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Abstract

Finding a single best solution is the most common objective
in combinatorial optimization problems. However, such a sin-
gle solution may not be applicable to real-world problems as
objective functions and constraints are only “approximately”
formulated for original real-world problems. To solve this is-
sue, finding multiple solutions is a natural direction, and di-
versity of solutions is an important concept in this context.
Unfortunately, finding diverse solutions is much harder than
finding a single solution. To cope with the difficulty, we in-
vestigate the approximability of finding diverse solutions. As
a main result, we propose a framework to design approxi-
mation algorithms for finding diverse solutions, which yields
several outcomes including constant-factor approximation al-
gorithms for finding diverse matchings in graphs and diverse
common bases in two matroids and PTASes for finding di-
verse minimum cuts and interval schedulings.

Introduction
One way to solve a real-world problem is to formulate the
problem as a mathematical optimization problem and find
a solution with an optimization algorithm. However, it is
not always easy to formulate an appropriate optimization
problem as real-world problems often include intricate con-
straints and implicit preferences, which are usually simpli-
fied in order to solve optimization problems. Hence, an op-
timal solution obtained in this way is not guaranteed to be a
“good solution” to the original real-world problem. To cope
with this underlying inconsistency, the following two-stage
approach would be promising: algorithms find multiple so-
lutions and then users find what they like from these so-
lutions. One may think that top-k enumeration algorithms
(see [Eppstein 2008] for a survey) can be used for this pur-
pose. However, this is not always the case since top-k enu-
meration algorithms may output solutions similar to one an-
other. (See [Wang, Cheng, and Fu 2013; Yuan et al. 2016;
Hao, Pei, and Yang 2020], for example). Such a set of solu-
tions are not useful as a “catalog” of solutions provided to
users.
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As a way to resolve this issue, algorithms are expected
to find “diverse” solutions, and then finding “diverse” so-
lutions has received considerable attention in several fields
such as Artificial Intelligence [Ingmar et al. 2020; Nadel
2011], Data Mining [Wang, Cheng, and Fu 2013; Yuan et al.
2016], and Operations Research [Danna and Woodruff 2009;
Petit and Trapp 2019]. The problem of finding diverse solu-
tions can be modeled as a multi-objective optimization prob-
lem, which optimizes some diversity measure and the qual-
ity of solutions simultaneously. To solve this multi-objective
optimization problem, there are several approaches, such as
mathematical programming [Danna et al. 2007; Danna and
Woodruff 2009; Petit and Trapp 2019], constraint program-
ming [Hebrard et al. 2005; Petit and Trapp 2015], heuris-
tics [Danna et al. 2007; Drosou and Pitoura 2010; Henten-
ryck, Coffrin, and Gutkovich 2009; Vieira et al. 2011], and
so forth. See Table 1 in [Petit and Trapp 2019], which sum-
marizes various approaches to find diverse solutions in the
literature. These approaches are not only practical but also
versatile, enabling us to formulate various combinatorial
problems in these approaches. However, theoretical guaran-
tees on the running time of algorithms and/or the quality
of solutions would be difficult to obtain as some (general
purpose) mathematical/constraint solvers or heuristic objec-
tives/algorithms are key components of these algorithms.

Recently, theoretical aspects of the problem of finding di-
verse solutions in combinatorial problems are investigated.
This research direction would be made by Fellows and Rosa-
mond who proposed the diverse X paradigm in Dagstuhl
Seminar 18421 [Fernau et al. 2019]. In this paradigm, “X”
is a placeholder that represents solutions we are looking for,
and they asked for theoretical investigations of finding di-
verse solutions. Since the problem of finding diverse so-
lutions is much harder than that of finding a single solu-
tion for some “X”, it would be reasonable to consider the
problem from the perspective of fixed-parameter tractabil-
ity1. From this proposition, several fixed-parameter tractable
(FPT) algorithms are developed so far. Baste et al. gave

1Roughly speaking, the goal is to develop algorithms that run in
time f(k)poly(n), where n is the input size and k is a parameter
defined on a specific problem.
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algorithms for finding diverse solutions related to hitting
sets [Baste et al. 2019] and those on bounded-treewidth
graphs [Baste et al. 2022]. Hanaka et al. [Hanaka et al.
2021] proposed a framework to obtain FPT algorithms for
finding diverse solutions in various combinatorial problems.
Fomin et al. [Fomin et al. 2020, 2021] investigated the fixed-
parameter tractability of finding diverse solutions related to
matchings and matroids. In these work, the number of solu-
tions to be found is considered as a small parameter, which
can be a potential drawback in practice. As we discussed, a
set of diverse solutions would be displayed as a “catalog”
of solutions and hence moderate number of solutions are es-
sential to users to make their own decisions based on the
displayed solutions.

For this reason, we aim to develop theoretically efficient
algorithms for finding a moderate number of diverse solu-
tions rather than a small number of diverse solutions. As
we mentioned, the problem of finding diverse solutions is
harder than that of finding a single solution. We first ob-
serve that diversity measures have a significant impact on
the computational complexity of the diverse version of com-
binatorial problems: The problem of computing k bases
of a matroid maximizing the minimum (weighted) Ham-
ming distance (MAX-MIN HAMMING DISTANCE) is NP-
hard [Fomin et al. 2021], while the problem maximizing the
sum of (weighted) Hamming distance (MAX-SUM HAM-
MING DISTANCE) is solvable in polynomial time [Hanaka
et al. 2021]. Hanaka et al. [Hanaka et al. 2022] enhanced this
observation by showing that the diverse versions of several
classical combinatorial problems, such as bipartite match-
ings, arborescences, shortest paths, are polynomial-time
solvable under MAX-SUM HAMMING DISTANCE, while
no such results for MAX-MIN HAMMING DISTANCE are
known. These circumstances indicate that MAX-SUM HAM-
MING DISTANCE is theoretically easier than MAX-MIN
HAMMING DISTANCE. However, there are still computa-
tionally hard problems under MAX-SUM HAMMING DIS-
TANCE: For example, the problem of computing a maximum
matching in a graph is known to be solvable in polynomial
time, whereas that of computing two maximum matchings
M1 and M2 maximizing |M1 △ M2| is known to be NP-
hard [Holyer 1981] (see Section 7 for other examples). Thus,
we tackle this intractability by developing polynomial-time
approximation algorithms for the diverse version of vari-
ous combinatorial problems. To this end, we employ MAX-
SUM HAMMING DISTANCE as our diversity measure (see
?? for its definition), which might be somewhat theoreti-
cally tractable, but there are still several obstacles to be over-
come. We note that this diversity measure is frequently used
in both experimental and theoretical settings [Baste et al.
2022; Danna and Woodruff 2009; Hanaka et al. 2022; Hen-
tenryck, Coffrin, and Gutkovich 2009; Petit and Trapp 2015]

Our main result is a framework for designing efficient
approximation algorithms with constant approximation fac-
tors for finding diverse solutions in combinatorial problems.
Roughly speaking, our approximation framework says that
if we can enumerate top-k weighted solutions in polynomial
time, then we can obtain in polynomial time unweighted
solutions maximizing our diversity measure with constant

approximation factors. Moreover, suppose that we can ex-
actly maximize our diversity of solutions in polynomial time
when the number of solutions we are looking for is bounded
by a constant. Then, our framework yields a polynomial-
time approximation scheme (PTAS), meaning that factor-
(1 − ε) approximation in polynomial time for every con-
stant ε > 0. By applying our framework, we obtain effi-
cient constant-factor approximation algorithms for finding
diverse matchings in a graph and common bases of two ma-
troids, while PTASes for finding diverse minimum cuts and
interval schedulings. Let us note that these diversity maxi-
mization problems are unlikely to be solvable in polynomial
time, which will be discussed later.

The approximation factor of our framework comes from
previous work on the dispersion problem (see ?? for its def-
inition). A similar framework was independently proposed
by Gao et al. [Gao et al. 2022]. In both frameworks, the sub-
problem of finding a “furthest solution” is a key ingredient.
They reduced this subproblem to the budget-constrained op-
timization problem and solve it by bi-approximation algo-
rithms. This makes their framework more flexible, allowing
to find diverse approximate weighted solutions, while our
framework only focus on unweighted solutions. As opposed
to this weight restriction, the approximation factor of our
framework is much better than theirs: their approximation
factor is 1/2, while ours are max(1−1/k, 1/2) or even 1−ε
for any constant ε > 0, where k is the number of solutions
we are looking for.

Due to the space limitation, some proofs (marked ⋆) are
deferred to Appendix.

The rest of this paper is organized as follows. The next
section gives some notation and terminology used in this
paper. In particular, we give an overview of the result of
[Cevallos, Eisenbrand, and Zenklusen 2019], which is a key
to our approximation algorithms. In ?? , we describe our
framework to find diverse solutions in combinatorial prob-
lems. Then, in ?? , we discuss some applications of our
framework, including the diverse versions of the maximum
matching problem, the matroid intersection problem, the
minimum cut problem, and the interval scheduling problem.
Finally, we conclude our paper with some further directions
in ?? .

Preliminaries
We denote the set of real numbers, the set of non-negative
real numbers, and the set of positive real numbers as R, R≥0,
and R>0, respectively. Let E be a set. We denote the set of
all subsets of E as 2E . A function d : E × E → R≥0 is
called a metric (on E) if it satisfies the following conditions:
for x, y, z ∈ E, (1) d(x, y) = 0 if and only if x = y; (2)
d(x, y) = d(y, x); (3) d(x, z) ≤ d(x, y) + d(y, z). Suppose
that E ⊆ Rm for some integer m. For x ∈ E, we denote by
xi the ith component of x. If d(x, y) =

∑
1≤i≤m |xi − yi|

holds for x, y ∈ E, then d is called an ℓ1-metric.
Let E be a finite set. For X,Y ⊆ E, the symmetric

difference between X and Y is denoted by X △ Y (i.e.,
X△Y = (X\Y )∪(Y \X)). Let w : E → R>0. A weighted
Hamming distance is a function d : 2E × 2E → R≥0 such
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that for X,Y ⊆ E, dw(X,Y ) = w(X△Y ), where w(Z) =∑
x∈Z w(x) for Z ⊆ E. Suppose that E = {1, 2, . . . ,m}.

We can regard each subset X ⊆ E as an m-dimensional
vector x = (x1, . . . , xm) defined by xi = w(i) if i ∈ X
and xi = 0 otherwise, for 1 ≤ i ≤ m. It is easy to ob-
serve that for X,Y ⊆ E, dw(X,Y ) =

∑
1≤i≤m |xi − yi|,

where x and y are the vectors corresponding to X and Y ,
respectively. Thus, the weighted Hamming distance dw can
be considered as an ℓ1-metric.

In this paper, we focus on the following diversity measure
dsum(·), called the sum diversity. Let Y = {Y1, . . . , Yk} be
a collection of subsets of E and w : E → R≥0 be a weight
function. We define dsum(Y) =

∑
1≤i<j≤k dw(Yi, Yj).

Our problem MAX-SUM DIVERSE SOLUTIONS is de-
fined as follows.

Definition 1 (MAX-SUM DIVERSE SOLUTIONS). Given
a finite set E, an integer k, a weight function w : E →
R≥0, and a membership oracle for X ⊆ 2E , the task of
MAX-SUM DIVERSE SOLUTIONS is to find a set Y =
{Y1, Y2, . . . , Yk} of k distinct subsets Y1, Y2, . . . , Yk ∈ X
that maximizes the sum diversity dsum(Y).

Each set in X is called a feasible solution. In MAX-SUM
DIVERSE SOLUTIONS, the set X of feasible solutions is not
given explicitly, while we can test whether a set X ⊆ E be-
longs to X . Our problem MAX-SUM DIVERSE SOLUTIONS
is highly related to the problem of packing disjoint feasible
solutions.

Observation 2. Suppose that all sets in X have the same
cardinality r and w(e) = 1 for e ∈ E. Let Y1, Y2, . . . , Yk ∈
X be k distinct subsets. Then, dsum({Y1, . . . , Yk}) ≥
kr(k − 1) if and only if Yi ∩ Yj = ∅ for 1 ≤ i < j ≤ k.

This observation implies several hardness results of
MAX-SUM DIVERSE SOLUTIONS, which will be discussed
in ?? .

We particularly focus on the approximability of MAX-
SUM DIVERSE SOLUTIONS for specific sets of feasible so-
lutions. For a maximization problem, we say that an approx-
imation algorithm has factor 0 < α ≤ 1 if given an instance
I , the algorithm outputs a solution with objective value
ALG(I) such that ALG(I)/OPT(I) ≥ α, where OPT(I)
is the optimal value for I . A polynomial-time approximation
scheme is an approximation algorithm that takes an instance
I and a constant ε > 0, the algorithm outputs a solution with
ALG(I)/OPT(I) ≥ 1− ε in polynomial time.

A Technique for MAX-SUM DIVERSIFICATION

Our framework is based on approximation algorithms for a
similar problem MAX-SUM DIVERSIFICATION. Let X be a
set and let d : X ×X → R≥0 be a metric. In what follows,
for Y ⊆ X , we denote

∑
x,y∈Y d(x, y) as d(Y ).

Definition 3 (MAX-SUM DIVERSIFICATION). Given a met-
ric d : X × X → R≥0 on a finite set X and an integer k,
the task of MAX-SUM DIVERSIFICATION is to find a subset
Y ⊆ X with |Y | = k that maximizes d(Y ).

MAX-SUM DIVERSIFICATION is studied under vari-
ous names such as MAX-AVG FACILITY DISPERSION

Algorithm 1: A (1− 2/k)-approximation algorithm
for MAX-SUM DIVERSIFICATION.

1 Procedure LocalSearch(X, d, k)
2 Y ← arbitrary k elements in X;

3 for i = 1, . . . , ⌈k(k−1)
(k+1) ln( (k+2)(k−1)2

4 )⌉ do
4 if ∃ pair (x, y) ∈ (X \ Y )× Y such that

d(Y − y + x) > d(Y ) then
5 (x, y)← argmax

(x,y)∈(X\Y )×Y

d(Y − y + x);

6 Y ← Y − y + x;
7 Output Y ;

and REMOTE-CLIQUE [Cevallos, Eisenbrand, and Zen-
klusen 2019; Ravi, Rosenkrantz, and Tayi 1994]. MAX-
SUM DIVERSIFICATION is known to be NP-hard [Ravi,
Rosenkrantz, and Tayi 1994]. Cevallos et al. [Cevallos,
Eisenbrand, and Zenklusen 2019] devised a PTAS for MAX-
SUM DIVERSIFICATION. Their algorithm is based on a
rather simple local search technique, but their analysis of the
approximation factor and the iteration bound are highly non-
trivial. Our framework is based on their algorithm, which is
briefly sketched below.

A pseudocode of the algorithm due to [Cevallos, Eisen-
brand, and Zenklusen 2019] is given in Algorithm 1. In this
algorithm, we first pick an arbitrary set of k elements in X ,
which is denoted by Y ⊆ X . Then, we find a pair of ele-
ments x ∈ X\Y and y ∈ Y that maximizes d(Y −y+x) and
update Y by Y −y+x if d(Y −y+x) > d(Y ). We repeat this
update procedure ⌈k(k−1)

(k+1) ln( (k+2)(k−1)2

4 )⌉ = O(k log k)

times. Since we can find a pair (x, y) in O(|X| kτ) time,
where τ is the running time to evaluate the distance function
d(x, y) for x, y ∈ X , the following lemma holds.

Lemma 4. Algorithm 1 runs in time O(|X| k2τ log k).
They showed that if the metric d is negative type, then the

approximation ratio of Algorithm 1 is at least 1 − 2/k [Ce-
vallos, Eisenbrand, and Zenklusen 2019]. Here, we do not
give the precise definition of a negative type metric but men-
tion that every ℓ1-metric is negative type [Deza and Laurent
1997; Cevallos, Eisenbrand, and Zenklusen 2016].

Theorem 5 ([Cevallos, Eisenbrand, and Zenklusen 2019]).
If d : X × X → R≥0 is a negative type metric, then the
approximation ratio of Algorithm 1 is 1− 2/k.

They further observed that the above theorem implies that
MAX-SUM DIVERSIFICATION admits a PTAS as follows.
Let ϵ be a positive constant. When ϵ < 2/k, that is, k < 2/ϵ,
then k is constant. Thus, we can solve MAX-SUM DIVER-
SIFICATION in time |X|O(1/ϵ) by using a brute-force search.
Otherwise, the above (1 − 2/k)-approximation algorithm
achieves factor 1 − ϵ. Thus, MAX-SUM DIVERSIFICATION
admits a PTAS, provided that d is a negative type metric.

Corollary 6 ([Cevallos, Eisenbrand, and Zenklusen 2019]).
If d : X ×X → R≥0 is a negative type metric, then MAX-
SUM DIVERSIFICATION admits a PTAS.
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A Framework for Finding Diverse Solutions
In this section, we propose a framework for designing ap-
proximation algorithms for MAX-SUM DIVERSE SOLU-
TIONS. The basic strategy to our framework is the local
search algorithm described in the previous section. Let E
be a finite set and let X ⊆ 2E be a set of feasible solu-
tions. We set X := X and apply the local search algorithm
for MAX-SUM DIVERSIFICATION to (X, dw, k). Recall that
our diversity measure dsum is the sum of weighted Hamming
distances dw. Moreover, dw is an ℓ1-metric, as observed in
the previous section. By Theorem 5, the local search algo-
rithm for MAX-SUM DIVERSIFICATION has approximation
factor 1 − 2/k. However, the running time of a straightfor-
ward application of Lemma 4 is O(|X | · |E| k2 log k) even if
the feasible solutions inX can be enumerated in O(|X |·|E|)
total time, which may be exponential in the input size |E|.

A main obstacle to applying the local search algorithm
is that from a current set Y = {Y1, . . . , Yk} of feasi-
ble solutions, we need to find a pair of feasible solutions
(X,Y ) ∈ (X \ Y)× Y maximizing dsum(Y − Y +X). To
overcome this obstacle, we exploit top-k enumeration algo-
rithms. Let w′ : E → R be a weight function. An algorithm
A is called a top-k enumeration algorithm for (E,X , w′, k)
if for a positive integer k, A finds k feasible solutions
Y1, . . . , Yk ∈ X such that for any Y ∈ {Y1, . . . , Yk} and
X ∈ X \{Y1, . . . , Yk}, w′(X) ≤ w′(Y ) holds. By usingA,
we can compute the pair (X,Y ) as follows.

We first guess Y ∈ Y in the pair (X,Y ) and let Y ′ =
Y \ {Y }. To find the pair (X,Y ), it suffices to find X ∈
X \ Y ′ that maximizes

∑
Y ′∈Y′ w(X△Y ′). For an element

e ∈ E, we define a new weight w′(e) := w(e)(Ex (e,Y ′)−
In(e,Y ′)), where In(e,Y ′) (resp. Ex (e,Y ′)) is the number
of feasible solutions inY ′ that contain e (resp. do not contain
e). For notational convenience, we fix Y ′ and write In(e)
and Ex (e) to denote In(e,Y ′) and Ex (e,Y ′), respectively.
The following lemma shows that a feasible solution X that
maximizes w′(X) also maximizes

∑
Y ′∈Y′ w(X △ Y ′).

Lemma 7. For any feasible solution X ∈ X ,∑
Y ′∈Y′ w(X △ Y ′) = w′(X) +

∑
e∈E w(e) · In(e).

Proof. The contribution of e ∈ X to w(X △ Y ′) is w(e)
if e ̸∈ Y ′, and 0 otherwise. Thus, e ∈ X contributes
w(e) · Ex (e) to

∑
Y ′∈Y′ w(X △ Y ′). Similarly, e ∈ E \X

contributes w(e) · In(e) to
∑

Y ′∈Y′ w(X △ Y ′). This gives
us

∑
Y ′∈Y′ w(X △ Y ′) = w′(X) +

∑
e∈E w(e) · In(e) as

follows.∑
Y ′∈Y′

w(X △ Y ′)

=
∑
e∈X

w(e) · Ex (e) +
∑

e∈E\X

w(e) · In(e)

=
∑
e∈X

w(e)(Ex (e)− In(e)) +
∑
e∈E

w(e) · In(e)

= w′(X) +
∑
e∈E

w(e) · In(e).

Notice that we use the following equation in the transforma-
tion of the equation in lines 2 and 3

∑
e∈E\X w(e) · In(e) =

∑
e∈E w(e) · In(e)−

∑
e∈X w(e) · In(e).

From the above lemma, we can find the pair (X,Y ) with
a top-k enumeration algorithm A for (E,X , w′, k) as fol-
lows. By Lemma 7, for any feasible solution X ∈ X ,∑

Y ′∈Y′ w(X△ Y ′) = w′(X) +
∑

e∈E w(e) · In(e). Since
the second term does not depend on X , to find a feasible so-
lution X maximizing the left-hand side, it suffices to maxi-
mize w′(X) subject to X ∈ X \ Y ′. The algorithm A al-
lows us to find k feasible solutions Z1, . . . , Zk such that
w′(Z1) ≥ · · · ≥ w′(Zk) ≥ w′(Z) for any feasible solu-
tion Z other than Z1, . . . , Zk. As |Y ′| < k, at least one of
these solutions provides such a solution X .

The entire algorithm is as follows. We first find a set
of k distinct feasible solutions in X using the enumera-
tion algorithm A. Then, we repeat the local update pro-
cedure described above O(k log k) times. Suppose that A
enumerates k feasible solutions in time O((|E| + k)c) for
some constant c. Then, the entire algorithm runs in time
O((|E|+k)c|E|k2 log k) as we can compute the pair (X,Y )
in time O((|E|+ k)c|E|k) by simply guessing Y ∈ Y .

The approximation factor 1− 2/k does not give a reason-
able bound for k = 2. In this case, however, we still have an
approximation factor 1/2 with a greedy algorithm for MAX-
SUM DIVERSIFICATION [Birnbaum and Goldman 2009],
which is described as follows. Initially, we set Y = {Y1}
with arbitrary Y1 ∈ X . Then, we compute a feasible solution
Y2 ∈ X \ Y maximizing

∑
Y ∈Y w(Y2△Y ). By Lemma 7

and the above discussion, we can find such a solution Y2

with a top-k enumeration algorithm for (E,X , w′, k), where
w′(e) := w(e) · (Ex (e,Y)− In(e,Y)) for e ∈ E. We repeat
this k − 1 times so that Y contains k feasible solutions. As
discussed in this section, the approximation factor of this al-
gorithm is 1/2 as in [Birnbaum and Goldman 2009]. Thus,
the following theorem holds.

Theorem 8. Let E be a finite set, X ⊆ 2E , and w : E →
R>0. Suppose that there is a top-k enumeration algorithm
for (E,X , w′, k) that runs in O((|E| + k)c) time, where
w′ : E → R is an arbitrary weight function. Then, there is a
max(1−2/k, 1/2)-approximation algorithm for MAX-SUM
DIVERSE SOLUTIONS that runs in O((|E|+k)c|E|k2 log k)
time. Moreover, if there is a polynomial-time exact algorithm
for MAX-SUM DIVERSE SOLUTIONS for constant k, then
it admits a PTAS.

We note that the approximation factor of the framework
of Theorem 8 is gradually improved when the number k of
solutions increases. However, the dependency of the running
time on k is only polynomial, which allows us to find a mod-
erate number of diverse solutions efficiently.

Applications of the Framework
To complete the description of approximation algorithms
based on our framework, we need to develop top-k enumer-
ation algorithms for specific problems. In this section, we
design top-k enumeration algorithms for matchings, com-
mon bases of two matroids, and interval schedulings with
cardinality r. Our top-k enumeration algorithms are based
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on a well-known technique used in [Lawler 1972] (also dis-
cussed in [Eppstein 2008]). The key to enumeration algo-
rithms is the following WEIGHTED EXTENSION.
Definition 9 (WEIGHTED EXTENSION). Given a finite set
E, a set of feasible solutions X ⊆ 2E as a membership
oracle, a weight function w′ : E → R, and a pair of disjoint
subsets In and Ex of E, the task is to find a feasible solution
X ∈ X that satisfies In ⊆ X and X ∩ Ex = ∅ maximizing
w′(X) subject to these conditions.

If we can solve the above problem in O(|E|c) time, then
we obtain a top-k enumeration algorithm for (E,X , w′, k)

that runs in O(k |E|c+1
) time.

Lemma 10 ([Lawler 1972]). Suppose that WEIGHTED EX-
TENSION for (E,X , w′, k) can be solved in O(|E|c) time.
Then, there is an O(k |E|c+1

)-time top-k enumeration algo-
rithm for (E,X , w′, k).

Matchings
Matching is one of the most fundamental combinatorial ob-
jects in graphs, and the polynomial-time algorithm for com-
puting a maximum weight matching due to [Edmonds 1965]
is a cornerstone result in this context. Finding diverse match-
ings has also been studied so far [Hanaka et al. 2021, 2022;
Fomin et al. 2020, 2021]. Let G = (V,E) be a graph. A set
of edges M is a matching of G if M has no pair of edges
that share a common endpoint. A matching M is called a
perfect matching of G if every vertex in G is incident to an
edge in M . By using our framework, we design an approxi-
mation algorithm for finding diverse matchings. The formal
definition of the problem is as follows.
Definition 11 (DIVERSE MATCHINGS). Given a graph
G = (V,E), a weight function w : E → R>0, and inte-
gers k and r, the task of DIVERSE MATCHINGS is to find k
distinct matchings M1, . . . ,Mk of cardinality at least r that
maximize dsum({M1, . . . ,Mk}).

To apply our framework, it suffices to show that
WEIGHTED EXTENSION for matchings can be solved in
polynomial time. Our method is similar to a reduction from
the maximum weight perfect matching problem to the maxi-
mum weight matching problem [Duan and Pettie 2014]. Let
In,Ex ⊆ E be disjoint subsets of edges and let w′ : E → R.
Then, our goal is to find a matching M of G with |M | ≥ r
such that In ⊆ M and Ex ∩ M = ∅, and M maximizes
w′(M) subject to these constraints. By guessing the car-
dinality of M , it suffices to find such a matching M with
cardinality exactly r. This problem can be reduced to that
of finding a maximum weight perfect matching as follows.
We assume that In is a matching of G as otherwise there is
no matching containing it. Let G′ = (V ′, E′) be the graph
obtained from G by removing (1) all edges in Ex and (2)
all end vertices of edges in In. Then, it is easy to see that
M is a matching of G with In ⊆ M and Ex ∩ M = ∅ if
and only if M \ In is a matching of G′. Thus, it suffices
to find a maximum weight matching of cardinality exactly
r′ = r − |In| in G′. To this end, we add |V ′| − 2r′ vertices
U to G′ and add all possible edges between vertices v ∈ V ′

and u ∈ U . The graph obtained in this way is denoted by

H = (V ′∪U,E∪F ), where F = {{u, v} : u ∈ U, v ∈ V ′}.
We extend the weight function w′ by setting w′(f) = 0 for
f ∈ F . Then, the following lemma holds.

Lemma 12. Let M∗ be a maximum weight perfect matching
in H . Then, M∗\F is a matching of cardinality r′ in G′ such
that for every cardinality-r′ matching M ′ in G′, it holds that
w′(M ′) ≤ w′(M∗ \ F ).

Proof. Since M∗ is a perfect matching and any edge in-
cident to U is contained in F , M∗ must contain exactly
|U | edges of F . This implies that the perfect matching
M∗ contains exactly r′ edges of G′. Suppose that there is
a cardinality-r′ matching M ′ in G′ such that w′(M ′) >
w′(M∗ \ F ). As every vertex in U is adjacent to V ′, we can
choose exactly a set N ⊆ F of |U | edges between U and V ′

so that M ′ ∪ N forms a perfect matching in H . Then, we
have w′(M ′ ∪ N) = w′(M ′) + w′(N) > w′(M∗ \ F ) +
w′(M∗ ∩ F ) = w′(M∗) as w′(N) = w′(M∗ ∩ F ) = 0,
contradicting the fact that M∗ is a maximum weight perfect
matching of H .

Thus, WEIGHTED EXTENSION for a matching of cardi-
nality at least r is solvable in polynomial time using a maxi-
mum weight matching algorithm [Edmonds 1965]. By The-
orem 8 and Lemma 10, we have the following theorem.

Theorem 13. There is a polynomial-time approximation al-
gorithm for DIVERSE MATCHINGS with approximation fac-
tor max(1− 2/k, 1/2).

Common Bases of Two Matroids
Let E be a finite set and let a non-empty family of subsets I
of E. The pairM = (E, I) is a matroid if (1) for each X ∈
I, every subset of X is included in I and (2) if X,Y ∈ I
and |X| < |Y |, then there exists an element e ∈ Y \X such
that X ∪ {e} ∈ I. Each set in I is called an independent
set ofM. An inclusion-wise maximal independent set I of
M is a base ofM. Because of condition (2), all bases inM
have the same cardinality. For two matroidsM1 = (E, I1)
andM2 = (E, I2), a subset X ⊆ E is a common base of
M1 and M2 if X is a base of both M1 and M2. In this
subsection, we give an approximation algorithm for diverse
common bases of two matroids.

Definition 14 (DIVERSE MATROID COMMON BASES).
Given two matroids M1 = (E, I1) and M2 = (E, I2)
as membership oracles, a weight function w : E → R>0,
and an integer k, the task of DIVERSE MATROID COMMON
BASES is to find k distinct common bases B1, . . . , Bk ofM1

andM2 that maximize dsum(B1, . . . , Bk).

Given two matroids M1 = (E, I1) and M2 = (E, I2)
as membership oracles, the problem of partitioning E into
k common bases of M1 and M2 is a notoriously hard
problem, which requires an exponential number of mem-
bership queries [Bérczi and Schwarcz 2021]. This fact to-
gether with Observation 2 implies that DIVERSE MATROID
COMMON BASES cannot be solved with polynomial num-
ber of membership queries in our problem setting. Given this
fact, we develop a constant-factor approximation algorithm
for DIVERSE MATROID COMMON BASES. To this end, we
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show that WEIGHTED EXTENSION for common bases of
two matroids can be solved in polynomial time.

Similarly to the case of matchings, we can find a maxi-
mum weight common base B ∈ I1 ∩ I2 subject to In ⊆ B
and Ex ∩ B = ∅ for given disjoint In,Ex ⊆ E, which is
as follows. Let M = (E, I) be a matroid. For X ⊆ E,
we let M \ X = (E \ X,J ), where J = {J \ X : J ∈
I}. Then, M \ X is a matroid (see [Oxley 2006]). Simi-
larly, for X ⊆ E, we let M/X = (E \ X,J ′), where
J ′ = {J : J ∪ X ∈ I, J ⊆ E \ X}. Then (E,J ) is
also a matroid (see [Oxley 2006]). For two matroids M1

and M2, we consider two matroids M′
1 = (M1 \ Ex )/

In and M′
2 = (M2 \ Ex )/In . For every independent set

X inM′
1 andM′

2, X does not contain any element in Ex
and X ∪ In is an independent set in both M1 and M2.
Thus, WEIGHTED EXTENSION can be solved by computing
a maximum weight common base in M′

1 and M′
2, which

can be solved in polynomial time (see Theorem 41.7 in
[Schrijver 2003]). By Theorem 8 and Lemma 10, the fol-
lowing theorem holds.

Theorem 15. There is a polynomial-time approximation al-
gorithm for DIVERSE MATROID COMMON BASES with ap-
proximation factor max(1 − 2/k, 1/2), provided that the
membership oracles for M1 and M2 can be evaluated in
polynomial time.

Minimum Cuts
Let G = (V,E) be a graph. A partition of V into two non-
empty sets A and B is called a cut of G. For a cut (A,B)
of G, the set of edges having one end in A and the other
end in B is denoted by E(A,B). When no confusion arises,
we may refer to E(A,B) as a cut of G. The size of a cut
C = E(A,B) is defined by |E(A,B)|. A cut C is called a
minimum cut of G if there is no cut C ′ of G with |C ′| < |C|.
In this section, we consider the following problem.

Definition 16 (DIVERSE MINIMUM CUTS). Given a graph
G = (V,E) with an edge-weight function w : E → R≥0

and an integer k, the task of DIVERSE MINIMUM CUTS is
to find k distinct minimum cuts C1, . . . , Ck ⊆ E of G that
maximize dsum({C1, . . . , Ck}).

An important observation for this problem is that the num-
ber of minimum cuts of any graph G is O(|V |2) [Karger
2000]. Moreover, we can enumerate all minimum cuts in a
graph in polynomial time [Yeh, Wang, and Su 2010; Vazirani
and Yannakakis 1992]. Thus, we can solve both WEIGHTED
EXTENSION for minimum cuts and DIVERSE MINIMUM
CUTS for constant k in polynomial time, yielding a PTAS
for DIVERSE MINIMUM CUTS.

Theorem 17. DIVERSE MINIMUM CUTS admits a PTAS.

Given this, it is natural to ask whether DIVERSE MINI-
MUM CUTS admits a polynomial-time algorithm. However,
we show that DIVERSE MINIMUM CUTS is NP-hard even if
G has a cut of size 3. Let λ(G) be the size of a minimum cut
of G.

Theorem 18 (⋆). DIVERSE MINIMUM CUTS is NP-hard
even if λ(G) = 3.

The proof of the theorem goes as follows. Suppose that
λ(G) = 3. Suppose moreover that G has no nontrivial
cuts of size 3 (i.e., |E(A,B)| > 3 for any A ⊆ V with
min(|A|, |B|) ≥ 2). Then, every minimum cut of G sepa-
rates a vertex from the other vertices. If two minimum cuts
of G do not share an edge, the corresponding two vertices
have to be nonadjacent. Thus, G has k edge-disjoint mini-
mum cuts if and only if G has an independent set of size k.
Our reduction proves this correspondence in a similar argu-
ment without the assumption on nontrivial cuts.

When λ(G) = 1, then DIVERSE MINIMUM CUTS is triv-
ially solvable in linear time as the problem can be reduced to
finding all bridges in G. If λ(G) = 2, the problem is slightly
nontrivial, which in fact is solvable in polynomial time as
well.

Theorem 19 (⋆). DIVERSE MINIMUM CUTS can be solved
in |V |O(1) time, provided that λ(G) ≤ 2.

We reduce the problem to that of finding a subgraph of
prescribed size with maximizing the sum of convex func-
tions on their degrees of vertices, which can be solved in
polynomial time [Apollonio and Sebö 2009].

Interval Schedulings
For a pair of integers a and b with a ≤ b, the set of all num-
bers between a and b is denoted by [a, b]. We call I = [a, b]
an interval. For a pair of intervals I = [a, b] and J = [c, d],
we say that I overlaps J if I ∩ J ̸= ∅. For a set of intervals
S = {I1, . . . , Ir}, we say that S is a valid scheduling (or
simply a scheduling) if for any pair of intervals Ii, Ij ∈ S , Ii
does not overlap Ij . In particular, we call S an r-scheduling
if |S| = r for r ∈ N. In this section, we deal with the fol-
lowing problem.

Definition 20 (DIVERSE INTERVAL SCHEDULINGS).
Given a set of intervals I = {I1, . . . , In}, a weight function
w : I → R>0, and integers k and r, the task of DIVERSE
INTERVAL SCHEDULINGS is to find k distinct r-schedulings
S1, . . . ,Sk ⊆ I that maximize dsum({S1, . . . ,Sk}).

Since the problem of partitioning a set of intervals I into k
scheduling S1, . . . ,Sk such that each Si has exactly r inter-
vals is NP-hard [Bodlaender and Jansen 1995; Gardi 2009]2,
by Observation 2, the following theorem holds.

Theorem 21. DIVERSE INTERVAL SCHEDULINGS is NP-
hard.

To apply Theorem 8 to DIVERSE INTERVAL SCHEDUL-
INGS, it suffices to give a polynomial-time algorithm for
WEIGHTED EXTENSION for interval schedulings. Observe
that if In is not a scheduling, then there is no scheduling
containing In . Observe also that we can remove all intervals
included in Ex or overlapping some interval in In . Thus,
the problem can be reduced to the one for finding a maxi-
mum weight scheduling with cardinality r′ = r− |In|. This
problem can be solved in polynomial time by using a simple
dynamic programming approach.

2Note that the NP-hardness is proven for the case that each
Si has at most r intervals, but a simple reduction proves the NP-
hardness of this variant.
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Lemma 22. Given a set I and w′ : I → R and r′ ∈ N, there
is a polynomial-time algorithm finding a maximum weight
r′-scheduling in O(|I|2 r′) time.

Proof. The algorithm is analogous to that to find a max-
imum weight independent set on interval graphs, which
is roughly sketched as follows. We assume that I =
{I1, I2, . . . , In} is sorted with respect to their right end
points. We define opt(p, q) as the maximum total weight of
a q-scheduling S in {I1, I2, . . . , Ip} such that Ip ∈ S for
0 ≤ p ≤ n and 0 ≤ q ≤ r′. Then, the values of opt(p, q)
for all p and q can be computed by a standard dynamic pro-
gramming algorithm in time O(|I|2 r′).

By Theorem 8 and Lemma 10, we obtain a polynomial-
time approximation algorithm for DIVERSE INTERVAL
SCHEDULINGS with factor max(1− 2/k, 1/2).

Finally, we show that DIVERSE INTERVAL SCHEDUL-
INGS can be solved in polynomial time for fixed k using a
dynamic programming approach, which implies a PTAS for
DIVERSE INTERVAL SCHEDULINGS.

Similarly to the proof of Lemma 22, assume that I =
{I1, I2, . . . , In} is sorted with respect to their right end
points. Let [k] = {1, 2, . . . , k}. For each 0 ≤ p ≤ |I|,
we consider a tuple T = (p, L,R,Γ), where L and R
are vectors in ([n] ∪ {0})k and ([r] ∪ {0})k, respectively,
and Γ is a subset of

(
[k]
2

)
. Clearly, the number of tuples is

O(n(n + 1)k(r + 1)k2(
k
2)), which is polynomial when k is

a constant. We denote by ℓi and ri the ith component of L
and R, respectively. For a tuple T = (p, L,R,Γ), the value
opt(T ) is the maximum value of dsum({S1, . . . ,Sk}) for
k schedulings under the following four conditions: (1) the
maximum index of an interval in

⋃
1≤i≤k Si is p (p = 0 if⋃

1≤i≤k Si = ∅); (2) for 1 ≤ i ≤ k, the maximum index of
an interval in Si is ℓi (ℓi = 0 if Si = ∅); (3) for 1 ≤ i ≤ k,
|Si| = ri; and (4) for 1 ≤ i < j ≤ k, {i, j} ∈ Γ if and only
if Si and Sj are distinct.

We define opt(T ) = −∞ if no such a set of scheduings
exists. When R = (r, r, . . . , r) and Γ =

(
[k]
2

)
, there is a

set of k distinct r-schedulings that have the sum diversity
opt(T ) unless opt(T ) = −∞. For a tuple T , we say that a
set of k schedulings is valid for T if it satisfies the above four
conditions. Hence, among the tuples of the form (p, L,R,Γ)

with R = (r, . . . , r) and Γ =
(
[k]
2

)
, opt(T ) is the optimal

value for DIVERSE INTERVAL SCHEDULINGS. We next ex-
plain the outline of our dynamic programming algorithm to
compute opt(T ) for any T .

As a base case, p = 0, L = (0, . . . , 0), R = (0, . . . , 0),
and Γ = ∅ if and only if opt(T ) = 0. Let T ′ be a tu-
ple (p′, L′, R′,Γ′) that satisfies the following conditions:
(1)p′ < p; (2) for any 1 ≤ i ≤ k, ℓ′i ≤ ℓi and r′i ≤ ri;
and (3) Γ′ ⊆ Γ. We say that a tuple T ′ satisfying the above
conditions is dominated by T . We denote the set of tuples
dominated by T as D(T ). Let C(T ) = {i : ℓi = p}.
A tuple T ′ is valid for T if T ′ satisfies the following con-
ditions: (1) T ′ ∈ D(T ); (2) if i ∈ C(T ) and ℓi > 0,
then interval Iℓi does not overlap with Ip; (3) if i ∈ C(T ),
r′i = ri− 1, otherwise, r′i = ri; and (4) Γ = Γ′ ∪P (T ) with

P (T ) := {{i, j} ∈
(
[k]
2

)
: |{i, j} ∩ C(T )| = 1}. We denote

the set of valid tuples for T as V (T ). We compute opt(T )
using the following lemma.

Lemma 23. For a tuple T , opt(T ) equals the following for-
mula.

max
T ′∈V (T )

(opt(T ′) + w(Ip) · |C(T )| · (k − |C(T )|)).

Proof. Let T = (p, L,R,Γ). Let S = {S1, . . . ,Sk}
be a valid set of schedulings with dsum({S1, . . . ,Sj}) =
opt(T ). Then, S ′ = (S1 \ {Ip}, . . . ,Sk \ {Ip}) is a valid
set of scheduings for T ′ ∈ V (T ). Moreover, dsum(S) =
dsum(S ′) + w(Ip) · |C(T )| · (k − |C(T )|) as Ip contributes
w(Ip) · |C(T )| · (k− |C(T )|) to the diversity. Thus, the left-
hand side is at most the right-hand side.

Conversely, let T ′ be a tuple maximizing the left-hand
side and let S ′ = {S ′1, . . . ,S ′k} be a valid set of schedul-
ings for T ′. For each 1 ≤ i ≤ k, we set Si = S ′i ∪ {Ip}
if i ∈ C(T ) and Si = S ′i otherwise. By condition (2) in
the definition of a valid tuple, each interval in S ′i does not
overlap with Ip, meaning that Si is a scheduling. Thus, the
right-hand side is at most the left-hand side.

Thus, we can compute opt(T ) for any T in polynomial
time when k is a constant. Moreover, from opt(T ), we can
find k schedulings with the maximum sum diversity by a
standard trace back technique. Combining the approxima-
tion algorithm and the above algorithm, we obtain a PTAS.

Theorem 24. DIVERSE INTERVAL SCHEDULINGS admits
a PTAS.

It is not hard to see that the above algorithm is modified
into the one finding a set S of k valid schedulings Si with
|Si| ≥ r maximizing dsum({S1, . . . ,Sk}). The modified al-
gorithm simply takes “at least r intervals” instead of “ex-
actly r intervals”, which runs in polynomial time as well.

Conclusion
We give a framework for designing approximation algo-
rithms for MAX-SUM DIVERSE SOLUTIONS. This frame-
work runs in poly(|E| + k) time and is versatile, which al-
lows to apply to the diverse version of several well-studied
combinatorial problems. The key to applying our frame-
work is a polynomial-time algorithm for WEIGHTED EX-
TENSION, which yields constant-factor approximation algo-
rithms for DIVERSE MATCHINGS and DIVERSE MATROID
COMMON BASES. Moreover, we obtain a PTAS for MAX-
SUM DIVERSE SOLUTIONS if we can solve the problem in
polynomial time for fixed k, yielding PTASes for DIVERSE
MINIMUM CUTS and DIVERSE INTERVAL SCHEDULINGS.

There are several directions from our work. Our approxi-
mation algorithms for DIVERSE MATCHINGS and DIVERSE
MATROID COMMON BASES give a approximation factor
max(1−2/k, 1/2), which is a constant when k is a constant.
The APX-hardness of these problems is an interesting ques-
tion to prove a limitation of finding “approximately” diverse
solutions. Our work focuses only on MAX-SUM HAMMING
DISTANCE as our objective function. However, MAX-MIN
HAMMING DISTANCE or other diversity measures would be
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more acceptable in some practical applications. It would be
worth investigating these diversity measures from the view-
point of approximability.
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