11, S1 → ϵ}, S0) generates the
language L = {aaR#bbR|a, b ∈ {0, 1}∗} ⊆ {0, 1,#}∗,
where aR and bR are the reverse of a and b, {0,1, #} and
{S0, S1} are the terminals and non-terminals, and S0 is the
start non-terminal. The constraint, which is encoded as L
w.r.t. an order x1 < x2 < x3, can also be encoded into
an acyclic CFG ({0,1,#}, {S3, · · · , S13}, {S3 → S4S5,
S3 → S6S7, S5 → #, S6 → #, S4 → S8S10, S4 → S9S11,
S7 → S10S12, S7 → S11S13, S8 → 0, S9 → 1, S10 → 0,
S11 → 1, S12 → 0, S13 → 1}, S3). The non-terminals in an
acyclic CFG encode tuples over different variables, e.g. the
non-terminals S8, S9 encode tuples over the variable x1, and
the non-terminals S10, S11 (S12, S13) encode tuples over the
variable x2 (variable x3).

Constraint Families (Counterexamples)
We first investigate the modelling power of the ad-hoc con-
straints on 15 families of constraints given in Table 2. These
families being ad-hoc constraints, can be essentially arbi-
trary, and have been chosen as counterexamples to prove var-
ious properties of the ad-hoc constraints. Furthermore, many
of these families are hard to model with common global
constraints. Some families also correspond to well known
constraints or variants thereof. The results given in Figure 2
show that the modelling powers of the ad-hoc constraints are
significantly different.

We summarize some of the families given in Table 2. F1

expresses a permutation constraint (Puget 1998). F2 is the
negation of F1. Projecting variable h1 from F3 gets F2. Pro-
jecting variables h2, y1, · · · , yn from F4 and F5 gets F3.
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F1

∧n
i=1

∧n
j=i+1 xi ̸= xj where D(xi) = {1, · · · , n}

F2

∨n
i=1

∨n
j=i+1 xi = xj where D(xi) = {1, · · · , n}

F3

∨n
i=1

∨n
j=i+1 xi = xj ∧ h1 = aij

D(h1) = {aij |1 ≤ i < j ≤ n} and D(xi) = {1, · · · , n}

F4

(
∨n

i=1

∨n
j=i+1 xi = xj ∧ h1 = aij) ∧ (

∧n
k=1 yk = 1)

D(h1) = {aij |1 ≤ i < j ≤ n}
D(xi) = {1, · · · , n} and D(yk) = {1}

F5

∨n
i=1

∨n
j=i+1 xi = xj ∧ h1 = aij ∧ h2 = aij

D(h1),D(h2) are {aij |1 ≤ i < j ≤ n}
D(xi) = {1, · · · , n}

F6

∧n
i=1 xi = 1 ∨ yi = 1 ∨ zi = 1 where domains are {0, 1}

F7

∧
c∈F hc − x ̸= −1+lx ∧ hc − y ̸= 1+ly ∧ hc − z ̸= 3+lz

c is a clause (x = lx) ∨ (y = ly) ∨ (z = lz) in a 3-SAT F
lx, ly, lz ∈ {0, 1}

D(hc) = {0, 2, 4} and D(x),D(y),D(z) are {0, 1}
F8

∧n
i=2 xi ̸= xi−1 where D(xi) = {1, 2, 3}

F9

∨
O∈O F(O) where O denotes all orders over {x1, · · · , x2n}

F(O) = (
∧n

i=1 Oi = O(i+n)) ∧ v = aO

D(v) = {aO|O ∈ O} and D(xi) is {1, · · · , n}
F10

∧n
i=1 xi ̸= 0 where variable domains are {0, 1, 2}

F11 (
∧n

i=1 xi = 0) ∨ (
∧n

i=1 yi = 0) where domains are {0, 1}
F12

∨n
i=1 xi ̸= 0 where variable domains are {0, 1}

F13 Disjunctive Normal Form (DNF)
F14 CSPs with a treewidth bounded by a fixed k

F15

∨l
k=0 x2k+1 = # ∧ S2k

1 ∧ Sn
2k+2 where domain is {#, 0, 1}

Su
j =

∧⌊ j+u
2

⌋
i=j xi = xj+u−i ∧ xi ∈ {0, 1} and n = 2l + 1

Table 2: Families of constraints (Fi).

The family F14 is the set of CSPs (X,C) with a treewidth
bounded by a fixed integer k, where the arity of all con-
straints in C are also bounded by k. F15 models the language
discussed in Example 4 over n variables.

F7 is used to model the 3-SAT problem F . Each clause
c in F , defined with (x = lx) ∨ (y = ly) ∨ (z = lz), is
modelled as the constraint c′: (hc−x ̸= −1+lx)∧(hc−y ̸=
1 + ly) ∧ (hc − z ̸= 3 + lz), where lx, ly, lz ∈ {0, 1} and
rel(c) = rel(c′)[{x, y, z}]. Then sol(F7)[X]=sol(F ) and F
is satisfiable iff F7 is satisfiable, so F7 is NP-hard.

In addition, in Figure 2, a family F can be encoded as
an ad-hoc constraint R in polysize if the size of R can be
polynomial in the sum of size(scp(R)) and the length of
the expression defining F , where the expression length is
polynomial in the number of bounded arity constraints used
by the expression. For example, the expression defining the
family F1 includes n(n− 1) binary inequalities.

Theorem 1. The results in Figure 2 hold.
The results of the green cells in Figure 2 are straightfor-

ward. The results of red cells can be verified by using opera-
tions on the ad-hoc constraints, see Section 9. The results of
the cells not colored can be verified by using of the arcs in
Figure 3. We now prove the results of the blue cells.

In (Moshier and Rounds 1987), they show there is no
polysize CFG encoding all permutations of n values. For
any variable order, the constraint relation of F1 corresponds
to all permutations of n values, so there is no polysize CFG
encoding F1. Propositions 1, 2, 3 show F3, F6, F8 cannot be
respectively encoded as polysize sMDD, smaT, segT.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Table • • • • • • ◦ • • • • • • • •
shoT • ✓ ✓ ✓ ✓ • ◦ • • • ✓ ✓ ✓ • •
c-T • ✓ ✓ ✓ ✓ • ◦ • • ✓ ✓ ✓ ✓ • •
segT ? ✓ ✓ ✓ ✓ ✓ ◦ • ✓ ✓ ✓ ✓ ✓ • ✓
smaT ? ✓ ✓ ✓ ✓ • ◦ ✓ ✓ ✓ ✓ ✓ ✓ • ✓
sMDD • • • ✓ ✓ ✓ ◦ ✓ • ✓ ✓ ✓ • • •
OMDD • • ✓ ✓ ✓ ✓ ◦ ✓ • ✓ ✓ ✓ • • •
OMVD • ✓ ✓ ✓ ✓ ✓ ◦ ✓ • ✓ ✓ ✓ ✓ • •
BCT • ✓ ✓ ✓ ✓ ✓ ◦ ✓ • ✓ ✓ ✓ ✓ ✓ •
CFG • ✓ ✓ ✓ ✓ ✓ ◦ ✓ • ✓ ✓ ✓ ✓ ✓ ✓

Figure 2: Expressive power: ✓(•) means a family can (can-
not) be encoded in polysize and ◦ means a family is NP-hard.

The family F3 can be encoded as a polysize OMDD w.r.t.
the order h1 < x1 < · · · < xn. Then F4 and F5 can be en-
coded as polysize sMDD using the order h1 < x1 < · · · <
xn < h2 < y1 < · · · < yn. The family F7 can be used to
model the 3-SAT problem, so F7 is NP-hard. Correspond-
ingly, it is NP-hard to encode F7 as the representations in
polysize, since they have polytime GAC propagators which
can be used to check whether a constraint relation is empty.
This result will be used to prove the NP-hardness of the con-
junction operations on various representations (see the re-
sults given in Figure 4).

Proposition 6 shows that there is no CFG encoding F9 in
polysize. Then (Amilhastre et al. 2014) shows F13 cannot be
encoded as polysize OMDDs, since an OMDD over Boolean
variables can be regarded as an Ordered Binary Decision
Diagram (OBDD) and DNF cannot be encoded as polysize
OBDD (Darwiche and Marquis 2002).

The family F14 can be encoded as polysize BCT (see
Proposition 4) but not polysize OMVD (see Proposition 5).
F15 is the family given by Theorem 6 in (Kadioglu and Sell-
mann 2010) which can be encoded as a polysize CFG but
not a BCT (see Proposition 7). The families F6,F8 can be
regarded as special cases of F14, so the family F14 cannot be
encoded as polysize segT and smaT.

Proposition 1. There is no polysize sMDD encoding F3.

Proof. Let n > 10 and R be a sMDD encoding the family
F3 w.r.t. an order O over the variables {h1, x1, · · · , xn} and
h1 is the kth variable by the order O.

Assume k ≤ ⌊n
2 ⌋ + 1 and V is the set of variables

{Oi|⌊n
2 ⌋ + 2 ≤ i ≤ n}. Given any subset S of V . τ(S) de-

notes the tuple {(xi, 1)|xi ∈ S}∪{(xi, 2)|xi ∈ V \ S}, and
A(S) denotes the set {(h1, aij)| {xi, xj} ⊆ V, |{xi, xj} ∩
S| = 1} which includes the literals l of h1 such that
τ(S) ∪ {l} is not in rel(R)[V ∪ {h1}]. In addition, there
must be exactly 1 node n(S) in the (⌊n

2 ⌋ + 2)th layer of R
such that τ(S) is encoded by a path from n(S) to the termi-
nal node, since R is a sMDD. For any subsets S1, S2 of V ,
if S1 is not equal to S2, then A(S1) ̸= A(S2) and the nodes
n(S1) and n(S2) are different. Then V has at least 2⌊

n
2 ⌋−1

different subsets, hence, R has at least 2⌊
n
2 ⌋−1 nodes.

Similarly, for k ≥ ⌊n
2 ⌋ + 1, R also has at least 2⌊

n
2 ⌋−1

nodes. So there is no polysize sMDD encoding F3.
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Proposition 2. There is no polysize smaT encoding F6.

Proof. Let R be a smaT encoding F6. For any smart tu-
ple τ in R and 1 ≤ i ≤ n, τ must include a binary con-
straint or unary constraint which makes sure that all vari-
ables in {xi, yi, zi} cannot be assigned with 0 at the same
time, where the constraint relation of a binary constraint or
unary constraint has at most 6 = 23 − 2 tuples, thus, the
smart tuple τ encodes at most 6n tuples. The clauses used in
F6 do not share any variables, therefore, |rel(R)| = 7n and
the number of smart tuples in R is at least ( 76 )

n. So there is
no polysize smaT encoding the family F6.

Proposition 3. There is no polysize segT encoding F8.

Proof. Assume n > 10 and R is a segT encoding F8 and t
is a segmented tuple in R, where |rel(R)| = 3(2n−1) and
|rel(t)| ̸= ∅. Let X(t) be the set of variables xi such that
xi, xi+1 are included by different constraints in t.

For any xi ∈ X(t) and a ∈ {1, 2, 3}, if (xi, a) ∈
rel(t)[{xi}], then (xi+1, a) /∈ rel(t)[{xi+1}]. So there are
at least ⌊ |X(t)|

2 ⌋ variables xi such that rel(t)[{xi}] ≤ 1. For
any nonempty V ⊆ scp(R) and a tuple τ over V , the size of
{τ1 ∈ rel(R)|τ ⊆ τ1} is 2n−|V |.

If |t| > ⌊
√
n⌋, then |X(t)| ≥ ⌊

√
n⌋ and |rel(t)| ≤ k =

2n−⌊
√

n
2 ⌋. If |t| ≤ ⌊

√
n⌋, there is a constraint c in t and a

polynomial p such that |scp(c)| ≥ ⌊
√
n⌋ and |rel(c)| ≤ p

and for any τ ∈ rel(c), |{τ1 ∈ rel(t)|τ ⊆ τ1}| ≤ 2n−⌊
√
n⌋,

so |rel(t)| ≤ pk. So p|R| ≥ 3(2n−1)
k ≥ 2⌊

√
n
2 ⌋ and there is

no polysize segT encoding F8.

Proposition 4. A k treewidth CSP P = (X,C) with do-
main size d can be encoded as a BCT (V,C ′) such that
|V | ≤ 2|X| and |D(v)| ≤ dk+1 for all v ∈ V .

Proof. (Dechter and Pearl 1989) shows that there is a BCT
P1=(H,C1) such that rel(P )={(

⋃
(h,τ)∈t τ)|t ∈ rel(P1)}

where |H| ≤ |X| and for any h ∈ H , existing var(h) ⊆
X such that D(h) ⊆ U(var(h)) and |var(h)| ≤ k + 1,
i.e. |D(h)| ≤ dk+1. Then rel(P ) can be encoded as a BCT
(V,C ′) where V = X ∪H and C ′ = C1 ∪ {cx|x ∈ X} and
cx is between x and a variable h ∈ H such that x ∈ var(h)
and rel(cx) = {{(x, a), (h, τ)|τ ∈ D(h), (x, a) ∈ τ}}. So
P can be encoded as a BCT (V,C ′) such that |V | ≤ 2|X|
and |D(v)| ≤ dk+1 for all v ∈ V .

Proposition 5. There is no polysize OMVD encoding F14.

Proof. Let F be the CSPs over Boolean variables X such
that |X| ≥ 2w where w is the treewidth of the CSPs. From
Proposition 4, assume F ′ is the set of polysize BCTs encod-
ing F . The treewidth of a BCT is 1, so F ′ is a subset of F14

Theorem 5 in (Razgon 2016) shows there is no polysize
NROBP (nondeterministic read-once branching program)
encoding F . So there is no polysize OMVD R encoding
F ′ and F14, otherwise removing the hidden variables la-
bels from the arcs in R gets a polysize NROBP encoding
F (this is impossible), where an OMVD over Boolean vari-
ables with some unlabeled arcs can be regarded as a NROBP.
So there is no polysize OMVD encoding F14.

Proposition 6. There is no polysize CFG encoding F9.

Proof. Assume R is a CFG w.r.t. any order O over {v} ∪
X encoding F9 and O′ is a subsequence of O over X ,
where X = {x1, · · · , x2n}. The interchange Lemma (Og-
den, Ross, and Winklmann 1985) shows that there is T ⊆
sol(F(O′)) and W = {Ok|1 ≤ k < i} and V = {Ok|i ≤
k < j} and U = {Ok|j ≤ k ≤ 2n + 1} such that (i)
|T | ≥ nn

cR(2n+1)2 and n
2 ≤ j − i < n, where cR is the num-

ber of non-terminals used in the acyclic CFG AR; and (ii)
for any τ1, τ2 ∈ T , the tuples τ1[W ] ∪ τ2[V ] ∪ τ1[U ] and
τ2[W ] ∪ τ1[V ] ∪ τ2[U ] are also in the constraint relation of
F9. If v = aO′ , then every variable in V ∩ X equals to a
variable in W ∪ U , therefore, τ1[V ] is equal to τ2[V ]. For
all tuples τ in T , τ [V ] is common, thus, |T | ≤ n

3n
2 +1 and

cR(2n + 1)2 ≥ n
n
2 −1. cR is not polynomial in the length

O(n22n) of the expression defining F9, so there is no poly-
size CFG encoding F9.

Lemma 1. For any BCT R = (V,C) and variables X ⊆ V ,
there is v ∈ V such that deleting v partitions the constraint
graph of R into connected components (CC) com(v) where
each CC in com(v) has at most |X|

2 variables in X .

Proof. Let mv(v) be the CC in com(v) having the most
variables in X and next(v) be the variable in mv(v)
connecting to v. For any v ∈ V , if both mv(v) and
mv(next(v)) have more than |X|

2 variables in X , then
next(next(v)) is not equal to v, since v connects to less
than |X|

2 variables in X without passing next(v). If mv(v)

has more than |X|
2 variables in X for all v ∈ V , then R has

infinite variables {v, next(v), next(next(v)) · · · } due to R
is acyclic, so there is v ∈ V such that each CC in S(v) has
at most n

2 variables in X .

Proposition 7. There is no polysize BCT encoding F15.

Proof. Let R = (V,C) be a BCT encoding the family F15.
Based on Lemma 1, there must be v ∈ V such that deleting
v partitions the constraint graph of R into connected com-
ponents (CC) com(v) of which each CC has at most l

2 vari-
ables xj where j is an even integer.
{xi = xj |1 ≤ i, j ≤ n, i is odd, j is even} is the set of

l(l + 1) equalities used in the family F15. For each variable
xi with an odd i, there are at most l

2 variables xj with an een
j such that xi, xj are in the same CC. Therefore, there are at
least (l+1)l

2 = (l+1)(l−⌊ l
2⌋) pairs xi, xj with an odd i and

an even j such that xi, xj are in different CC. Then based
on the pigeonhole principle, there is 0 ≤ k ≤ l such that
S2k
1 , Sn

2k+2 use at least l
2 equalities E where xi, xj are in

different CC in com(v) for all xi = xj in E. The equalities
in E do not share any variables.

For any tuples τ1, τ2 ∈ sol(R) including (x2k+1,#) and
any equality xi = xj in E, if τ1[{xi}] ̸= τ2[{xi}], then
τ1[{v}] ̸= τ2[{v}], since the tuple (τ1 \ τ1[W ]) ∪ τ2[W ] is
not in sol(R), where W is the set of variables of a CC in
com(v) such that xj ∈ W . So |D(v)| ≥ 2

l
2 and there is no

polysize BCT encoding F15.
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Figure 3: Succinctness of the 14 representations. An arc
from A to B means A ≤ B. If there is a path from A to
B, then A ≤ B, otherwise A ≰ B.

Succinctness of Ad-Hoc Constraints
We use succinctness (Darwiche and Marquis 2002) to mea-
sure the compactness of various ad-hoc constraints. The no-
tation A ≤ B denotes a representation A is at least as
succinct as another representation B.2 It means there is no
super-polynomial blow-up when encoding B into A but it
does not mean that A is always smaller than B.

Figure 3 shows the succinctness of the 14 representations
(ad-hoc constraints) studied—each arc from a node A to an-
other node B in the figure denotes A is at least as succinct as
B. The arcs in Figure 3 make it easy to see when a represen-
tation may be used such as identifying which ad-hoc con-
straints may be more suitable to model a constraint. For ex-
ample, F15 cannot be encoded as a polysize BCT, and BCT
≤ OMVD and BCT ≤ c-T, so F15 cannot also be encoded
as a polysize OMVD and c-T. Consider also the constraints
c with a bounded arity, e.g. binary constraints, which can be
encoded as polysize tables. Figure 3 shows that the other 13
representations are more succinct than table, thus, c can be
encoded as all 14 representations in polysize. In addition,
the cells in Figure 2 not colored can also be directly verified
from the arcs in Figure 3.

Theorem 2. The results in Figure 3 hold.

Proof. We first sketch the proofs for the arcs in Figure 3:

• A1: Proposition 8 shows CFG≤BCT;
• A2: (Wang and Yap 2022a) shows BCT≤NFA;
• A3, A14: see section and also (Amilhastre et al. 2014);
• A13: Proposition 9 shows OMDD≤sMDD;
• A4, A8: c-T is both smaT and segT, so c-T≤ smaT, segT;
• A5: c-T is a special case of bsmaT and each baic smart

tuple can be encoded as a polysize c-tuple, so bsmaT=c-T;
• A6: each c-tuple can be encoded as a path in an OMVD;
• A7: OMDD is a special case of OMVD;
• A9: each short support can be encoded as a c-tuple;
• A10: see (Jefferson and Nightingale 2013);

2In more detail, A ≤ B, if for any constraint c encoded by B
with size n, there exists an encoding A of c whose size is polyno-
mial in n. A and B are equally succinct, denoted as A = B, if
A ≤ B and B ≤ A. In addition, A and B are incomparable, de-
noted as A ̸= B, if A ≰ B and B ≰ A. A is strictly more succinct
than B, denoted as A < B, if A ≤ B and B ≰ A.

• A11: an entry t encodes at most 1 or |rel(c)| tuples where
c is the table in t and a table can be an entry, so table=sliT.

• A12: see (Verhaeghe, Lecoutre, and Schaus 2018).

Then based on the results in Figure 2, we can verify that if
a representation A cannot reach another representation B via
a path in Figure 3, there are families which can be encoded
as polysize B but not A, i.e. in some columns of Figure 2, A
is a • and B is a ✓.

For example, in the F6 column of Figure 2, smaT is
a • and segT, OMVD, BCT, CFG are ✓, therefore, there
is no path from smaT to segT, OMVD, BCT and CFG,
which means smaT≰segT, smaT≰OMVD, smaT≰BCT and
smaT≰CFG. In addition, in the F14 column of Figure 2,
OMVD is a • and BCT, CFG are ✓, thus, OMVD≰BCT
and OMVD≰CFG. Similarly, the other ad-hoc constraints
can also be verified based on the results in Figure 2.

So the results in Figure 3 hold.

Recently, a BCT GAC propagator (Wang and Yap 2022b)
was shown to outperform the state-of-the-art OMDD and
table GAC propagators. A natural question that arises is
“which ad-hoc constraints can be handled by the BCT GAC
propagator?” From Figure 3, we immediately see that ex-
cept for the CFG, smaT and segT constraints, the other 11
ad-hoc constraints can be encoded as polysize BCT and di-
rectly handled by the BCT GAC propagator.

Proposition 8. CFG is at least as succinct as BCT.

Proof. Let A = (V,C) be a BCT. If |V | = 1, sol(A) can
be encoded as a polysize CFG. Assume for 1 ≤ |V | < k,
sol(A) can be encoded as a polysize CFG. Let x ∈ V and c
be the only constraint in C including x and scp(c) = {x, y}.

If |V | = k, there is a polysize CFG R encoding sol(V \
{x}, C \ {c}). Then a CFG encoding sol(A) can be con-
structed by replacing each production α → a in AR such
that scp(α) = {y} with the productions: α → aβ(y,a) and
{β(y,a) → b|{(x, b), (y, a)} ∈ rel(c)}.

By induction on |V |, there is a polysize CFG R encoding
sol(A) for any BCT A. Then rel(A) = sol(A)[scp(A)] can
be encoded as a CFG by eliminating all non-terminals α in
AR such that scp(α) ∩ scp(A) = ∅. So CFG ≤ BCT.

Proposition 9. OMDD is at least as succinct as sMDD.

Proof. Assume R is a sMDD w.r.t. an order O over scp(R)
and k = ⌊n

2 ⌋ + 1 and n = |scp(R)| > 10 and for any
node v in the layer Lk of R and a ∈ D(Ok), R(v, a) is
the subgraph in R consisting of the paths from the nodes
in out(v, a) to the terminal node and Ga

v is a copy of the
transpose of R(v, a).

Let G1 be the subgraph induced in R by
⋃k

i=1 Li and G2

be a graph combining G1 with all Ga
v , such that v ∈ Lk and

a ∈ D(Ok) and Ga
v is not empty, by adding an arc labelled

with a pointing from v to the root of Ga
v .

An OMDD encoding rel(R) can be constructed by merg-
ing all terminal nodes in G2, where G2 is up to |Lk| ×
|D(Ok)| times larger than R. So OMDD ≤ sMDD.
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Operation Description Definition

A ∨B disjunction {τ ∈ U(scp(A) ∪ scp(B)) | τ [scp(A)] ∈
rel(A) or τ [scp(B)] ∈ rel(B)}∨

S big disj.
∨

R∈S R

A ∧B conjunction {τ ∈ U(scp(A) ∪ scp(B)) | τ [scp(A)] ∈
rel(A) and τ [scp(B)] ∈ rel(B)}∧

S big conj.
∧

R∈S R
¬A negation U(scp(A)) \ rel(A)

A[−Y ] FO rel(A)[scp(A) \ Y ]
A[−y] SFO rel(A)[scp(A) \ {y}]
A|τ CD {τ ′ \ τ | τ ′ ∈ rel(A), τ ′[Y ] ⊆ τ}

Table 3: Operations: A,B are representations, S is a set of
representations, y is a variable in scp(A), Y is a subset of
scp(A), a is a value in D(y) and τ is a tuple over Y .

Operations on Ad-Hoc Constraints
We now consider 8 operations inspired by KC (Darwiche
and Marquis 2002) which are useful for building CSP mod-
els: (i) The CD (polytime conditioning), FO (polytime for-
getting) and SFO (polytime singleton forgetting) operations
can be used to eliminate variables, e.g. the variables assigned
during search can be eliminated; (ii) Logical operations can
be used to combine constraints in CSP models, e.g. the appli-
cations given in (Bacchus and Walsh 2005). The definitions
of the operations can be found in Table 3.

In knowledge compilation, a representation is said to sat-
isfy an operation if the time complexity of computing the
operation is polynomial in the representation size (Darwiche
and Marquis 2002). Figure 4 shows the results of the opera-
tions. DFA and OMDD (NFA and OMVD) can be encoded
as each other in polysize with the same order, so they satisfy
the same operations. In addition, sliT = table and bsmaT =
c-T, thus, sliT and bsmaT respectively satisfy the same op-
erations as table and c-T.

Theorem 3. The results in Figure 4 hold.
In Figure 4, the green cells are straightforward, and the

red cells can be directly verified by using of the families
given in the cells. The proofs of OMDD/OMVD are given
in (Amilhastre et al. 2014). We now prove the blue cells.

The family F8 can be encoded as a conjunction of 2 segTs
encoding

∧n
i=1{xi ̸= xi+1|i%2 = 1} and

∧n
i=1{xi ̸=

xi+1|i%2 = 0}, so segT does not satisfy A ∧B.
Given a 3-SAT F , assume g is a function which maps

clause variable pairs in F to an integer in {1, 2, 3} such
that for any clause c in F and 2 variables v1, v2 ∈ scp(c),
g(c, v1) ̸= g(c, v2) if v1 ̸= v2. Let gck be the constraint∧
{hc − v ̸= a + lv | hc − v ̸= a + lv is included in the

expression of F7, c ∈ F , g(c, v) = k} where k ∈ {1, 2, 3}
and a ∈ {−1, 1, 3}. Then the family F7 can be modelled as
gc1 ∧ gc2 ∧ gc3, where gck is a smart tuple which can be
encoded as a smaT or sMDD. F7 is NP-hard, so the smaT,
sMDD, BCT, CFG constraints do not satisfy the A∧B oper-
ation unless NP=P. In addition, sMDD satisfies the ¬A oper-
ation (see Proposition 10), so the sMDD constraint does not
satisfy A ∧B and A ∨B unless NP=P.

Let τ be a tuple over variables Y . For any BCT A =
(V,C), A|τ is encoded as a BCT (V, {c′ | c ∈ C}) over

A ∧B A ∨B
∧

S
∨

S ¬A SFO FO CD
Table ✓ • F11 • F1 • F11 • F12 ✓ ✓ ✓
shoT ✓ ✓ • F1 ✓ • F1,2 ✓ ✓ ✓
c-T ✓ ✓ • F1 ✓ • F1,2 ✓ ✓ ✓
segT • F8 ✓ • F8 ✓ • F8 ✓ ✓ ✓
smaT ◦ F7 ✓ • F6 ✓ • F6 ✓ • F6,7 ✓
sMDD ◦ F7 ◦ F7 • F1 • F2 ✓ • F3,5 • F3,5 • F4

BCT ◦ F7 ? • F1 • F9 • F1,2 ✓ ✓ ✓
CFG ◦ F7 ? • F1 • F9 • F1,2 ✓ ✓ ✓
OMVD ◦ F7 ? • F1 • F9 • F1,2 ✓ ✓ ✓
OMDD ◦ F7 ◦ F7 • F1 • F2 ✓ • F2,3 • F2,3 ✓

Figure 4: Satisfied operations: ✓means a representation sat-
isfies a operation; • (◦) means a representation does not sat-
isfy an operation (operation unless NP=P); ‘?’ is unknown.
Reasons for unsatisfied operations are given with families.

scp(A) \ Y where rel(c′) = {τ1 ∈ rel(c)|τ1[Y ] ⊆ τ} and
scp(c′) = scp(c). For any CFG A, A|τ is encoded by re-
moving all non-terminals α such that τ [scp(α)] /∈ rel(α)[Y ]
or scp(α) ⊆ Y from AA. So BCT, CFG satisfy CD. F3 can
be defined as A|{(yk, 1)|1 ≤ k ≤ n} such that A is a sMDD
encoding F4, so sMDD does not satisfy CD.

Any BCT A can also encoding rel(A)[scp(A) \ Y ] over
scp(A) \ Y . For any CFG A, A[−Y ] can be encoded as a
CFG by removing all non-terminals α such that scp(α) ⊆ Y
from the acyclic CFG AR. So BCT, CFG satisfy the SFO
and FO operations. F6 is a 3-SAT such that all clauses do
not share any variables, thus, there is a smaT A encoding a
subset of F7 with 1 smart tuple such that A[−V ] encodes
F6 where V = {hc|c ∈ F}. Then for any smaT A and a
variable y ∈ scp(A), A[−y] =

∨
a∈D(y)(A|{(y, a)}). So

smaT satisfies the SFO operation but not the FO operation.
Proposition 10. sMDD satisfies ¬A.

Proof. Let A be a sMDD w.r.t. an order O and n = |scp(A)|
and k = ⌊n

2 ⌋. Then the negation of a sMDD A can be en-
coded as a sMDD by reconstructing A with:

1. for each 1 < i ≤ k+1, adding a node tti to Li if existing
j < i, v ∈ Lj and a ∈ D(Oj) such that out(v, a) = ∅;

2. for each k+1 < i ≤ n, adding a node tti to Li if existing
i < j, v ∈ Lj , and a ∈ D(Oj−1) such that in(v, a) = ∅;

3. for each 1 ≤ i ≤ k, a ∈ D(Oi), and v ∈ Li such that
out(v, a) = ∅, adding an arc labelled with the value a
pointing from v to tti+1;

4. for each k + 2 ≤ i ≤ n, a ∈ D(Oi), v ∈ Li+1 such
that in(v, a) = ∅, adding an arc labelled with the value a
pointing from tti to v;

5. resetting the arcs pointing from nodes in Lk+1 to nodes
in Lk+2 with the arcs which are not in the original A.

So the sMDD constraint satisfies the ¬A operation.

The red cells in Figure 2 can be verified with the results
in Figure 4. OMDD satisfies ¬A and the negation of F2 is
F1, so there is no polysize OMDD encoding F2. For any rep-
resentation R encoding F4 or F5, R[−{h1, h2, y1, · · · , yn}]
encodes F2. As table satisfies FO, thus, F4 and F5 cannot be
encoded as polysize table.
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A ∧B A ∨B
∧

S
∨

S ¬A SFO FO CD
sMDD • F4 • F4 • F1 • F2 ✓ • F3,5 • F3,5 • F4

BCT ✓ ✓ • F1 ✓ • F1,2 ✓ ✓ ✓
CFG ? ✓ • F1 ✓ • F1,2 ✓ ✓ ✓
OMVD ✓ ✓ • F1 ✓ • F1,2 ✓ ✓ ✓
OMDD ✓ ✓ • F1 • F2 ✓ • F2,3 • F2,3 ✓

Figure 5: Representations using the same graph/order.

Representations Using the Same Graph/Order
We then look at the representations using the same graph
or order. In Figure 5, we only give the results of the sMDD,
OMDD, OMVD, BCT and CFG using the same graph/order,
as the table and non-ordinary tables do not require any or-
der/graph. We also see the usefulness of the families in
showing the negative results.

Theorem 4. The results in Figure 5 hold.
The proofs of OMDD and OMVD can be found in (Amil-

hastre et al. 2014). The proofs of yellow cells are the same
as those in Figure 4, and red cells can be directly verified by
the families given in the cells. We now prove the blue cells.

Let A and B be the polysize sMDDs that respectively
encode F4 and

∧n
i=1 vi = 1 using the order O = h1 <

x1 < · · · < x⌊n
2 ⌋ < v1 < · · · < vn < x⌊n

2 ⌋+1 <
· · · < xn < y1 < · · · < yn. There is no polysize sMDD
R encoding A ∧ B w.r.t. O, otherwise we can get a poly-
size sMDD encoding F3 by removing the single value vari-
ables y1,v1,· · · ,yn,vn from R. In addition, sMDD satisfies
the negation operation, so sMDDs using the same order do
not satisfy the A ∧B and A ∨B operations.

For any CFG R and a variable x /∈ scp(R), x can be
added behind (before) any y ∈ scp(R) by replacing the pro-
ductions α → a in AR such that scp(α) = {y} with the
productions: α → aβ (α → βa) and {β → b|b ∈ D(x)}. So
CFGs using an order O can be extended to the CFGs w.r.t.
O which satisfies the A∨B and

∨
S operations, since CFG

is closed under union.
Propositions 11 and 12 show BCTs using the same graph

satisfy the A ∧B, A ∨B and
∨
S operations.

Proposition 11. BCTs using the same graph satisfy A∧B.

Proof. Let A,B be 2 BCTs using a graph (H ∪ Y,E). The
A∧B operation can be encoded as a BCT R = ({fR(v)|v ∈
H ∪ Y }, {fR(e)|e ∈ E}) by mapping the vertices v and
edges e in the graph to variables fR(v) and binary con-
straints fR(e) such that D(fR(v))=U({fA(v), fB(v)}) for
v /∈ Y and scp(fR(e))={fR(v)|v ∈ e} and rel(fR(e))
is {

⋃
v∈e t

v
τ |τ ∈ sol({fA(e), fB(e)})} where tvτ=τ [{v}] if

v ∈ Y , otherwise tvτ = {(fR(v), τ [{fA(v), fB(v)}])}.
Every tuple τR in sol(R) corresponds to two tuples

τA ∈ sol(G(A)) and τB ∈ sol(G(B)) such that τR[Y ] ∪⋃
{a|(v, a) ∈ τR, v /∈ Y } = τA ∪ τA. Then R also uses the

graph G, so BCTs using the same graph satisfy A ∧B.

Proposition 12. BCTs using the same graph satisfy
∨
S.

Proof. Let S be a set of BCTs using (H ∪ Y,E).
∨

A∈S A

can be encoded as a BCT ({fR(v)|v ∈ H ∪Y }, {fR(e)|e ∈

Query Definition Usage
CO is rel(A) ̸= ∅? necessary condition of GAC
VA is rel(A) = U(scp(A))? remove universal constraints
CE is rel(t) ∩ rel(A) = ∅? enforce GAC on A
IM is rel(t) ⊆ rel(A)? enforce GAC on ¬A
EQ is rel(A) = rel(B)? identify equivalent/implied
SE is rel(A) ⊆ rel(B)? constraints A
CT what is the size of rel(A)? applications in (Pesant 2005)

ME enumerating the tuples in improve CSP models by
rel(A) tabling (Dekker et al. 2017)

Table 4: Queries, where A,B are representations and t is a
c-tuple over scp(A) and CO, VA, CE, IM, EQ, SE, CT, ME
stand for “consistency”, “validity”, “clausal entailment”,
“implicant”, “equivalence”, “sentential entailment”, “ model
counting”, “model enumeration”.

E}) such that scp(fR(e)) = {fR(v)|v ∈ e} and
rel(fR(e)) =

⋃
A∈S{{tAv,a|(v, a) ∈ τ}|τ ∈ rel(fA(e))}

where tAv,a=(v, a) if v ∈ Y , otherwise tAv,a=(fR(v), aA) and
D(fR(v)) =

⋃
A∈S{aA|a ∈ D(fA(v))}.

For each tuple τR in sol(R), there is A ∈ S such that the
tuple τR[Y ] ∪ {(v, a)|(v, aA) ∈ τR, v /∈ Y } is a tuple in
sol(G(A)). So BCTs using the same graph satisfy

∨
S.

Queries on Ad-Hoc Constraints
Finally, we investigate 8 queries (the notation comes from
the KC literature (Darwiche and Marquis 2002)) which may
be asked on the constraints in a CSP model. Table 4 shows
the queries and example usage of the queries. A represen-
tations R satisfy a query (not ME) if the time complexity
of computing the query is polynomial in the size of R, in
addition, R satisfy ME if the cost of computing ME is poly-
nomial in the size of R and rel(R).

The current domain of the variables in a constraint A can
be denoted as a c-tuple t over scp(A), and enforcing GAC on
A (on ¬A) with the current domain t is iteratively removing
the tuples {(x, a)} from the relation of constraints c ∈ t
such that rel(t′) ∩ rel(A) = ∅ (rel(t′) ⊆ rel(A)) where
t′ = {c′}∪ (t \ {c}) and rel(c′) = {(x, a)} and x ∈ scp(c).
Hence, rel(t) ∩ rel(A) = ∅ (rel(t) ⊆ rel(A)) iff enforcing
GAC on A (on ¬A) with t removes all tuples from t. So CE
(IM) on A corresponds to enforcing GAC on A (on ¬A).

The satisfied queries of OMDD and OMVD can be found
in (Amilhastre et al. 2014). In addition, sliT, bsmaT, DFA
and NFA respectively satisfy the same queries as table, c-
T, OMDD and OMVD. The satisfied queries of the other
representations can be found in Figure 6.
Theorem 5. The results in Figure 6 hold.

The ad-hoc constraints have polytime GAC propagators,
so they satisfy CE and CO.

Then sMDD<OMDD and the ad-hoc constraints satisfy-
ing CO and CD also satisfy ME (Amilhastre et al. 2014). So
all 14 ad-hoc constraints satisfy ME.

F13 can be encoded as polysize shoT, so shoT, c-T, segT,
smaT, BCT, CFG do not satisfy VA, IM, EQ, EQ*, SE, CT,
SE* unless NP=P. Table can be encoded as polysize OMDD
w.r.t. any order, so table satisfies VA, IM, EQ, SE, CT.
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CO VA CE IM EQ EQ* SE SE* CT ME
Table ✓ ✓ ✓ ✓ ✓ - ✓ - ✓ ✓
shoT ✓ ◦ ✓ ◦ ◦ - ◦ - ◦ ✓
c-T ✓ ◦ ✓ ◦ ◦ - ◦ - ◦ ✓
segT ✓ ◦ ✓ ◦ ◦ - ◦ - ◦ ✓
smaT ✓ ◦ ✓ ◦ ◦ - ◦ - ◦ ✓
sMDD ✓ ✓ ✓ ✓ ✓ ✓ ◦ ✓ ✓ ✓
BCT ✓ ◦ ✓ ◦ ◦ ◦ ◦ ◦ ◦ ✓
CFG ✓ ◦ ✓ ◦ ◦ ◦ ◦ ◦ ◦ ✓
OMVD ✓ ◦ ✓ ◦ ◦ ◦ ◦ ◦ ◦ ✓
OMDD ✓ ✓ ✓ ✓ ✓ ✓ ◦ ✓ ✓ ✓

Figure 6: Satisfied Queries: ✓(◦) means a representation sat-
isfies (does not satisfy) a query (unless NP=P), and EQ*,
SE* require the representations use the same graph/order.

sMDD does not satisfy SE unless NP=P, since sMDD sat-
isfies ¬A but not A∧B unless NP=P. Then sMDD<OMDD,
so sMDD satisfies VA, IM, EQ, CT. ¬A ∧ B is a polysize
OMVD using O for any polysize sMDDs A,B using an or-
der O. So sMDD satisfies EQ*, SE*.

Case Studies
We now briefly (due to space) give case studies showing ap-
plications of our results to modelling and constraint usage.

The MaxOrder Constraint (Papadopoulos, Roy, and Pa-
chet 2014). A MaxOrder constraint c over {x1,· · · ,xn} is
defined as

∧n−1
i=1 Li

1 ∧ (
∧n−l+1

j=1 ¬Lj
2), where L1 and L2 are

2 languages, Lj
2 is defined by L2 w.r.t. xj < · · · < xj+l−1

and Li
1 is defined by L1 w.r.t. xi < xi+1.

As shown in (Papadopoulos, Roy, and Pachet 2014; Perez
and Régin 2015), Li

1,Lj
2 can be encoded as DFAs/OMDDs

using the same order which satisfy ¬A and A∧B, and c can
be obtained by combining the DFAs/OMDDs.

Then we can also model the DFAs encoding Li
1,¬Lj

2 as
BCTs (NFAs,OMVDs) using the same graph/order, since
they satisfy A ∧B and BCT<NFA=OMVD<DFA.

The C&Lex(X ,Y ,Regular) Constraint (Katsirelos, Nar-
odytska, and Walsh 2008). The constraint is defined
as c1 ∧ c2 ∧ c3 such that c1,c2 are DFAs and c3 is the
Lex(X,Y ) constraint (Frisch et al. 2002) where X= scp(c1)
and Y =scp(c2) and X ∩ Y = ∅.

The constraint can be created by joining the DFAs en-
coding c1,c2,c3 (Katsirelos, Narodytska, and Walsh 2008).
Then the DFAs can also be encoded as BCTs/OMVDs using
a graph/order, since they satisfy A ∧B and OMVD<DFA.

Constraints Used in Bucket Elimination. The bucket
elimination algorithm (Dechter 1999) works by iteratively
eliminating variables x and constraints Cx including x from
a CSP (X,C) by adding a constraint cx = (

∧
c∈Cx

c)[−x]
where the constraints in C are encoded as tables.

Since BCT<c-T<shoT<table and BCT (shoT, c-T) using
the same graph/order satisfies A ∧ B and SFO, we can also
use BCTs (shoTs, c-Ts) to encode the constraints.

We see that representations which do not satisfy SFO or
A ∧B would be less suited to encode the constraints in C.

The Root Constraint (Bessiere et al. 2006). The Root
constraint Roots([x1, · · · , xn], S, T ) is NP-hard but it can
be decomposed into the constraints i ∈ S ↔ xi ∈ T , where
i ∈ [1, · · · , n] and S, T are set variables (Bessiere et al.
2009). The set variables can be implemented as Boolean
variables (Hawkins, Lagoon, and Stuckey 2005), and then
the constraints can be encoded as c1 ∧ c2, where c1 is
¬si ∨ (

∨
j∈D(xi)

xi = j ∧ tj) and c2 is
∧

j∈D(xi)
si ∨ xi ̸=

j ∨ ¬tj and si, tj are Boolean variables.
BCTs using the same graph satisfy the

∨
S and A ∧ B

operations, and the treewidth of c2 is 2, thus, it is straight-
forward that c1 ∧ c2 can be encoded as a polysize BCT.

Related Work
The KC properties, i.e. the succinctness, operations and
queries, have been used to analyze KC forms (Darwiche
and Marquis 2002), such as the OBDD (Bryant 1986), d-
DNNF (Darwiche 2001) and Pseudo-Boolean constraints
(Le Berre et al. 2018). However, most of the focus in KC
is on compiling Boolean functions. In this paper, we focus
on investigating existing ad-hoc constraints over finite do-
main variables—these are incomparable with or more suc-
cinct than the Boolean function representations.

There are also other representations which can be used
to compile CSPs, such as AOMDD (Mateescu and Dechter
2006) and MDDG (Koriche et al. 2015). Their works mainly
focus on compiling the solution space of CSPs but not mod-
elling CSPs. Furthermore, F2 cannot be encoded as a poly-
size AOMDD, since AOMDD reduces to just OMDD on
encoding F2 which has a complete constraint graph. Then
MDDG over Boolean variables is decision-DNNF (Fargier
and Marquis 2006) and d-DNNF, thus, there is no polysize
MDDG encoding DNF unless the polynomial hierarchy col-
lapses (Darwiche and Marquis 2002). So shoT, c-T, smaT,
segT, OMVD, BCT and CFG are incomparable with or are
more succinct than AOMDD and MDDG.

Both intensional constraints and binary CSPs with hidden
variables (Dechter 1990b) can also be regarded as ad-hoc
constraints. However, it is NP-hard to enforce GAC on inten-
sional constraints (Bessiere et al. 2007) and the constraints
defined by binary CSPs with hidden variables.

Conclusion
Ad-hoc constraints (also called generic constraints) are very
useful for modelling many constraint problems. Numerous
compact representations have been proposed to define ad-
hoc constraints, such as the 14 representations investigated
here. In this paper, we give a succinctness map to show
whether there exists any super-polynomial blow-ups be-
tween the representations of ad-hoc constraints. We then an-
alyze what operations/queries are tractable on these ad-hoc
constraints. We believe this paper is the first comprehen-
sive work to study the tractability of these ad-hoc constraints
from a space and time perspective. Our results not only im-
prove our understanding of the foundations of these ad-hoc
constraints but also give guidance when they are used in new
ways. We believe it can be used to better understand choices
and tradeoffs when building a CSP model to a problem.
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Régin, J.-C.; and Schaus, P. 2016. Compact-Table: efficiently fil-
tering table constraints with reversible sparse bit-sets. In Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming, 207–223.
Fargier, H.; and Marquis, P. 2006. On the Use of Partially Or-
dered Decision Graphs in Knowledge Compilation and Quantified
Boolean Formulae. In AAAI National Conference on Artificial In-
telligence, 42–47.
Freuder, E. C. 1982. A sufficient condition for backtrack-free
search. Journal of the ACM, 29(1): 24–32.
Frisch, A.; Hnich, B.; Kiziltan, Z.; Miguel, I.; and Walsh, T. 2002.
Global constraints for lexicographic orderings. In International
Conference on Principles and Practice of Constraint Program-
ming, 93–108.
Frisch, A. M.; Harvey, W.; Jefferson, C.; Martinez-Hernandez, B.;
and Miguel, I. 2008. Essence: A constraint language for specifying
combinatorial problems. Constraints, 13(3): 268–306.
Gange, G.; Stuckey, P. J.; and Szymanek, R. 2011. MDD propaga-
tors with explanation. Constraints, 16(4): 407.
Gharbi, N.; Hemery, F.; Lecoutre, C.; and Roussel, O. 2014. Sliced
Table Constraints: Combining Compression and Tabular Reduc-
tion. In International Conference on Integration of Artificial In-
telligence and Operations Research techniques in Constraint Pro-
gramming, 120–135.
Hawkins, P.; Lagoon, V.; and Stuckey, P. J. 2005. Solving Set Con-
straint Satisfaction Problems using ROBDDs. J. Artif. Intell. Res.,
24: 109–156.
Jefferson, C.; and Nightingale, P. 2013. Extending simple tabular
reduction with short supports. In International Joint Conferences
on Artificial Intelligence, 573–579.
Kadioglu, S.; and Sellmann, M. 2008. Efficient Context-Free
Grammar Constraints. In AAAI National Conference on Artificial
Intelligence, 310–316.
Kadioglu, S.; and Sellmann, M. 2010. Grammar constraints. Con-
straints, 15(1): 117–144.
Katsirelos, G.; Narodytska, N.; and Walsh, T. 2008. Combining
symmetry breaking and global constraints. In International Work-
shop on Constraint Solving and Constraint Logic Programming,
84–98.
Katsirelos, G.; Narodytska, N.; and Walsh, T. 2009. Reformulat-
ing global grammar constraints. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, 132–147.
Katsirelos, G.; and Walsh, T. 2007. A compression algorithm for
large arity extensional constraints. In International Conference on
Principles and Practice of Constraint Programming, 379–393.
Koriche, F.; Lagniez, J.-M.; Marquis, P.; and Thomas, S. 2015.
Compiling constraint networks into multivalued decomposable de-
cision graphs. In International Joint Conference on Artificial Intel-
ligence, 332–338.
Lange, M.; and Leiß, H. 2009. To CNF or not to CNF? An effi-
cient yet presentable version of the CYK algorithm. Informatica
Didactica, 8(2009): 1–21.
Le Berre, D.; Marquis, P.; Mengel, S.; and Wallon, R. 2018.
Pseudo-Boolean Constraints from a Knowledge Representation
Perspective. In International Joint Conference on Artificial Intelli-
gence, 1891–1897.
Lecoutre, C. 2011. STR2: optimized simple tabular reduction for
table constraints. Constraints, 16(4): 341–371.

4113



Lecoutre, C.; Likitvivatanavong, C.; and Yap, R. H. 2015. STR3:
A path-optimal filtering algorithm for table constraints. Artificial
Intelligence, 220: 1–27.
Mairy, J.-B.; Deville, Y.; and Lecoutre, C. 2015. The Smart Table
Constraint. In International Conference on the Integration of AI
and OR Techniques in Constraint Programming, 271–287.
Mateescu, R.; and Dechter, R. 2006. Compiling constraint net-
works into AND/OR multi-valued decision diagrams (AOMDDs).
In International Conference on Principles and Practice of Con-
straint Programming, 329–343.
Moshier, M. D.; and Rounds, W. C. 1987. On the succinctness
properties of unordered context-free grammars. In Annual Meeting
of the Association for Computational Linguistics, 112–116.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck, G. J.;
and Tack, G. 2007. MiniZinc: Towards a standard CP modelling
language. In International Conference on Principles and Practice
of Constraint Programming, 529–543.
Ogden, W.; Ross, R. J.; and Winklmann, K. 1985. An “interchange
lemma” for context-free languages. SIAM Journal on Computing,
14(2): 410–415.
Papadopoulos, A.; Roy, P.; and Pachet, F. 2014. Avoiding plagia-
rism in Markov sequence generation. In AAAI National Conference
on Artificial Intelligence, 2731–2737.
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