Generalized Confidence Constraints

Authors

  • Guillaume Perez Huawei Technologies France
  • Steve Malalel Université Côte d'Azur
  • Gael Glorian Huawei Technologies France
  • Victor Jung Université Côte d'Azur
  • Alexandre Papadopoulos Huawei Technologies France
  • Marie Pelleau Université Côte d'Azur
  • Wijnand Suijlen Huawei Technologies France
  • Jean-Charles Régin Université Côte d'Azur
  • Arnaud Lallouet Huawei Technologies France

DOI:

https://doi.org/10.1609/aaai.v37i4.25523

Keywords:

CSO: Constraint Programming, CSO: Constraint Optimization, CSO: Constraint Satisfaction, CSO: Mixed Discrete/Continuous Optimization, RU: Probabilistic Programming, RU: Stochastic Optimization

Abstract

In robust optimization, finding a solution that solely respects the constraints is not enough. Usually, the uncertainty and unknown parameters of the model are represented by random variables. In such conditions, a good solution is a solution robust to most-likely assignments of these random variables. Recently, the Confidence constraint has been introduced by Mercier-Aubin et al. in order to enforce this type of robustness in constraint programming. Unfortunately, it is restricted to a conjunction of binary inequalities In this paper, we generalize the Confidence constraint to any constraint and propose an implementation based on Multi-valued Decision Diagrams (MDDs). The Confidence constraint is defined over a vector of random variables. For a given constraint C, and given a threshold, the Confidence constraint ensures that the probability for C to be satisfied by a sample of the random variables is greater than the threshold. We propose to use MDDs to represent the constraints on the random variables. MDDs are an efficient tool for representing combinatorial constraints, thanks to their exponential compression power. Here, both random and decision variables are stored in the MDD, and propagation rules are proposed for removing values of decision variables that cannot lead to robust solutions. Furthermore, for several constraints, we show that decision variables can be omitted from the MDD because lighter filtering algorithms are sufficient. This leads to gain an exponential factor in the MDD size. The experimental results obtained on a chemical deliveries problem in factories – where the chemicals consumption are uncertain – shows the efficiency of the proposed approach.

Downloads

Published

2023-06-26

How to Cite

Perez, G., Malalel, S., Glorian, G., Jung, V., Papadopoulos, A., Pelleau, M., Suijlen, W., Régin, J.-C., & Lallouet, A. (2023). Generalized Confidence Constraints. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4), 4078-4086. https://doi.org/10.1609/aaai.v37i4.25523

Issue

Section

AAAI Technical Track on Constraint Satisfaction and Optimization