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Abstract

The concept of Strong Backdoor Sets (SBS) for Constraint
Satisfaction Problems is well known as one of the attempts
to exploit structural peculiarities in hard instances. However,
in practice, finding an SBS for a particular instance is of-
ten harder than solving it. Recently, a probabilistic weakened
variant of the SBS was introduced: in the SBS, all subprob-
lems must be polynomially solvable, whereas in the proba-
bilistic SBS only a large fraction ρ of them should have this
property. This new variant of backdoors called ρ-backdoors
makes it possible to use the Monte Carlo method and meta-
heuristic optimization to find ρ-backdoors with ρ very close
to 1, and relatively fast. Despite the fact that in a ρ-backdoor-
based decomposition a portion of hard subproblems remain,
in practice the narrowing of the search space often allows
solving the problem faster with such a backdoor than without
it. In this paper, we significantly improve on the concept of ρ-
backdoors by extending this concept to backdoor trees: we in-
troduce ρ-backdoor trees, show the interconnections between
SBS, ρ-backdoors, and the corresponding backdoor trees, and
establish some new theoretical properties of backdoor trees.
In the experimental part of the paper, we show that moving
from the metaheuristic search for ρ-backdoors to that of ρ-
backdoor trees allows drastically reducing the time required
to construct the required decompositions without compromis-
ing their quality.

Introduction
The concept of Backdoor sets to Constraint Satisfac-
tion Problems (CSP) was introduced in the seminal pa-
per (Williams, Gomes, and Selman 2003). Later, backdoors
were actively researched in many papers, which studied both
their theoretical properties, mainly from the point of view of
structural and parameterized complexity (Kilby et al. 2005;
Hemaspaandra and Narváez 2017, 2021; Fichte and Szei-
der 2011; Gaspers and Szeider 2012a,c,b; Misra et al. 2013;
Gaspers and Kaploun 2022), and practical applications of
backdoors for speeding up the solving of hard instances of
combinatorial problems (Dilkina et al. 2009; Ferber et al.
2022; Khalil, Vaezipoor, and Dilkina 2022).

Here, the main practical interest is posed by Strong Back-
door Sets (SBS). The key element for defining an SBS is the
notion of a sub-solver: a polynomial algorithm A that takes
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as input a variant of the original problem weakened by sub-
stitution of values of variables from some subset B,B ⊆ X
(here, X is the set of variables occurring in the consid-
ered set of constraints). If for each assignment of variables
the algorithm A determines satisfiability/unsatisfiability (or
consistency/inconsistency) of the corresponding set of con-
straints, then B is an SBS w.r.t. A.

Hereinafter, we will work with the Boolean Satisfiability
Problem (SAT). It can be viewed as a special case of a CSP,
where each variable from X has a domain of cardinality 2.
Let C be a Boolean formula (usually, in Conjunctive Normal
Form, CNF) over a set of variables X . Assume that we want
to determine the satisfiability of C. It is clear that in this case
the knowledge of some SBS B gives an upper bound on the
hardness of C in the form of p(|C|)·2|B|, where p(·) is some
polynomial, and |C| is the length of the binary description of
C. However, the problem of finding an SBS with small car-
dinality is very hard (Dilkina, Gomes, and Sabharwal 2007;
Hemaspaandra and Narváez 2017). Nevertheless, it is possi-
ble to formulate the problem of finding an SBS of minimum
cardinality as the problem of minimization of a special func-
tion, which for an arbitrary B ∈ 2X checks whether this B
is indeed an SBS, and if the answer is yes outputs the car-
dinality of B. Unfortunately, even computing the value of
such a function on a particular input B is a very hard prob-
lem, since for each possible assignment of variables from B
one has to evaluate whether substituting the corresponding
values to the original formula results in a formula decidable
by a sub-solver A.

One possible way to tackle this obstacle was described
in (Semenov et al. 2022): it was proposed to search for such
subsets B, for which not all formulas resulting from assign-
ing values to variables from B in C are polynomially de-
cidable, but their vast majority. In practice, one can use a
complete SAT solver to solve the small fraction of simplified
subproblems that cannot be solved by sub-solver A. The es-
timation of the fraction of polynomially decidable subprob-
lems for a particular B can be done efficiently. As a result,
one can consider the problem of finding such a probabilis-
tic generalization of an SBS with relatively small cardinal-
ity and with a fraction of polynomially decidable subprob-
lems close to 1. This problem can be viewed as an optimiza-
tion problem for some pseudo-Boolean function which is not
specified analytically (i.e. a black-box function).
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The main goal of this paper is to adapt the concepts in-
troduced in (Semenov et al. 2022) in order to increase the
practical efficiency of finding probabilistic backdoors, since
they provide a glimpse at some structural properties of orig-
inal problems and can be used to increase the efficiency of
their solving.

In the paper, we extend the probabilistic generalization
of the SBS concept to tree-like representations of sets com-
prised of all possible assignments of variables from B. Here
we mainly use the concept of backdoor trees introduced
in (Samer and Szeider 2008). We formulate several new the-
oretical properties of backdoor trees which show that the
combinatorial nature of backdoor sets and backdoor trees is
surprisingly quite different. We then introduce probabilistic
backdoor trees and study them from a theoretical perspec-
tive. In the experiments, we show that metaheuristic search
for probabilistic backdoor trees is significantly faster than
that for probabilistic variants of SBS thanks to potentially
smaller number of calls to sub-solver A. The corresponding
algorithms make it possible to efficiently find probabilistic
backdoor trees for Boolean formulas with thousands of vari-
ables in mere seconds, and the resulting efficiency of solving
with these backdoors is similar to that showcased in (Se-
menov et al. 2022), where several hours were used to find a
single backdoor.

Thus, the main contributions of this paper are as follows:
(I) we describe new combinatorial properties of backdoor
trees; (II) we introduce ρ-backdoor trees, determine some
of their properties and their connection to ρ-backdoors; (III)
we show that it is possible to find good ρ-backdoor trees
much faster than good ρ-backdoors, making the approach
significantly more applicable to real-world problems.

Preliminaries
The Boolean Satisfiability Problem (SAT) is a well-known
combinatorial problem, which can be viewed as a spe-
cial case of the more general Constraint Satisfaction Prob-
lem (CSP). In the context of SAT, one operates with Boolean
formulas, usually in Conjunctive Normal Form (CNF). A
formula C in CNF is a conjunction of clauses, a clause is
a disjunction of literals, and a literal is either a variable x or
¬x (negation), where x is a Boolean variable (i.e. x has the
range {0, 1}). Let X be the set of all variables occurring in
C. Assuming that an assignment of variables is defined in
a standard way, see e.g. (Chang and Lee 1973), the assign-
ment of variables from X such that C takes the value True
on it is called a satisfying assignment and the corresponding
formula is called satisfiable. If there are no assignments that
satisfy C then it is called unsatisfiable.

Assume that B is an arbitrary subset of X(B ⊆ X). Let
us use the notation {0, 1}|B| to denote the set of all possible
assignments of variables from B. The notion of “backdoor”
(in several aspects) was introduced in (Williams, Gomes,
and Selman 2003). Hereinafter, we use the corresponding
definition in the context of SAT. Let us present the follow-
ing definition which precedes the backdoor concept.

Definition 1 (Williams, Gomes, and Selman 2003). In the
context of SAT, for some Boolean formula C over variables

X we refer to a deterministic polynomial algorithm A as
to a sub-solver if the following requirements are satisfied.
1. Trichotomy: given a CNF formula C, algorithm A ei-
ther determines the satisfiability/unsatisfiability of formula
C, or rejects C (“answer is not determined by A”). 2. Triv-
ial decidability: A can recognize some trivial cases (such
as, e.g., empty set of clauses). 3. Self-reducibility: if A gives
a solution of SAT for C, then A gives a solution of SAT for
C[α/{x}], where x ∈ X is any variable occurring in C,
α ∈ {0, 1} is any value of x, and C[α/{x}] is the CNF
formula constructed by substituting the value α of x into C.

As it was said above, several variants of the backdoor
concept exist. Hereinafter, we will be interested only in the
Strong Backdoor Set notion.
Definition 2 (Williams, Gomes, and Selman 2003). A set B,
B ⊆ X , is called a Strong Backdoor Set (SBS) for formula
C w.r.t. a sub-solver A, if for any β ∈ {0, 1}|B| the sub-
solver A recognizes the satisfiablity/unsatisfiability of for-
mula C[β/B] constructed from C by substituting into C the
assignment β of all variables from B.

The practical meaning of the concept of backdoors is
well-illustrated by numerous practical examples. For in-
stance, SAT encodings of symbolic verification and crypt-
analysis problems often have very small SBSes (their size
is fractions of a percent in relation to the total number of
variables), if Unit Propagation is used as the sub-solver.

For example, such a situation takes place in the case
when a CNF formula which encodes the logical equiva-
lence (Drechsler, Junttila, and Niemelä 2021) of two circuits
is constructed by applying Tseitin transformations (Tseitin
1970) to such circuits, augmented with a special functional
block called a miter (Molitor and Mohnke 2007). Then,
the set of variables corresponding to circuits’ inputs forms
an SBS w.r.t. Unit Propagation rule (Marques-Silva, Lynce,
and Malik 2009), i.e. Strong Unit Propagation Backdoor Set
(SUPBS).

The problem of finding the minimum or close to minimum
SBS is very hard (Dilkina, Gomes, and Sabharwal 2007;
Gaspers and Szeider 2012b; Hemaspaandra and Narváez
2017, 2021). And while we can employ metaheuristic al-
gorithms for enumeration of different variants of B in the
search space 2X (power set of X), the barrier remains of
having to call the sub-solver A on formulas C[β/B] for all
possible β ∈ {0, 1}|B| in order to check if a set B is indeed
an SBS. To overcome it, in (Semenov et al. 2022) the fol-
lowing probabilistic generalization of SBS was introduced.
Definition 3 (Semenov et al. 2022). Consider an arbitrary
CNF formula C over variables X , a sub-solver A, and a
fixed ρ ∈ [0, 1]. An arbitrary set B is called a ρ-backdoor
for C w.r.t. A, if A decides the satisfiability/unsatisfiability
of C[β/B] for a fraction of all possible β ∈ {0, 1}|B| which
is no smaller than ρ.

We use the notation C[β/B] ∈ S(A) for cases when A
recognizes the satisfiability/unsatisfiability of C[β/B], and
write C[β/B] /∈ S(A) when A rejects C[β/B]. Let ρ∗B be
the exact fraction of β ∈ {0, 1}|B| that C[β/B] ∈ S(A).
Then, following (Semenov et al. 2022), we can estimate ρ∗B
with any predetermined accuracy using a Monte Carlo test.
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In more detail, let us connect with B a probability space
ΣB = ⟨Ω,U,Pr⟩, where the sample space Ω is the set
{0, 1}|B|, U is a σ-algebra which in our case is the set 2Ω
(power set of Ω), and Pr: U → [0, 1] is the probability
function. Also we must require that Kolmogorov’s axioms
hold (see Feller 1971). Define on Ω = {0, 1}|B| a uni-
form probability distribution, i.e. assign to each elementary
event β ∈ {0, 1}|B| the probability p(β) = 1/2|B|. Let us
connect with ΣB a random variable ξB , ξB : Ω → {0, 1},
which is specified in the following manner: ξB(β) = 1 if
C[β/B] ∈ S(A), and ξB(β) = 0 if C[β/B] /∈ S(A). It is
clear that ξB is a Bernoulli random variable, i.e. it has the
range (spectrum) {1, 0}, success probability ρ∗B , and prob-
ability distribution P (ξB) = {ρ∗B , 1 − ρ∗B}. Thus, for the
expected value of ξB we have that E[ξB ] = ρ∗B .

Now, we can estimate ρ∗B using independent observations
ξ1, . . . , ξN of random variable ξB and Chernoff’s bound (see
e.g. (Motwani and Raghavan 1995)). More precisely, we use
the following form of this bound which can be found in,
e.g. (Karp, Luby, and Madras 1989):

Pr

∣∣∣∣∣∣ 1N
N∑
j=1

ξj − ρ∗B

∣∣∣∣∣∣ ≤ ε

 ≥ 1− 2e−Nε2/4. (1)

The relation (1) expresses some (ε, δ)-approximation of
ρ∗B : usually, this term is used regarding any relation of the
form Pr[|ν̃ − ν| ≤ ε] ≥ 1 − δ, where ν is an estimated pa-
rameter and ν̃ is an estimation of ν calculated in some prob-
abilistic experiment. Values ε and 1− δ are usually referred
to as tolerance and confidence level, respectively.

Using (1) it is not hard to see that for any fixed ε, δ ∈
(0, 1) we can construct an (ε, δ)-approximation of ρ∗B as

ρ̃∗B = 1
N

N∑
j=1

ξj if we take any N : N ≥ 4 ln(2/δ)
ε2 . And if

we want to obtain an approximation Pr[|ρ̃∗B−ρ∗B | ≤ ε/2] ≥
1− δ, it is sufficient to choose N =

⌈
16 ln (2/δ)

ε2

⌉
.

Let us define the following Monte Carlo test. Fix ε, δ ∈
(0, 1) and N =

⌈
16 ln(2/δ)

ε2

⌉
. Make N independent obser-

vations of random variable ξB : ξ1, . . . , ξN , compute ρ̃∗B =

1
N

N∑
j=1

ξj . If ρ̃∗B ∈ [1− ε
2 , 1], then conclude that B passes the

test, otherwise B fails the test.
Let us suppose that B passes the described Monte Carlo

test. But then ρ∗B deviates from ρ̃∗B by at most ε/2 with prob-
ability at least 1 − δ, and thus with probability no smaller
than 1− δ the conclusion that ρ∗B ∈ [1− ε, 1] is correct.

As shown in (Semenov et al. 2022) using SAT as an exam-
ple, to search for ρ-backdoors with ρ close to 1 one can use
metaheuristic pseudo-Boolean optimization: among possi-
ble subsets of the set X we search for a set B that provides
a minimum of an objective fitness function that depends on
ρ̃∗B and the cardinality of B. The value of this fitness func-
tion in each point B ∈ 2X is calculated efficiently: in the
general case, in time limited by p(|C|) · 16 ln (2/δ)

ε2 , where
p(·) is some polynomial, and |C| is the length of the binary
encoding of the CNF formula C. Thus, the efficiency of the

Figure 1: Example of a tree for set B = {x1, x2, x3}

search depends mainly on the used metaheuristic optimiza-
tion algorithm. In (Semenov et al. 2022), some variant of a
genetic algorithm (Luke 2013) was used for this.

Since the estimation of ρ∗B for a given set B can be con-
structed efficiently (using the described Monte Carlo test),
one can employ metaheurisitic optimization to efficiently
find ρ-backdoors with ρ close to 1 for formulas with thou-
sands of variables. When some ρ-backdoor has been found,
we can use the sub-solver A to solve ρ∗B · 2|B| problems
C[β/B] ∈ S(A), and apply some complete SAT solver to
the remaining (1− ρ∗B) · 2|B| problems C[β/B] /∈ S(A).

Backdoor Trees and Some New Theoretical
Facts About Them

The idea of working with a backdoor as a tree is contained
in (Williams, Gomes, and Selman 2003): if B is some back-
door (e.g. SBS), we can branch on variables from B, select-
ing them in some fixed order. But in the explicit form, the
backdoor tree concept was formulated in (Samer and Szei-
der 2008). Its main theoretical results are related to parame-
terized complexity: in particular, in that paper it was shown
that the problems of checking for a specific CNF formula C
and parameter k whether there exists a Horn-Backdoor tree
or a 2CNF-Backdoor tree for C with at most k leaves are
fixed-parameter tractable.

The main purpose of our research is to construct a com-
putational algorithm which allows efficiently finding proba-
bilistic backdoor trees for SAT instances. Along the way, we
establish several surprising theoretical facts about the con-
nection between SBSes and their tree-like counterparts.

Consider a CNF formula C over variables X and an ar-
bitrary set B ⊆ X : |B| = s. It is clear that {0, 1}|B| can
be seen as a perfect (complete) binary tree in which all ver-
tices except the leaves correspond to variables from B, and
each path from the root to a leaf corresponds to a specific
β ∈ {0, 1}|B|. An example of such a tree is shown in Fig. 1.

Let us put each leaf of the obtained tree in correspon-
dence with the result of applying the algorithm A to the
corresponding formula C[β/B]: if C[β/B] ∈ S(A), then
we assign the symbol “A” to the corresponding leaf, if
C[β/B] /∈ S(A), then we attribute the symbol “×” to this
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leaf. We denote the resulting tree by TB , and call its leaves
terminal vertices. By virtue of the above, every path in TB

has length s, and TB contains 2s paths, thus the height of TB

is s. Also note that if B is an SBS, then all terminal vertices
of TB are assigned the symbol “A”.

Note that in a tree TB (such as the one shown in Fig.1), all
vertices at a fixed depth are assigned the same variable from
B, and thus a particular tree TB corresponds to a particular
order on B. We will refer to such a tree as to an ordered tree,
and will use for it the notation TB,τ , where τ is a specific
order. The above implies that any set {0, 1}|B| can be repre-
sented in the form of a tree TB,τ . Thus, trees corresponding
to different orders differ only in the labeling of their vertices
(excluding leaves) and, therefore, there are s! different trees
TB,τ for each set B. And though in the original paper (Samer
and Szeider 2008) the backdoor trees are considered without
connection with order, we further will deal only with ordered
trees, since the order allows us to establish some important
facts related to the probabilistic properties of the trees.

As it was noted in (Dilkina et al. 2009), for some or-
ders it is possible that in some branches of the tree the sub-
solver A will solve the problem obtained by substituting the
first r, r < s, variables. Let τ be some order on B and
TB,τ be a tree corresponding to this order and representing
{0, 1}|B|. We will traverse the tree from the root to the ter-
minal vertices, and for each internal vertex v check whether
C[βv/B] ∈ S(A), where βv denotes a partial assignment
of variables, which corresponds to a path from the root to
vertex v in TB,τ . If C[βv/B] ∈ S(A), then the vertex be-
comes terminal and is marked with the symbol “A”. Denote
by T̃B,τ the tree obtained as a result of the described proce-
dure. The following fact is obviously true (essentially, this is
a slight reformulation of Lemma 2 from (Samer and Szeider
2008)).
Proposition 1. The set B is an SBS for C w.r.t. A if and
only if for any order τ on B, the tree T̃B,τ is a full binary
tree (i.e. each non-terminal vertex has two children), each
terminal vertex of which is assigned the symbol “A”.

The main result presented below is valid for the trees
T̃B,τ , in which some of the leaves are marked with symbol
×. In order to distinguish these trees from backdoor trees
in the sense of (Samer and Szeider 2008), hereinafter let us
refer to the latter as SBS trees.
Definition 4. If B is some SBS, a tree T̃B,τ is called an SBS
tree.

The use of a tree T̃B,τ instead of an SBS B can speed
up SAT solving for C due to fewer sub-solver calls. Thus,
we would like to obtain a tree T̃B,τ for the SBS B, which
can be considered minimal in some sense. First, we will be
interested in the upper bounds for the complexity of finding
such trees. And in this context, as we will see, the connection
of the minimal/minimum tree T̃B,τ with the concept of the
minimum SBS is important. It seems quite natural to define
the minimum SBS in the following manner.
Definition 5. Let C be a CNF formula over the set of vari-
ables X . An SBS for C of the minimum possible cardinality
is called a minimum SBS.

To search for a minimum SBS, one can use the algorithm
described in the article (Williams, Gomes, and Selman 2003)
(hereinafter referred to as the WGS-algorithm). It enumer-
ates all possible subsets of X of sequentially increasing car-
dinality (starting from sets of cardinality 1) and for each
B,B ⊆ X , checks for all β ∈ {0, 1}|B| if C[β/B] is solv-
able by sub-solver A. The first SBS found in this way is a
minimum one. In the worst-case scenario for each B ⊂ X ,
the situation C[β/B] ∈ S(A) will take place for the first
2|B|−1 assignments β (in some order on {0, 1}|B|), and for
the last assignment β we will have C[β/B] /∈ S(A). And
only when B = X will we get C[β/B] ∈ S(A) for each
β ∈ {0, 1}|X|. Therefore, in the worst-case scenario of this

algorithm, the sub-solver A is called
n∑

k=1

(
n
k

)
2k = O(3n)

times, where n = |X|. However, if C has a relatively small
minimum SBS, then, as shown in (Williams, Gomes, and
Selman 2003), the WGS-algorithm can solve SAT asymp-
totically faster than in time poly(|C|) · 2n.

It is well known that the main parameters by which a tree
is usually evaluated are its height and the number of vertices.
It is easy to establish the validity of the following fact.

Proposition 2. The minimum height of an SBS tree among
all SBSes is s∗ = |B∗|, where B∗ is the minimum SBS.

Proof. Let B∗ : |B∗| = s∗, be some minimum SBS. Obvi-
ously, h(T̃B∗,τ ) = s∗ for any order τ on B∗, where h(·)
denotes the height of the considered tree. Indeed, if we as-
sume the opposite, then there exists such an order τ ′ that
each path in the tree T̃B∗,τ ′ has length smaller than s∗, and,
thus, there exists an SBS B′ : B′ ⊂ B∗, but this contradicts
the fact that B∗ is a minimum SBS. For the same reasons
there cannot exist an SBS B′ : |B′| > |B∗| such that for
some order τ on B′ it would hold that h(T̃B′,τ ) < s∗.

In the context of the above, the following definition seems
practically reasonable.

Definition 6. Denote by |T | (size of T ) the number of all
vertices in T , where T is an arbitrary tree. For an arbitrary
B,B ⊆ X (which is not necessarily an SBS) let us call T̃B,τ

the smallest tree for B, if it has the minimum size |T̃B,τ |
across all possible orders τ on B. Denote the smallest tree
for B as T̃ ∗

B .

Note that following (Samer and Szeider 2008) we could
have defined the size of a tree as the number of its leaves.
However, the definition we employ is more convenient for
our purposes because later we will estimate the number of
calls to A at each vertex of our tree (except its root).

Let us consider the problem of finding the smallest tree
among all possible SBS-trees. Denote such a tree as T̃ ∗. Let
B∗ be an SBS of the smallest cardinality (minimum SBS)
and s∗ = |B∗|. Proposition 2 implies that h(T̃ ∗) ≥ h(T̃ ∗

B∗)
and thus the following inequalities from (Samer and Szeider
2008) hold:

2s∗ + 1 ≤ |T̃ ∗| ≤ 2s
∗+1 − 1. (2)
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As we have seen, the minimum SBS tree has the minimal
height among all possible SBS trees. Surprisingly, we are
not aware of any similar statements about the interconnec-
tion between the values |T̃ ∗| and |T̃ ∗

B∗ | which would give us
more explicit information than (2). Indeed, firstly, for differ-
ent minimum SBSes (with the same cardinality) their small-
est trees can have different sizes. Moreover, there are no ob-
stacles for the existence of an SBS B : |B| > |B∗|, B∗ ̸⊂ B

such that |T̃ ∗
B | < |T̃ ∗

B∗ |.
As implied from the above, we can hardly say anything

definite about the complexity of searching for the small-
est SBS tree T̃ ∗. And taking this into account, we further
consider the problem of searching for a smallest tree of the
minimum SBS (i.e. for T̃B∗ ). The corresponding result is
given by the following theorem which is in spirit of Theo-
rem 4.1 from (Williams, Gomes, and Selman 2003).

Theorem 1. Let C be some set of constraints over Boolean
variables X , |X| = n, and A be some sub-solver. For any
fixed q ≥ 2, let us suppose that there exists an SBS for C
w.r.t. A, such that |B| ≤ n/q. Then, the smallest tree for the
minimum SBS can be found in time:

O∗
(
2

n
q (log n−log q−log (e/2))

)
, (3)

where O∗ means “big O up to some polynomial factor”.

Proof sketch. First, we find the minimum SBS using the
WGS-algorithm. Then, we construct trees T̃B∗,τ by enumer-
ating all possible orders on B∗. Denote by r(B∗) the number
of times we check whether C[β/B] ∈ S(A) when searching
for B∗ with the WGS-algorithm. By virtue of the assump-
tions in the condition of the theorem and the properties of
binomial coefficients, we have:

r(B∗) ≤
⌈n/q⌉∑
i=1

(
n

i

)
· 2i ≤

⌈
n

q

⌉
·
(

n

⌈n/q⌉

)
· 2⌈n/q⌉. (4)

After carefully estimating the value on the right-hand side
of (4) with the use of Stirling’s formula, we have the follow-
ing estimation (here, log x denotes the binary logarithm):

r(B∗) ≤ p(n) · 2n(
1
q+log q− q−1

q log(q−1)), (5)

where p(·) is some polynomial.
There are s!, s = |B|, possible trees T̃B,τ . The sub-solver

A is called no more than 2s+1 − 1 times at the tree edges.
We again apply the Stirling’s formula to s! and construct
the following upper bound for the complexity of finding the
smallest tree for B∗ when all possible orders on B∗ are tried:

p(n) · 2
n
q (log n−log q−log (e/2)). (6)

Taking into account the fact that (6) grows faster than the
right-hand side of (5) with the increase of n, we can con-
clude that the statement of the theorem is true.

Probabilistic Backdoor Trees
Our main practical interest is to transfer the concept of prob-
abilistic backdoors to their tree-like counterparts. However,
at first glance, it is not entirely clear how to determine the
probability space in such a case. In fact, we must do this
in such a way that the resulting distribution corresponds to
some easily reproducible probabilistic experiment.

So, let C be an arbitrary CNF formula over variables X ,
A be some sub-solver, B, |B| = s, be an arbitrary subset
of X , and T̃B,τ be some tree with an order τ , which was
constructed in the way described above (not necessarily an
SBS-tree). Recall that T̃B,τ is a full binary tree with height
h(T̃B,τ ) ≤ s. Link with each path π from the root to a ter-
minal vertex in T̃B,τ the number 1/2L(π), where L(π) is the
length of the path π in the standard sense (see e.g. (Cormen,
Leiserson, and Rivest 1990)). Let β(π) be an assignment of
variables from B w.r.t. an order τ which corresponds to the
path π. Define: the sample space as Ω = {β(π)}π∈T̃B,τ

,
where the probability of an elementary event β(π) is de-
fined as p(β(π)) = 1/2L(π); the σ-algebra as U = 2Ω, and
the probability function as Pr: U → [0, 1]. Let us establish
the following fact.

Proposition 3. ΣT̃B,τ
= ⟨Ω,U,Pr⟩ is a probability space.

Proof sketch. In order to prove the proposition, we have
to establish that all Kolmogorov’s axioms (Feller 1971)
hold. Axioms 1 and 3 hold obviously. Let us show that∑

π∈T̃B,τ
p(β(π)) = 1. Let us prove this fact by induc-

tion on the height h of tree T̃B,τ : B = {xB
1 , . . . , x

B
s },

τ : xB
1 ≺ · · · ≺ xB

s , s ≥ 1. A full binary tree of height 1
is unique (contains two paths of length 1), each path is as-
signed a probability 1/2, respectively, so for this case the
conjecture is obviously valid. Let us assume that the con-
jecture is true for an arbitrary h = k (k ≥ 1) and con-
sider the case h = k + 1. Suppose that the root of the tree
T̃B,τ is assigned by variable xB

1 . If one of the children of
the root is a leaf, then it is obvious that the path from root
to this leaf is assigned the probability 1/2. Let us assume
that one of two sub-trees of the considered tree has height
h = k, i.e. it is a full binary tree T̃B′,τ ′ : B′ = B \ {xB

1 },
where τ ′ : xB

2 ≺ · · · ≺ xB
s . If we had constructed the

space ΣT̃B′,τ′
, then by the inductive assumption the rela-

tion
∑

π∈T̃B′,τ′
p(β(π)) = 1 would hold. However, any path

from T̃B′,τ ′ of length L corresponds to a path of length L+1

in tree T̃B,τ and, therefore, the sum of values p(β(π)) over
all such paths in T̃B,τ is 1/2. But then

∑
π∈T̃B,τ

p(β(π)) =

1 for the case h = k + 1.

Denote by πA(T̃B,τ ) ∈ U (where U is the σ-algebra of
space ΣT̃B,τ

) the event that the path π in T̃B,τ ends with the

symbol “A”. It is obvious that the probability Pr[πA(T̃B,τ )]
of such an event within the space ΣT̃B,τ

is the sum of values
p(β(π)) over all paths π ending with the symbol “A”.
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Definition 7. A ρ-backdoor tree T̃B,τ (B is not necessarily
an SBS) is a tree with Pr[πA(T̃B,τ )] ≥ ρ, ρ ∈ [0, 1].

As noted above, the value ρ∗B can be considered as the
probability that an assignment β selected from {0, 1}|B|

w.r.t. the uniform distribution gives a formula C[β/B]:
C[β/B] ∈ S(A). But then, the analogue of ρ∗B in the con-
text of the above distribution on T̃B,τ (w.r.t. some fixed τ ) is
the value Pr[πA(T̃B,τ )]. Let us establish the following fact.
Theorem 2. Let B be some ρ-backdoor for C w.r.t. A. Then,
for an arbitrary fixed τ , the following equality holds:

ρ∗B = Pr[πA(T̃B,τ )].

Proof sketch. Probability ρ∗B is defined in the probability
space comprised by sample space {0, 1}|B| with uniform
distribution defined on it, and ρ∗B can be expressed as:

ρ∗B = 1− Pr[C[β/B] /∈ S(A)].

But it is obvious that

Pr[C[β/B] /∈ S(A)] = |{β : C[β/B] /∈ S(A)}| · 1/2|B|,

i.e. this is the sum of probabilities assigned to all such β’s
for which C[β/B] /∈ S(A). For probability Pr[πA(T̃B,τ )]
we can write a similar equation:

Pr[πA(T̃B,τ )] = 1− Pr[π×(T̃B,τ )],

where π×(T̃B,τ ) denotes the event comprised of all paths in
T̃B,τ which end with “×”. But the number of such paths is
exactly |{β ∈ {0, 1}|B| : C[β/B] /∈ S(A)}|, and each such
path has length |B| in the tree T̃B,τ and, thus, this path has
probability 1/2|B| in the probability space ΣT̃B,τ

. From the
above, we conclude that the theorem statement holds.

Note that this theorem looks quite surprising: in fact, it
means that the probability Pr[πA(T̃B,τ )] does not depend
on the order τ . At the same time it should be noted that the
number of calls to A during the traversal of a tree T̃B,τ can
be significantly smaller than when we call A on C[β/B] for
each β ∈ {0, 1}|B|.

Another important property of the probability space
ΣT̃B,τ

is that we can naturally associate a computationally
reproducible probabilistic experiment with this space and,
due to this, determine an observable random variable on
ΣT̃B,τ

. Let us establish this fact.
Without loss of generality, consider the order τ : xB

1 ≺
· · · ≺ xB

s on the set B = {xB
1 , . . . , x

B
s }. Let us choose

a value of xB
1 by tossing a fair coin: in this experiment,

Pr[xB
1 = 0] = Pr[xB

1 = 1] = 1/2. A specific value xB
1 = α

corresponds to the choice of a specific branch of the tree
T̃B,τ emanating from the root, that is, its specific full sub-
tree. The root v of this sub-tree is assigned a variable xB

2 .
Let us call the sub-solver A for the formula C[α/xB

1 ], and
if A rejects the corresponding formula, we will carry out a
similar independent experiment at vertex v: we will choose
the value of the variable xB

2 . Let us continue moving along

the tree T̃B,τ in this way until either calling A solves the cor-
responding formula, or there are no variables from B which
are not assigned a value. Since all coin tossing experiments
are independent, an arbitrary path π in the tree T̃B,τ corre-
sponds to the product of the probabilities of single coin toss
experiments carried out on the edges of the tree T̃B,τ that
form the path π. Thus, an arbitrary path π corresponds to the
probability p(β(π)) = 1/2L(π) and, therefore, the described
experiment corresponds to the probability space ΣT̃B,τ

.
Associate with probability space ΣT̃B,τ

a random variable
ξT̃B,τ

: Ω → {0, 1}, which we define as follows. Consider
an arbitrary elementary event from Ω, that is, a path π in
T̃B,τ . We will traverse it (w.r.t. order τ ), calling at each ver-
tex (excluding the root) the sub-solver A. If at some vertex of
π the sub-solver A solves the corresponding CNF formula,
then ξT̃B,τ

(π) = 1, and ξT̃B,τ
(π) = 0 otherwise. Thus,

ξT̃B,τ
is a Bernoulli random variable with success probabil-

ity Pr[πA(T̃B,τ )], and, thus, Pr[πA(T̃B,τ )] = E[ξT̃B,τ
].

One observation of random variable ξT̃B,τ
is the result of

a number of independent fair coin tosses, with a sub-solver
A called after each toss. Thus, the value ξT̃B,τ

is observed
as the outcome of a computationally reproducible proba-
bilistic experiment, and, therefore, the described scheme for
estimating the expectation of random variable using Monte
Carlo sampling is suitable for estimation of E[ξT̃B,τ

].
Let us say several words about how we can seek ρ-

backdoor trees which would be considered as good for solv-
ing SAT for a specific formula. Following (Semenov et al.
2022), we associate with this problem some pseudo-Boolean
fitness function whose value gives some estimation of the
usefulness of the considered ρ-backdoor tree.

When building such a function, we will take into account
the properties of ρ-backdoor trees determined above. First,
note that, by virtue of Theorem 1, the main contribution to
the complexity of finding the smallest backdoor tree is made
by the enumeration of possible orders on a specific set B.
Based on this, in the experiments, at the backdoor search
stage, we used some fixed order on X , which was chosen
before starting the search based on heuristic considerations
(see details in the next section). The second point is the fit-
ness function definition. This function should reflect our de-
cisions about such a tree: we prefer trees over a set B whose
cardinality |B| is small, and whose parameter ρ is close to 1.
Taking this into account, we will consider the minimization
problem for the following function:

FC,A,T̃B,τ
: {0, 1}|X| → R. (7)

Function (7) works as follows. Its input is an arbitrary vec-
tor λB of length |X| that defines the set B: the 1’s in the
vector λB point to variables from X that belong to B; then
on set B the order τ is fixed and the random traversal pro-
cess for tree T̃B,τ described above is started using fair coin
tossing. Traversal of each random path in T̃B,τ corresponds
to one observation of the random variable ξT̃B,τ

. If the set
B has small cardinality (see detail in the experiments de-
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scription), then the tree T̃B,τ is explored completely, and the
exact value of the probability Pr[πA(T̃B,τ )] is calculated.
In other cases, we have an estimate of the said probability
Pr[πA(T̃B,τ )] as the expected value E[ξT̃B,τ

] calculated as a
result of independent observations of ξT̃B,τ

.
We make the following basic assumptions in relation to

function (7): 1) its value must increase with the increase of
s as O(qs) for some q > 1; 2) the larger the difference of
Pr[πA(T̃B,τ )] (or its estimated value) from 1, the more sig-
nificant should be the growth of the function. With that said,
we used the following fitness function:

FC,A,T̃B,τ
= ρ̃T̃B,τ

· 2|B| + (1− ρ̃T̃B,τ
) · 2γ , (8)

where γ > 0 is a parameter (we used γ = 20) and ρ̃T̃B,τ

is the probability Pr[πA(T̃B,τ )] or its estimation. The term
(1 − ρ̃T̃B,τ

) · 2γ is a penalty function (Nocedal and Wright
2006) which rapidly increases when ρ̃T̃B,τ

deviates from 1.

Experiments
In all the experiments we used the Unit Propagation rule
as the polynomial sub-solver. Close to the ideas of (Khalil,
Vaezipoor, and Dilkina 2022), in the experiments when op-
timizing the fitness function (8), we used a reduced search
space, which was built as follows. Recall that we use Unit
Propagation as the polynomial sub-solver, and our goal is to
find a subset B such that it will result in a large portion of
C[β/B] solved by UP. A particular C[β/B] being solved by
UP means that when propagating the values from β assigned
to variables from B, UP derives conflicting literal assign-
ments. Clearly, the more unit literals are propagated when
we assign a value to a variable xi, the greater is the poten-
tial gain from the inclusion of this variable into a backdoor
set. So, if we want to reduce the search space and neverthe-
less be able to find good ρ-backdoor trees, we can use the
greedy strategy. Thus, we choose the top k variables sorted
by the measure computed for xi as the sum of the numbers
of literals propagated by UP for C[0/xi] and C[1/xi]. In all
experiments, we used k = 200. The set X ′ was thus formed
by 200 variables chosen in the aforementioned manner.

The ρ-backdoor trees were built on subsets of X ′, and at
the search stage, a fixed natural tree traversal order τ∗ was
used: that is, the values of variables from X ′ with a large
value of the measure are selected earlier.

The search algorithm for ρ-backdoor trees was imple-
mented in C++1. To optimize the function (8), we used the
(1+1) Fast Evolutionary Algorithm (Doerr et al. 2017) with
parameter β = 3, in which the initial solution consists of one
randomly selected variable from X ′. Calculation of the fit-
ness function is based on a modification of the propagate
function from the Minisat solver (Eén and Sörensson 2004).
This modification consists in the ability to efficiently prop-
agate a set of literals (values of backdoor variables) one by
one, stop when a conflict has been detected, and use the con-
flict information in future UP calls for the considered back-
door.

1https://github.com/ctlab/itmo parsat

Instance |X| ks cd

PvS7,4 1213 392 617
BvP7,6 1558 313 574
BvP8,4 1315 554 1675
BvS7,7 2007 556 901

PHP13,12 156 16967 > 36 h
par9 162 33864 11227
pmg12 190 15734 23047
sgen 150 1127 1751

Table 1: Solving times (in seconds) for the considered CNF
formulas by SAT solvers Kissat (ks) and CaDiCaL (cd)

All experiments were run on a computer with a 32-Core
Intel(R) Xeon(R) 106 CPU @ 1.99 GHz and 128 GB of
RAM. For each considered SAT instance, we ran the search
for ρ-backdoor trees using a time limit of three seconds, uti-
lizing one thread for each run. The use of such a small time
limit is motivated by the need to actually solve the result-
ing hard subproblems C[β/B] /∈ S(A) after they are deter-
mined by the found ρ-backdoor trees. So, in order for the
backdoor-based SAT solving to be competitive against ex-
isting SAT solvers, the search procedure must be fast.

In the search algorithm, for all ρ-backdoor trees with
|B| < 16, the value ρ was calculated exactly, and for larger
backdoors the corresponding random sampling was used
during fitness function evaluation. We used a sample of size
103 in these cases. The number is computed using Chernoff
bounds in a way similar to (Semenov et al. 2022). Ten inde-
pendent runs of the algorithm for each instance were per-
formed, resulting in ten different independent ρ-backdoor
trees. Afterwards, we used a SAT solver to solve the hard
subproblems for each ρ-backdoor tree, and measured the
execution time of the solver. We considered two solvers:
Kissat (Biere 2022) as one of the fastest existing sequen-
tial SAT solvers, and CaDiCaL (Biere 2021) was selected
for comparing with the results from (Semenov et al. 2022).

Data on the instances used in the experiments is shown in
Table 1 (for comparison purposes, we used the instances that
were considered in (Semenov et al. 2022), the instances were
downloaded from the GitHub repository (Pavlenko 2022)).
For each instance, the table shows the number of variables
in the corresponding instance, and the solving times (in sec-
onds) by solvers Kissat (ks) and CaDiCaL (cd).

The main experimental results are presented in Table 2.
The principal measured parameter for each instance and
solver is the decomposition rate rB,M , which in (Semenov
et al. 2022) is calculated for a backdoor B and SAT solver
M as the time used to solve all hard subproblems C[β/B] /∈
S(A) associated with backdoor B divided by the time used
to solve the original formula with solver M . In our experi-
ments, the nominator of the expression for rB,M is supple-
mented with the time used to find the backdoor B (three
seconds); this way, in contrast with (Semenov et al. 2022),
the value rB,M expresses the ratio of the total amount of
work used to solve a formula with the backdoor divided by
the total amount of work for solving the formula without the
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C |B| ρ rB,ks rB,cd

PvS7,4 11.4 0.997± 0.001 0.62± 0.08 0.68± 0.10

BvP7,6 11.4 0.997± 0.001 0.85± 0.12 0.72± 0.11

BvP8,4 11.2 0.997± 0.002 0.87± 0.14 0.71± 0.11

BvS7,7 11.4 0.997± 0.002 0.99± 0.16 0.78± 0.11

PHP13,12 12.0 0.997± 0.000 0.55± 0.00 < 0.36± 0.04

par9 12.2 0.995± 0.004 0.65± 0.02 0.48± 0.04

pmg12 13.4 0.969± 0.014 0.12± 0.01 0.10± 0.01

sgen100
150 13.3 0.978± 0.011 0.29± 0.04 0.21± 0.03

Table 2: Main experimental results

backdoor.
For each SAT instance C, Table 2 shows the average

cardinality |B| of the found backdoors, ρ for these back-
doors in the form (mean ± standard deviation), and the
rates rB,M calculated based on execution times of SAT
solvers Kissat (ks) and CaDiCaL (cd) in the form (mean ±
relative standard deviation) over 10 independently generated
backdoors. Note that cases when rB,M < 1 mean that all
subproblems corresponding to the backdoor are sequentially
solved faster than with the SAT solver M .

The decomposition rates for backdoors found by our algo-
rithm are well in line with the results reported in (Semenov
et al. 2022) for CaDiCaL, but with an important difference:
the time used by our algorithm for finding the backdoor was
3 s (using one thread), whereas the approach from (Semenov
et al. 2022) required 0.5–6 h using 16 threads.

Finally, consider the plots in Fig. 2. For each formula, we
took one backdoor T̃B,τ found for some fixed τ = τ∗, and
calculated the size of the subtree explored when calculating
the value of ρB ; this value was divided by the total num-
ber of vertices in T̃B,τ , which is 2s+1 − 1, where s = |B|.
The value of this ratio for τ∗ is depicted with a red dot for
each formula. In addition, we sampled 100 different orders
τ ̸= τ∗, measured this ratio for each such order, and plot-
ted the results in the form of a boxplot. Thus, the plot for
each formula demonstrates the influence of a specific order
τ on the efficiency of evaluating ρB . From the figure, we
see that the specific heuristic order τ∗ that we used in the
experiments most often gives good results, allowing to ex-
plore only a small portion of the whole tree. As a last re-
mark, the explored backdoor tree size ratios for backdoor
trees mentioned in Table 2 are below 0.01 for all instances
except sgen100

150 and pmg12, for which the mean ratios are
0.014 and 0.035 correspondingly.

Conclusion
In this paper, we explored backdoor trees for SAT and found
a number of their features that do not appear to have been
previously published. We introduced a probabilistic gener-
alization of backdoor trees (ρ-backdoor trees) and estab-
lished a number of their basic properties, including their
relationship to the corresponding ρ-backdoor sets. We also
described a practically efficient algorithm for finding small
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Figure 2: Ratios of explored size of the backdoor trees

ρ-backdoor trees, and showed that the use of these trees in
some cases significantly reduces the running time of the SAT
solver.

The main practical contribution of this paper is that the
proposed algorithm and its implementation are so efficient,
that the concept of backdoors is deemed as close as never
before to be practically applicable to general SAT solving.
Indeed, one may envisage a parallel/cloud SAT solver that
would quickly search for some ρ-backdoor trees, and then
solve the corresponding hard subproblems in parallel.
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