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Abstract

Model counting is a fundamental problem which has been in-
fluential in many applications, from artificial intelligence to
formal verification. Due to the intrinsic hardness of model
counting, approximate techniques have been developed to
solve real-world instances of model counting. This paper de-
signs a new anytime approach called PartialKC for approxi-
mate model counting. The idea is a form of partial knowledge
compilation to provide an unbiased estimate of the model
count which can converge to the exact count. Our empiri-
cal analysis demonstrates that PartialKC achieves significant
scalability and accuracy over prior state-of-the-art approxi-
mate counters, including satss and STS. Interestingly, the em-
pirical results show that PartialKC reaches convergence for
many instances and therefore provides exact model counting
performance comparable to state-of-the-art exact counters.

1 Introduction
Given a propositional formula φ, the model counting prob-
lem (#SAT) is to compute the number of satisfying as-
signments of φ. Model counting is a fundamental prob-
lem in computer science which has a wide variety of
applications in practice, ranging from probabilistic infer-
ence (Roth 1996; Chavira and Darwiche 2008), probabilistic
databases (Van den Broeck and Suciu 2017), probabilistic
programming (Fierens et al. 2015), neural network verifica-
tion (Baluta et al. 2019), network reliability (Dueñas-Osorio
et al. 2017), computational biology (Sashittal and El-Kebir
2019), and the like. The applications benefit significantly
from efficient propositional model counters.

In his seminal work, Valiant (1979) showed that model
counting is #P-complete, where #P is the set of counting
problems associated with NP decision problems. Theoreti-
cal investigations of #P have led to the discovery of strong
evidence for its hardness. In particular, Toda (1989) showed
that PH ⊆ P#P , i.e. each problem in the polynomial hierar-
chy can be solved with just one call to a #P oracle. Although
there has been large improvements in the scalability of prac-
tical exact model counters, the issue of hardness is intrinsic.
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As a result, researchers have studied approximate techniques
to solve real-world instances of model counting.

The current state-of-the-art approximate counting tech-
niques can be categorized into three classes based on the
guarantees over estimates (Chakraborty, Meel, and Vardi
2013). Let φ be a formula with Z models. A counter in the
first class is parameterized by (ε, δ), and computes a model
count of φ that lies in the interval [(1+ε)−1Z, (1+ε)Z] with
confidence at least 1 − δ. ApproxMC (Chakraborty, Meel,
and Vardi 2013, 2016) is a well-known counter in the first
class. A counter in the second class is parameterized by δ,
and computes a lower (or upper) bound ofZ with confidence
at least 1− δ including tools such as MBound (Gomes, Sab-
harwal, and Selman 2006) and SampleCount (Gomes et al.
2007). Counters in the third class provide weaker guaran-
tees, but offer relatively accurate approximations in prac-
tice and state-of-the-art counters include satss (Gogate and
Dechter 2011) and STS (Ermon, Gomes, and Selman 2012).
We remark that some counters in the third class can be con-
verted into a counter in the second class. Despite significant
efforts in the development of approximate counters over the
past decade, scalability remains a major challenge.

In this paper, we focus on the third class of counters to
achieve scalability. To this end, it is worth remarking that
a well-known problem for this class of approximate model
counters is slow convergence. Indeed, in our experiments,
we found satss and STS do not converge in more than one
hour of CPU time for many instances, whereas an exact
model counter can solve those instances in several minutes
of CPU time. We seek to remedy this. Firstly, we notice that
each sample generated by a model counter in the third class
represents a set of models of the original CNF formula. Sec-
ondly, we make use of knowledge compilation techniques to
accelerate the convergences. Since knowledge compilation
languages can often be seen as a compact representation of
the model set of the original formula; we infer the conver-
gence of the approximate counting by observing whether a
full compilation is reached. By storing the existing samples
into a compiled form, we can also speed up the subsequent
sampling by querying the current stored representation.

We generalize a recently proposed language called CCDD
(Lai, Meel, and Yap 2021), which was shown to support ef-
ficient exact model counting, to represent the existing sam-
ples. The new representation, partial CCDD, adds two new
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types of nodes called known or unknown respectfully repre-
senting, (i) a sub-formula whose model count is known; and
(ii) a sub-formula which is not explored yet. We present an
algorithm, PartialKC, to generate a random partial CCDD
that provides an unbiased estimate of the true model count.
PartialKC has two desirable properties for an approximate
counter: (i) it is an anytime algorithm; (ii) it can eventually
converge to the exact count. Our empirical analysis demon-
strates that PartialKC achieves significant scalability as well
as accuracy over prior state of the art approximate counters,
including satss and STS.

The rest of the paper is organized as follows: We present
notations, preliminaries, and related work in Sections 2–3.
We introduce partial CCDD in Section 4. In Section 5, we
present the model counter, PartialKC. Section 6 gives de-
tailed experiments, and Section 7 concludes.

2 Notations and Background
In a formula or the representations discussed, x denotes a
propositional variable, and literal l is a variable x or its
negation ¬x, where var(l) denotes the variable. PV =
{x0, x1, . . . , xn, . . .} denotes a set of propositional vari-
ables. A formula is constructed from constants true , false ,
and propositional variables using the negation (¬), conjunc-
tion (∧), disjunction (∨), and equality (↔) operators. A
clause C is a set of literals representing their disjunction. A
formula in conjunctive normal form (CNF) is a set of clauses
representing their conjunction. Given a formula φ, a variable
x, and a constant b, a substitution φ[x 7→ b] is a transformed
formula by replacing x with b in φ. An assignment ω over
a variable set X is a mapping from X to {true, false}. The
set of all assignments over X is denoted by 2X . A model of
φ is an assignment over Vars(φ) that satisfies φ; that is, the
substitution of φ on the model equals true . Given a formula
φ, we use Z(φ) to denote the number of models, and the
problem of model counting is to compute Z(φ).

Sampling-Based Approximate Model Counting Due to
the hardness of exact model counting, sampling is a useful
technique to estimate the count of a given formula. Since it
is often hard to directly sample from the distribution over
the model set of the given formula, we can use importance
sampling to estimate the model count (Gogate and Dechter
2011, 2012). The main idea of importance sampling is to
generate samples from another easy-to-simulate distribution
Q called the proposal distribution. Let Q be a proposal
distribution over Vars(φ) satisfying that Q(ω) > 0 for
each model ω of φ. Assume that 0 divided by 0 equals 0,
and therefore Z(φ) = EQ

[
Z(φ|ω)
Q(ω)

]
. For a set of samples

ω1, . . . , ωN , ẐN = 1
N

∑N
i=1

Z(φ|ωi
)

Q(ωi)
is an unbiased estima-

tor of Z(φ); that is, EQ[ẐN ] = Z(φ). Similarly, a func-
tion Z̃N is an asymptotically unbiased estimator of Z(φ) if
limN→∞ EQ[Z̃N ] = Z(φ). It is obvious that each unbiased
estimator is asymptotically unbiased.

Knowledge Compilation In this work, we will concern
ourselves with the subsets of Negation Normal Form (NNF)
wherein the internal nodes are labeled with conjunction (∧)

or disjunction (∨) while the leaf nodes are labeled with ⊥
(false), ⊤ (true), or a literal. For a node v, we use sym(v)
to denote the labeled symbol, and Ch(v) to denote the set of
its children. We also use ϑ(v) and Vars(v) denote the for-
mula represented by the DAG rooted at v, and the variables
that label the descendants of v, respectively. We define the
well-known decomposed conjunction (Darwiche and Mar-
quis 2002) as follows:
Definition 1. A conjunction node v is called a decomposed
conjunction if its children (also known as conjuncts of v) do
not share variables. That is, for each pair of children w and
w′ of v, we have Vars(w) ∩Vars(w′) = ∅.

If each conjunction node is decomposed, we say the for-
mula is in Decomposable NNF (DNNF) (Darwiche 2001).
DNNF does not support tractable model counting, but the
following subset does:
Definition 2. A disjunction node v is called deterministic if
each two disjuncts of v are logically contradictory. That is,
any two different children w and w′ of v satisfy that ϑ(w)∧
ϑ(w′) |= false.

If each disjunction node of a DNNF formula is deter-
ministic, we say the formula is in deterministic DNNF
(d-DNNF). Binary decision is a practical property to im-
pose determinism in the design of a compiler (see e.g.,
D4 (Lagniez and Marquis 2017)). Essentially, each decision
node with one variable x and two children is equivalent to
a disjunction node of the form (¬x ∧ φ) ∨ (x ∧ ψ), where
φ, ψ represent the formulas corresponding to the children.
If each disjunction node is a decision node, the formula is
in Decision-DNNF. Each Decision-DNNF formula satisfies
the read-once property: each decision variable appears at
most once on a path from the root to a leaf.

Recently, a new type of conjunctive nodes called kernel-
ized was introduced (Lai, Meel, and Yap 2021). Given two
literals l and l′, we use l ↔ l′ to denote literal equiva-
lence of l and l′. Given a set of literal equivalences E, let
E′ = {l ↔ l′,¬l ↔ ¬l′ | l ↔ l′ ∈ E}; and then we define
semantic closure of E, denoted by ⌈E⌉, as the equivalence
closure of E′. Now for every literal l under ⌈E⌉, let [l] de-
note the equivalence class of l. GivenE, a unique equivalent
representation ofE, denoted by ⌊E⌋ and called prime literal
equivalences, is defined as follows:

⌊E⌋ =
⋃

x∈PV ,min≺[x]=x

{x↔ l | l ∈ [x], l ̸= x}

where min≺[x] is the minimum variable appearing in [x]
over the lexicographic order ≺.
Definition 3. A kernelized conjunction node v is a conjunc-
tion node consisting of a distinguished child, we call the core
child, denoted by chcore(v), and a set of remaining children
which define equivalences, denoted byChrem(v), such that:

(a) Every wi ∈ Chrem(v) describes a literal equivalence,
i.e., wi = ⟨x ↔ l⟩ and the union of ϑ(wi), denoted by
Ev , represents a set of prime literal equivalences.

(b) For each literal equivalence x ↔ l ∈ Ev , var(l) /∈
Vars(chcore(v)).

We use ∧d and ∧k to denote decomposed and kernel-
ized conjunctions respectively. A Constrained Conjunction
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& Decision Diagram (CCDD) consists of decision nodes,
conjunction nodes, and leaf nodes where each decision vari-
able appears at most once on each path from the root to a
leaf, and each conjunction node is either decomposed or ker-
nelized. Figure 1 depicts a CCDD. Lai et al. (2021) showed
that CCDD supports model counting in linear time.

∧d ∧k

x1

x2

x6

x4

⊤⊥

x5x5

x2

⊥ ⊤x7

⊤ ⊥

x3

x4x5

Figure 1: An illustrated CCDD

3 Related Work
The related work can be viewed along two directions:
(1) work related to importance sampling for graphical mod-
els; and (2) work related to approximate compilation for
propositional formula. While this work focuses on anytime
approximate model counting, we highlight a line of work in
the first category, namely, the design of efficient hashing-
based approximate model counters that seek to provide
long line of work in the design of efficient hashing-based
approximate model counters that seek to provide (ε, δ)-
guarantees (Stockmeyer 1983; Gomes, Sabharwal, and Sel-
man 2006; Chakraborty, Meel, and Vardi 2013, 2016; Soos
and Meel 2019; Soos, Gocht, and Meel 2020).

The most related work in the first direction is Sample-
Search (Gogate and Dechter 2011, 2012). For many KC
(knowledge compilation) languages, each model of a for-
mula can be seen a particle of the corresponding compiled
result. SampleSearch used the generated models (i.e., sam-
ples) to construct an AND/OR sample graph, which can be
used to estimate the model count of a CNF formula. Each
AND/OR sample graph can be treated as a partial com-
piled result in AOBDD (binary version of AND/OR Multi-
Valued Decision Diagram (Mateescu, Dechter, and Mari-
nescu 2008)). They showed that the estimate variance of the
partial AOBDD is smaller than that of the mean of samples.
Our PartialKC approach has three main differences from
SampleSearch. First, the SampleSearch approach envisages
an independent generation of each sample, while the KC
technologies used in PartialKC can accelerate the sampling
(and thus the convergence), which we experimentally veri-
fied. Second, the decomposition used by the partial AOBDD
in SampleSearch is static, while the one in PartialKC is dy-
namic. Results from the KC literature generally suggest that
dynamic decomposition is more effective than a static one
(Muise et al. 2012; Lagniez and Marquis 2017). Finally, our
KC approach allows to determine if convergence is reached;
but SampleSearch does not.

The related work in the second direction is referred to as
approximate KC. Given a propositional formula and a range
of weighting functions, Venturini and Provan (Venturini
and Provan 2008) proposed two incremental approximate
algorithms respectively for prime implicants and DNNF,
which selectively compile all solutions exceeding a partic-
ular threshold. Their empirical analysis showed that these
algorithms enable space reductions of several orders-of-
magnitude over the full compilation. Intrinsically, partial KC
is a type of approximate KC that still admits exactly rea-
soning to some extent (see Proposition 1). The output of
PartialKC can be used to compute an unbiased estimate of
model count, while the approximate DNNF compilation al-
gorithm from Venturini and Provan only computes a lower
bound of the model count. Some bottom-up compilation
algorithms of OBDD (Bryant 1986) and SDD (Darwiche
2011) also perform compilation in an incremental fashion
by using the operator APPLY. However, the OBDD and
SDD packages (Somenzi 2015; Choi and Darwiche 2013)
do not overcome the size explosion problem of full KC, be-
cause the sizes of intermediate results can be significantly
larger than the final compilation result (Huang and Darwiche
2004). Thus, Friedman and Van den Broeck (2018) proposed
an approximate inference algorithm, collapsed compilation,
for discrete probabilistic graphical models. The differences
between PartialKC and collapsed compilation are as fol-
lows: (i) collapsed compilation works in a bottom-up fashion
while PartialKC works top-down; (ii) collapsed compilation
is asymptotically unbiased while PartialKC is unbiased; and
(iii) collapsed compilation does not support model counting
so far.

4 Partial CCDD
In this section, we will define a new representation called
partial CCDD, used for approximate model counting. For
convenience, we call the standard CCDD full.
Definition 4 (Partial CCDD). Partial CCDD is a general-
ization of full CCDD, adding two new types of leaf nodes
labeled with ‘?’ or a number, which are the unknown and
known nodes, respectively. Each edge from a decision node
v is labeled by a pair ⟨pb(v), fb(v)⟩ giving the estimated
marginal probability and visit frequency, where b = 0 (resp.
1) means the edge is dashed (resp. solid). For a decision node
v, p0(v) + p1(v) = 1; pb(v) = 0 iff sym(chb(v)) = ⊥; and
fb(v) = 0 iff sym(chb(v)) =?.

Hereafter, we use ⟨?⟩ to denote an unknown node. For
convenience, we require that each conjunctive node can-
not have any unknown child. For simplicity, we some-
times use f(w) and p(w) to denote ⟨f0(w), f1(w)⟩ and
⟨p0(w), p1(w)⟩, respectively, for each decision node w. For
a partial CCDD node v, we denote the DAG rooted at v
by Dv . We now establish a part-whole relationship between
partial and full CCDDs:
Definition 5. Let u and u′ be partial and full CCDD nodes,
respectively, from the same formula. Du is a part of Du′ iff
one of the following conditions holds:
(a) u is an unknown node;
(b) u = ⟨⊥⟩ or ⟨⊤⟩, and u′ = u;

4027



(c) u is a known node, and sym(u) equals the model count
of u′;

(d) u = ⟨x, ch0(u), ch1(u)⟩, sym(u′) = x, and the partial
CCDDs rooted at ch0(u) and ch1(u) are parts of the full
CCDDs rooted at ch0(u′) and ch1(u′), respectively;

(e) u = ⟨∧d, Ch(u
′)⟩, sym(u′) = ∧d, |Ch(u)| =

|Ch(u′)|, and each partial CCDD rooted at a child of
u is exactly a part of one full CCDD rooted at a child of
u′; or

(f) u = ⟨∧k, chcore(u), Chrem(u)⟩, sym(u′) = ∧k,
Chrem(u) = Chrem(u′), and the partial CCDD rooted
at chcore(u) is a part of the full CCDD rooted at
chcore(u

′).

Figure 2 shows two different partial CCDDs from the full
CCDD in Figure 1 which can be generated by MICROKC
given later in Algorithm 2. Given a partial CCDD rooted at u
that is a part of full CCDD rooted at u′, the above definition
establishes a mapping from the nodes of Du to those of Du′ .

∧k

x1

x2

x5x5

x2

⊥ ⊤

5, 0 5, 1

6, 1 4, 0

(a)

∧d ∧k

x1

x5x5

x2

⊥ ⊤

x3

5, 1 5, 1

4, 0 6, 1

80
50 4045

(b)

Figure 2: two partial CCDDs

A full CCDD can be seen as a compact representation for
the model set corresponding to the original knowledge base.
We can use a part of the full CCDD to estimate its model
count. Firstly, a partial CCDD can be used to compute de-
terministic lower and upper bounds of the model count, re-
spectively:

Proposition 1. Let u and u′ be, respectively, a partial
CCDD node and a full CCDD node overX such that Du is a
part of Du′ . For each unknown node v in Du corresponding
to v′ in Du′ under the part-whole mapping, we assume that
we have computed an estimate Z̃(v) that is a lower (resp.
upper) bound Z(v′). A lower (resp. upper) bound of Z(u′)
can be recursively computed in linear time:

Z̃(u) =



0 sym(u) = ⊥
2|X| sym(u) = ⊤
sym(u) sym(u) ∈ N
c−1 ·

∏
v∈Ch(u) Z̃(v) sym(u) = ∧d

Z̃(chcore(u))

2|Ch(u)|−1
sym(u) = ∧k

Z̃(ch0(u)) + Z̃(ch1(u))

2
sym(u) ∈ X

(1)

where c = 2(|Ch(u)|−1)·|X|.

We remark that we must compute lower or upper bound
for each unknown node before applying Eq. (1). In practice,
for example, we can compute lower and upper bounds of the
model count of an unknown node as 0 and 2|X|, respectively.
However, we mainly aim at computing an unbiased estimate
of the model count. We will use a randomly generated par-
tial CCDD to compute an unbiased estimate of the model
count of the corresponding full CCDD. The main difference
between the new computation and the one in Eq. (1) is at the
estimation on decision nodes. Given a randomly generated
partial CCDD rooted at u, the new estimate of the model
count can be computed recursively in linear time:

Ẑ(u) =



0 sym(u) = ⊥
2|X| sym(u) = ⊤
sym(u) sym(u) ∈ N
c−1 ·

∏
v∈Ch(u) Ẑ(v) sym(u) = ∧d

Ẑ(chcore(u))

2|Ch(u)|−1
sym(u) = ∧k

Ẑ(ch0(u)) · f0(u)
2p0(u) · (f0(u) + f1(u))

+

Ẑ(ch1(u)) · f1(u)
2p1(u) · (f0(u) + f1(u))

sym(u) ∈ X

(2)
where c = 2(|Ch(u)|−1)·|X|. We remark that for each deci-
sion node u with one unknown child v, the visit frequency
fb(u) on the edge from u to v is 0. Thus, Ẑ(v) ·fb(u) always
equals zero in the decision case of Eq. (2).

Example 1. Consider the partial CCDD in Figure 2b. We
denote the root by u and the decision child of ch0(u) by v.

Ẑ(v) =
?× 0

2× 0.4× 1
+

96× 1

2× 0.6× 1
= 80;

Ẑ(ch0(u)) = 2−1×7 × Ẑ(v)× 80 = 50;

Ẑ(ch1(u)) =
Ẑ(chcore(ch0(u)))

21
= 40;

Ẑ(u) =
Ẑ(ch0(u))× 1

2× 0.5× 2
+
Ẑ(ch1(u))× 1

2× 0.5× 2
= 45.

5 PartialKC: An Anytime Model Counter
We aim to estimate model counts for CNF formulas that
cannot be solved within time and space limits for exact
model counters. Our approach is to directly generate a ran-
domly partial CCDD formula from the CNF formula rather
than from an equivalent full CCDD. This is achieved with
PartialKC given in Algorithm 1, which compiles a CNF for-
mula into a partial CCDD.

PartialKC calls MICROKC in Algorithm 2 multiple times
in a given timeout t. We use a hash table called Cache
to store the current compiled result implicitly. Each call of
MICROKC updates Cache , implicitly enlarging the current
compiled result rooted at Cache(φ). PartialKC reaches con-
vergence in line 5 when the root of the resulting partial
CCDD is fully computed, making the count exact. In lines
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6–11, we will restart the compilation if we are close to mem-
ory limit. Thus, PartialKC is an anytime algorithm. Consider
that the execution of PartialKC restarts compilation k times,
so PartialKC will generate k + 1 Partial CCDDs with roots
v0, . . . , vk. Let Ẑ0, . . . , Ẑk be the counts computed on the
roots. We also assume that we call MicroKCNi times in Par-
tialKC for generating the Partial CCDD rooted at vi. Then
(N0×Z0)+···+(Nk×Zk)

N0+···+Nk
is a proper estimate of the true count.

Then in line 7 in Algorithm 1, N = N0 + · · · + Ni,M =

N0 + · · · + Ni−1, and Ẑ = (N0×Ẑ0)+···+(Nk×Ẑk−1)
M . After

line 8, Ẑ = (N0×Z0)+···+(Nk×Ẑk)
N .

Algorithm 1: PartialKC(φ, t)
1 N ←M ← Z ← 0
2 while running time does not exceed to t do
3 N ← N + 1
4 MICROKC(φ)
5 if Cache(φ) is known then return sym(Cache(φ))
6 if close to memory limit then
7 v ← Cache(φ)

8 Z = M·Z+(N−M)·Ẑ(v)
N

9 M ← N
10 Clear Cache
11 end
12 end
13 v ← Cache(φ)

14 return M·Z+(N−M)·Ẑ(v)
N

We estimate the hardness of the input CNF formula in
line 3 in MICROKC, and if it is easy, we will obtain a
known node by calling an exact model counter, ExactMC
(Lai, Meel, and Yap 2021) which uses a full CCDD. In lines
4–29, we deal with the case of the initial call of MICROKC
on φ. We try to kernelize in lines 5–13. Otherwise, we de-
compose φ into a set of sub-formulas without shared vari-
ables in line 14. In lines 16–17, we deal with the case where
φ is decomposable, and call MICROKC recursively for each
sub-formula.

Otherwise, we deal with the case where φ is not decom-
posable in lines 19–27. We introduce a decision node u
labeled with a variable x from Vars(φ). We estimate the
marginal probability of φ over x in line 20 and sample a
Boolean value b with this probability in the next line. We
remark that the variance of our model counting method de-
pends on the accuracy of the marginal probability estimate,
discussed further in Section 5.1. Then we generate the chil-
dren of u, updating the probability and frequency.

We deal with the case of repeated calls of MICROKC on φ
in lines 30–44. The inverse function Cache−1(v) of Cache
is used for finding formula φ such that Cache(φ) = v.

Example 2. We run PartialKC on the formula φ = (x1 ∨
x3 ∨ x5 ∨ ¬x7) ∧ (x4 ∨ x6) ∧ (¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨
x5)∧(¬x1∨x2∨¬x5). For simplicity, we assume that PICK-
GOODVAR chooses the variable with the minimum subscript
and EASYINSTANCE returns true when the formula has less
than three variables. For the first call of MICROKC(φ), the

Algorithm 2: MICROKC(φ)
1 if φ = false then return ⟨⊥⟩
2 if φ = true then return ⟨⊤⟩
3 if EASYINSTANCE(φ) then return ⟨ExactMC(φ)⟩
4 if Cache(φ) = nil then
5 if SHOULDKERNELIZE(φ) then
6 E ← DETECTLITEQU(φ)
7 if |⌊E⌋| > 0 then
8 ψ ← CONSTRUCTCORE(φ, ⌊E⌋)
9 v ← MICROKC(ψ)

10 V ← {⟨x↔ l⟩ | x↔ l ∈ ⌊E⌋}
11 return Cache(φ)← ⟨∧k, {v} ∪ V ⟩
12 end
13 end
14 Ψ← DECOMPOSE(φ)
15 if |Ψ| > 1 then
16 V ← {MICROKC(ψ) | ψ ∈ Ψ}
17 return Cache(φ)← ⟨∧d, V ⟩
18 else
19 x← PICKGOODVAR(φ)
20 p← MARGPROB(φ, x)
21 b ∼ Bernoulli(p)
22 Create a decision node u with sym(u) = x
23 chb(u)← MICROKC(φ[x 7→ b])
24 ch1−b(u)← ⟨?⟩
25 p0(u)← 1− p; p1(u)← p
26 fb(u)← 1; f1−b(u)← 0
27 return Cache(φ)← u
28 end
29 end
30 v ← Cache(φ)
31 if v is a known node then return v
32 else if v is kernelized then
33 chcore(v)← MICROKC(Cache−1(chcore(v)))
34 else if v is decomposed then
35 Ch(v)← {MICROKC(Cache−1(w)) | w ∈ Ch(v)}
36 else
37 b ∼ Bernoulli(p1(v))
38 fb(v)← fb(v) + 1
39 chb(v)← MICROKC(φ[sym(v) 7→ b])
40 end
41 if v has no unknown descendants then
42 Let c be the model count of v
43 return Cache(φ)← ⟨c⟩
44 else return Cache(φ)← v

condition in line 4 is satisfied. We assume that the marginal
probability of φ over x1 is estimated as 0.5 and 1 is sampled
in line 21. Then MICROKC(φ1) is recursively called, where
φ1 = (x4 ∨ x6) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ x5) ∧ (x2 ∨ ¬x5).
We kernelize φ1 as φ2 = (x4 ∨ x6) ∧ (¬x2 ∨ x4) and
then invoke MICROKC(φ2). Similarly, the condition in 4 is
satisfied. We assume that the estimated marginal probabil-
ity of φ2 over x2 is 0.4 and 0 is sampled in line 21. Then
MICROKC(φ3) is recursively called, where φ3 = x4 ∨ x6,
and we call ExactMC(φ3) to get a count 96. Finally, the par-
tial CCDD in Figure 2a is returned. For the second call of
MICROKC(φ), the condition in line 4 is not satisfied. We
get the stored marginal probability of φ over x1 and assume
that 0 is sampled in line 37. Then MICROKC is recursively
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called on φ4 = (x3∨x5∨¬x7)∧(x4∨x6)∧(¬x2∨x4), and
then MICROKC is recursively called on φ5 = x3∨x5∨¬x7
and φ2 = (x4 ∨ x6) ∧ (¬x2 ∨ x4). Finally, we generate the
partial CCDD in Figure 2b.

Proposition 2. Given a CNF formula φ and a timeout set-
ting t, the output of PartialKC(φ, t) is an unbiased estimate
of the model count of φ.

Proof. If PartialKC restarts the compilation, it finally re-
turns the average estimate. Thus, we just need to show when
the compilation is not restarted, PartialKC outputs an unbi-
ased estimate of the true count.

Given the input φ, we denote all of the inputs of recur-
sively calls of MICROKC as a sequence S = (φ1, . . . , φn =
φ) in a bottom-up way in the call of PartialKC(φ, t). Let
N be the final number of calls of MICROKC on φ, and let
Z(φi) be the true model count φi.

We first prove the case N = 1 by induction with the
hypothesis that the call of MICROKC(ψ) returns an un-
biased estimate of the model count of ψ if |Vars(ψ)| <
|Vars(φn)|. Thus, the calls of MICROKC on φ1, . . . , φn−1

return unbiased estimates of the model counts, and the re-
sults are stored in Cache. We denote the output of MI-
CROKC(φi) by ui. The cases when MICROKC returns a
leaf node is obvious. We proceed by a case analysis (the
equations about true counts can be found in the proofs of
Propositions 1–2 in (Lai, Meel, and Yap 2021)):
(a) E ̸= ∅ in line 6: The input of the recursive call is φn−1.

According to the induction hypothesis, E[Ẑ(v)] =

Z(φn−1). Thus, E[Ẑ(un)] =
Z(φn−1)

2|Ch(u)|−1
= Z(φn) .

(b) |Ψ| = m > 1 in line 15: The input of the recursive
calls are φn−m, . . . , φn−1. According to the induction
hypothesis, E[Ẑ(ui)] = Z(φi) (n −m ≤ i ≤ n − 1).
Due to the conditional independence, E[Ẑ(un)] = c−1 ·∏n−1

i=n−m E[Ẑ(ui)] = c−1 ·
∏n−1

i=n−m Z(φi) = Z(φn).
(c) |Ψ| = 1 in line 15. The input of the recursive call is

φn−1 = φn[x 7→ false] with the probability p0(u),
and φn−1 = φn[x 7→ true] with the probability p1(u).
Z(φn) =

1
2 ·(Z(φn[x 7→ false])+Z(φn[x 7→ true])).

E[Ẑ(u)] =
E[Ẑ(ch0(u))] · f0(u)

2p0(u) · (f0(u) + f1(u))
· p0(u)+

E[Ẑ(ch1(u))] · f1(u)
2p1(u) · (f0(u) + f1(u))

· p1(u)

=
1

2
·
(
E[Ẑ(ch0(u))] + E[Ẑ(ch1(u))]

)
= Z(φn).

We can also prove the case N > 1 by induction. We call
MICROKC on the same formula at most N times; in other
words, each formula in S at most N times. It is assumed
that the M -th call of MICROKC(ψ) returns an unbiased es-
timate of the model count of ψ if |Vars(ψ)| < |Vars(φn)|
or M < N . Then the proof for this case is similar to the
case N = 1 except the decision case and the known case.
When it returns a known node in lines 42–43, we can get

the exact count. Now we prove the decision case. For conve-
nience, we denote the returned node by u. The value of f(u)
is independent from what are the children of u. We have
E[ f0(u)N ] = p0(u) and E[ f1(u)N ] = p1(u). From the decision
case of Eq. (2), we have the following equation:

E[Ẑ(u)] =
E[Ẑ(ch0(u))] · E[f0(u)]

2p0(u) ·N
+

E[Ẑ(ch1(u))] · E[f1(v)]
2p1(u) ·N

+

=
1

2
·
(
E[Ẑ(ch0(u))] + E[Ẑ(ch1(u))]

)
= Z(φn).

As we get an unbiased estimate of the exact count, proba-
bilistic lower bounds can be obtained by Markov’s inequal-
ity (Wei and Selman 2005; Gomes et al. 2007).

5.1 Implementation
We implemented PartialKC in the toolbox KCBox.1 For
the details of functions DECOMPOSE, PICKGOODVAR,
SHOULDKERNELIZE, CONSTRUCTCORE and ExactMC,
we refer the reader to ExactMC (Lai, Meel, and Yap 2021).
In the function EASYINSTANCE, we rely on the number of
variables as a proxy for the hardness of a formula, in partic-
ular at each level of recursion, we classify a formula φ to be
easy if |Vars(φ)| ≤ easy bound . We define easy bound as
the minimum of 512 and easy param:

easy param =


3
4 ·#NonUnitVars width ≤ 32
2
3 ·#NonUnitVars 32 < width ≤ 64
1
2 ·#NonUnitVars otherwise

where #NonUnitVars is the number of variables appearing
in the non-unit clauses of the original formula, and width is
the minfill treewidth (Darwiche 2009).

MICROKC can be seen as a sampling procedure enhanced
with KC technologies, and the variance of the estimated
count depends on three main factors. First, the variance de-
pends on the quality of predicting marginal probability. Sec-
ond, the variance of a single calling of MICROKC depends
on the number of sampling Boolean values in lines 21 and
37. The fewer the samples from the Bernoulli distributions,
the smaller the variance. Finally, the variance depends on the
number of MICROKC calls when fixing their total time. We
sketch four KC technologies for reducing the variance.

The first technology is how to implement MARGPROB.
Without consideration of the dynamic decomposition and
kernelization, each call of MICROKC can be seen as a pro-
cess of importance sampling, where the resulting partial
CCDD is treated as the proposal distribution. Similar to im-
portance sampling, it is easy to see that the variance of using
PartialKC to estimate model count depends on the quality
of estimating the marginal probability in line 20. If the esti-
mated marginal probability equals the true one, PartialKC

1KCBox is available at: https://github.com/meelgroup/KCBox
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Algorithm 3: PROJECTEDKC(φ, P )
1 if φ = false then return ⟨⊥⟩
2 if φ = true then return ⟨⊤⟩
3 if ProjCache(φ) ̸= nil then return ProjCache(φ)
4 Ψ← DECOMPOSE(φ)
5 if |Ψ| > 1 then
6 W ← {PROJECTEDKC(ψ, P ) | ψ ∈ Ψ}
7 return ProjCache(φ)← ⟨∧d,W ⟩
8 else
9 if Vars(φ) ∩ P = ∅ then

10 if φ is satisfiable then return ⟨⊤⟩
11 else return ⟨⊥⟩
12 end
13 x← PICKGOODVAR(φ, P )
14 w0 ← PROJECTEDKC(φ[x 7→ false], P )
15 w1 ← PROJECTEDKC(φ[x 7→ true], P )
16 return ProjCache(φ)← ⟨x,w0, w1⟩
17 end

will yield an optimal (zero variance) estimate. In princi-
ple, the exact marginal probability can be computed from
an equivalent full CCDD. However, this full compilation
is impractical. Rather, MARGPROB estimates the marginal
probability via compiling the formula into full CCDDs on
a small set P of projected variables by PROJECTEDKC in
Algorithm 3. In detail, we first perform two projected com-
pilations by calling PROJECTEDKC(φ[x 7→ false], P ) and
PROJECTEDKC(φ[x 7→ true], P ) with the outputs u and v,
and then use the compiled results to compute the marginal
probability that is equal to Z(v)

Z(u)+Z(v) .

The second technology is dynamic decomposition in line
14. We employ a SAT solver to compute the implied liter-
als of a formula, and use these implied literals to simplify
the formula. Then we decompose the residual formula ac-
cording to the corresponding primal graph. We can reduce
the variance based on the following: (a) the sampling is
backtrack-free, this remedies the rejection problem of sam-
pling; (b) we reduce the variance by sampling from a sub-
set of the variables, also known as Rao-Blackwellization
(Casella and Robert 1997), and its effect is strengthened by
decomposition; (c) after decomposing, more virtual samples
can be provided in contrast to the original samples (Gogate
and Dechter 2012).

The third technology is kernelization, which can simplify
a CNF formula. After kernelization, we can reduce the num-
ber of sampling Boolean values in lines 21 and 37. It can
also save time for computing implied literals in the dynamic
decomposition as kernelization often simplifies the formula.

The fourth technology is the component caching imple-
mented using hash table Cache . In different calls of MI-
CROKC, the same sub-formula may need to be processed
multiple times. Component caching, can save the time of
dynamic decomposition, and accelerate the sampling. It can
also reduce the variance by merging the calls to MICROKC
on the same sub-formula. Consider Example 2 again. We
call MICROKC on φ2 twice, and obtain a known node. The
corresponding variance is then smaller than that of a single

call of MICROKC. Our implementation uses the component
caching scheme in sharpSAT (Thurley 2006).

6 Experiments
We evaluated PartialKC on a comprehensive set of bench-
marks: (i) 1114 benchmarks from a wide range of appli-
cation areas, including automated planning, Bayesian net-
works, configuration, combinatorial circuits, inductive in-
ference, model checking, program synthesis, and quantita-
tive information flow (QIF) analysis; and (ii) 100 public in-
stances adopted in the Model Counting Competition 2022.
We remark that the 1114 instances have been employed in
the past to evaluate model counting and knowledge com-
pilation techniques (Lagniez and Marquis 2017; Lai, Liu,
and Yin 2017; Fremont, Rabe, and Seshia 2017; Soos and
Meel 2019; Lai, Meel, and Yap 2021, 2022). The experi-
ments were run on a cluster (HPC cluster with job queue)
where each node has 2xE5-2690v3 CPUs with 24 cores and
96GB of RAM. Each instance was run on a single core with
a timeout of 5000 seconds and 8GB memory.

We compared exact counters D4 (Lagniez and Marquis
2017), sharpSAT-td (Korhonen and Järvisalo 2021), and Ex-
actMC (Lai, Meel, and Yap 2021), and approximate coun-
ters satss (SampleSearch, (Gogate and Dechter 2011)), STS
(SearchTreeSampler, (Ermon, Gomes, and Selman 2012)),
and the latest version (from the developers) of ApproxMC
(Chakraborty, Meel, and Vardi 2013; Soos and Meel 2021)
that combines the independent support computation tech-
nique, Arjun, with ApproxMC. We remark that both satss
and STS are anytime. ApproxMC was run with ε = 4 and
δ = 0.2. We used the pre-processing tool B+E (Lagniez,
Lonca, and Marquis 2016) for all the instances, which was
shown very powerful in model counting. Consistent with re-
cent studies, we excluded the pre-processing time from the
solving time for each tool as pre-processed instances were
used on all solvers.

Table 1 shows the performance of the seven counters. The
results show that PartialKC has the best scalability as it can
solve approximately many more instances than the other six
tools. We emphasize that there are 123 instances in 1103
that was not solved by D4, sharpSAT-td, and ExactMC. The
results also show that PartialKC can get convergence on 933
instances, i.e., it gets the exact counts for those instances. It
is surprising that PartialKC, due to the anytime and sampling
nature of the algorithm which entails some additional costs,
can still outperform state-of-the-art exact counters D4 and
sharpSAT-td.

We evaluate the accuracy of PartialKC from two aspects.
First, we consider each estimated count that falls into the in-
terval [(1+ ε)−1Z, (1+ ε)Z] of the true count Z. We say an
estimate is qualified if it falls into this interval. Note that this
is only for the instances where the true count is known. We
choose ε = 4. If the estimate falls into [0.2Z, 5Z], this com-
parison considers it the same order of magnitude as the true
count. The results show that PartialKC computed the most
qualified estimates. We highlight that there are 835 instances
where PartialKC converged in one minute of CPU time.
This number is much greater than the numbers of qualified
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domain (#, #known)
exact approximate

D4 sharpSAT-td ExactMC PartialKC satss STS ApproxMC
#approx #conv ε = 4 #approx ε = 4 #approx ε = 4

BayesianNetworks (201, 186) 179 186 186 195 186 186 18 17 157 148 172
BlastedSMT (200, 183) 162 163 169 200 168 177 150 129 200 178 197
Circuit (56, 51) 50 50 51 54 50 50 15 13 50 44 46
Configuration (35, 35) 34 32 31 35 29 33 33 31 35 13 15
InductiveInference (41, 23) 18 21 22 37 21 23 40 19 41 23 21
ModelChecking (78, 78) 75 78 78 78 77 78 11 7 10 8 78
Planning (243, 219) 208 215 213 240 209 213 169 126 238 103 147
ProgramSynthesis (220, 119) 91 78 108 135 100 113 81 64 125 108 115
QIF (40, 33) 29 30 32 40 24 32 15 13 27 25 40
MC2022 public (100, 85) 72 76 76 89 69 79 55 45 88 77 61
Total (1214, 1012) 918 929 966 1103 933 984 585 463 971 727 892

Table 1: Comparative counting performance between D4, sharpSAT-td, ExactMC, PartialKC, satss, STS, and ApproxMC. Each
cell below D4, sharpSAT-td, ExactMC, #approx of PartialKC, satss, STS, and the ApproxMC column refers to the number of
solved instances, and the maximum numbers are marked in bold. #known denotes the number of instances that solved by D4,
sharpSAT-td, or ExactMC with a longer timeout of four hours. #conv refers to the number of instances where convergence was
reached. ε = 4 refers to the number of instances where the reported count falls into [(1 + ε)−1Z, (1 + ε)Z] with the true count
Z. We remark that each count reported by ApproxMC falled into this interval. The maximum numbers of estimates falling into
the interval are marked in italics.
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Figure 3: Convergence results for PartialKC, SampleSearch and STS on three instances with exact counts depicted by straight
horizontal lines. (Best viewed in color)

solved instances of satss and STS. We remark that conver-
gence is stricter than the requirement that an estimate falls
in [(1+ε)−1Z, (1+ε)Z]. Second, we compare the accuracy
of PartialKC, satss, and STS in terms of the average log rel-
ative error (Gogate and Dechter 2012). Given an estimated
count Ẑ, the log-relative error is defined as

∣∣∣ log(Z)−log(Ẑ)
log(Z)

∣∣∣.
For fairness, we only consider the instances that are approx-
imately solved by all of PartialKC, satss, and STS. Our re-
sults show that the average log relative errors of PartialKC,
satss, and STS are 0.0075, 0.0081, and 0.0677, respectively;
that is, PartialKC has the best accuracy.

The convergence results of PartialKC shows that it can
give very accurate estimates. For instance, if we evaluate
with ε = 0.1 rather than ε = 4 in Table 1, PartialKC still can
get qualified estimates on 940 (44 fewer) instances, while the
two other anytime tools satss and STS give qualified esti-
mates on 337 (126 fewer) and 575 (157 fewer) instances, re-

spectively. We compare the convergence of PartialKC, satss,
and STS further on three selected instances depicted in Fig-
ure 3. The results show that PartialKC converges quickly to
the exact counts, while neither satss nor STS converge.

7 Conclusion

Model counting is intrinsically hard, hence, approximate
techniques have been developed to scale beyond what ex-
act counters can do. We propose a new approximate counter,
PartialKC, based on our partial CCDD KC form. It is any-
time and able to converge to the exact count. We present
many techniques exploiting partial CCDD to achieve bet-
ter scalability. Our experimental results show that PartialKC
is more accurate than existing anytime approximate coun-
ters satss and STS, and scales better. Surprisingly, PartialKC
is able to outperform recent state-of-art exact counters by
reaching convergence on many instances.
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