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Abstract

Dependency stochastic Boolean satisfiability (DSSAT) gener-
alizes stochastic Boolean satisfiability (SSAT) in existential
variables being Henkinized allowing their dependencies on
randomized variables to be explicitly specified. It allows NEX-
PTIME problems of reasoning under uncertainty and partial
information to be compactly encoded. To date, no decision
procedure has been implemented for solving DSSAT formulas.
This work provides the first such tool by converting DSSAT
into SSAT with dependency elimination, similar to converting
dependency quantified Boolean formula (DQBF) to quanti-
fied Boolean formula (QBF). Moreover, we extend (D)QBF
preprocessing techniques and implement the first standalone
(D)SSAT preprocessor. Experimental results show that solving
DSSAT via dependency elimination is highly applicable and
that existing SSAT solvers may benefit from preprocessing.

1 Introduction
Boolean satisfiability (SAT) solving has become an indis-
pensable computation engine in various applications, such
as artificial intelligence (Nilsson 1982) and formal verifi-
cation (Vizel, Weissenbacher, and Malik 2015). Its success
has triggered solver development for tackling problems with
complexities beyond NP. For instance, MAX-SAT (Li and
Manya 2021) enables the encoding of optimization problems
that is suitable for encoding various constrained optimization
problems (Safarpour et al. 2007); quantified Boolean formula
(QBF) (Kleine Büning and Bubeck 2009) allows universal
and existential quantification on the Boolean variables; de-
pendency quantified Boolean formula (DQBF) (Scholl and
Wimmer 2018) generalizes QBF by allowing incomparable
dependencies using Henkin quantifiers.

Another widely explored field takes the idea of counting
into consideration. In particular, (un)weighted propositional
model counting (Gomes, Sabharwal, and Selman 2009) is
concerned with computing the number of satisfying assign-
ments to a Boolean formula. This formalism allows encoding
of probabilistic inference (Sang, Bearne, and Kautz 2005).
Furthermore, stochastic Boolean satisfiability (SSAT) (Pa-
padimitriou 1985; Littman, Majercik, and Pitassi 2001) gen-
eralizes QBF by replacing universal quantifiers with random-
ized ones, allowing decision and optimization problems under
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uncertainty to be modeled (Hnich et al. 2011; Lee and Jiang
2018).

Recently, Lee and Jiang (2021) formulated dependency
SSAT (DSSAT) to capture decision-making under both un-
certainty and partial information. With its NEXPTIME-hard
complexity and the counting nature inherited from SSAT,
DSSAT can compactly encode complex problems such as
probabilistic partial equivalence checking (Lee and Jiang
2021). Due to its recent formulation, no solver has been devel-
oped for DSSAT. On the other hand, SSAT solvers have been
actively developed, and it has been shown that techniques
developed for QBF solving, such as clause selection (Janota
and Marques-Silva 2015), may be extended to SSAT solv-
ing (Chen, Huang, and Jiang 2021).

The success in SAT, QBF, and DQBF solving is partly due
to efficient preprocessing techniques (Eén and Biere 2005;
Manthey 2012; Giunchiglia, Marin, and Narizzano 2010;
Biere, Lonsing, and Seidl 2011; Wimmer, Scholl, and Becker
2019). Preprocessing is a fast procedure that aims to sim-
plify a given formula in terms of its variable count, clause
count, and dependency structure, while keeping the overhead
minimized. Although there are prior efforts on preprocess-
ing of propositional model counting (Lagniez and Marquis
2014; Lagniez, Lonca, and Marquis 2016), there is no known
preprocessor for SSAT to the best of our knowledge. Given
the importance of preprocessing in SAT, QBF, and DQBF
solving, questions such as which of the techniques can be
applied to (D)SSAT, and whether existing SSAT solvers may
benefit from preprocessing arise naturally. Moreover, when a
problem is computationally more complex, the time spent on
preprocessing becomes less significant compared to the main
solving procedure, and we may thus benefit from more expen-
sive preprocessing techniques. As solving DSSAT is highly
complex, developing preprocessing techniques for DSSAT is
highly motivated.

The main results of this work are as follows. First, we
propose a dependency-elimination algorithm that converts
DSSAT formulas to SSAT formulas, ready to be solved by
SSAT solvers. Combining the algorithm with an existing
SSAT solver forms a solution to DSSAT solving. Second, we
examine (D)QBF preprocessing techniques for their potential
extensions to (D)SSAT and develop the first standalone pre-
processor for SSAT and DSSAT formulas. The feasibility and
effectiveness of the DSSAT solving flow and the preprocessor
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are justified experimentally.
The rest of this paper is organized as follows. First, Sec-

tion 2 defines notations and introduces essential backgrounds.
In Section 3, we propose DSSAT solving with dependency
elimination. Section 4 studies the applicability of (D)QBF
preprocessing techniques for (D)SSAT. Experimental results
are evaluated in Section 5. Finally, Section 6 concludes the
paper.

2 Preliminaries
In this section, we define the adopted notations, and briefly
review the foundations of DQBF, SSAT, and DSSAT.

In the sequel, Boolean values TRUE and FALSE are rep-
resented by ⊤ and ⊥, respectively. Boolean connectives ¬,
∧, ∨, →, and ≡ are interpreted in their conventional seman-
tics. A literal l is either a Boolean variable v or its negation
¬v, and we write var(l) = v to denote the corresponding
variable. A clause C is a disjunction of literals. A Boolean
formula ϕ is in the conjunctive normal form (CNF) if it is a
conjunction of clauses. Whenever appropriate, we also view
a clause C as a set of literals and a CNF formula ϕ as a
set of clauses. The substitution of variable v with formula
ψ in formula ϕ is denoted by ϕ[ψ/v], and the notation is
generalized to literals, where ϕ[ψ/l] denotes ϕ[ψ/ var(l)]
if l = var(l), and ϕ[¬ψ/ var(l)] if l = ¬ var(l). In addi-
tion, we write ϕ[ψ/v1, . . . , vk] to denote the substitution of
v1, . . . , vk with ψ, i.e., ϕ[ψ/v1][ψ/v2] · · · [ψ/vk].

Let V be a set of Boolean variables. An assignment α on
V is a mapping from V to B = {⊤,⊥}, and we denote the
set of all possible assignments on V by A(V ). The domain
restriction of α ∈ A(V1) to a set V2 ⊆ V1 is denoted by
α|D2

.
We write Φ = Q .ϕ to denote a quantified formula, where

Q is the quantifier prefix, and ϕ is the matrix. Unless specified
otherwise, the matrix ϕ is assumed to be in CNF. Given a
quantified formula Φ = Q .ϕ, a variable v and a formula ψ,
we also write Φ[ψ/v] to denote Q .ϕ[ψ/v].

2.1 Dependency Quantified Boolean Formulas
Dependency quantified Boolean formula (DQBF) is proposed
to capture nonlinearity in dependencies that cannot be cap-
tured by quantified Boolean formula (QBF). Instead of a
linear order on all variables, DQBF uses Henkin quanti-
fiers (Henkin and Karp 1965) that explicitly specify the set
of variables on which an existential variable may depend.
Definition 1 (DQBF syntax). Let V = U ∪ E be a set
of Boolean variables, where U = {u1, . . . , un} and E =
{e1, . . . , em} are the sets of universal and existential vari-
ables, respectively. A DQBF Φ over V is of the form

∀u1, . . . , ∀un, ∃e1(De1), . . . , ∃em(Dem).ϕ ,

where each Dej ⊆ U is the dependency set of variable ej ,
and ϕ is a quantifier-free Boolean formula over V .

For each existential variable ej , a Skolem function
fj : A(Dej ) → B specifies the assignment of ej under each
assignment to its dependency Dej . The vector of functions
F = (f1, . . . , fm) is called a strategy for Φ. We shall write
ϕ|F to denote the formula obtained by substituting each ej

in ϕ with the corresponding function fj . A DQBF is satisfi-
able if and only if there exists a strategy F = (f1, . . . , fm)
such that ϕ|F is a tautology over variables U . Deciding the
satisfiability of a DQBF is NEXPTIME-complete (Peterson,
Reif, and Azhar 2001).

2.2 Stochastic Boolean Satisfiability
Stochastic Boolean satisfiability (SSAT) is initially proposed
in (Papadimitriou 1985) as a game against nature.

Definition 2 (SSAT syntax). An SSAT formula Φ over vari-
ables V is of the form

Q1x1, Q2x2, . . . , Qnxn.ϕ ,

where eachQi ∈ {∃,

Rpi}, and ϕ is a quantifier-free Boolean
formula over V . The symbol

Rp denotes a randomized quan-
tifier, where

Rp r states that r evaluates to ⊤ with probability
p. We also write Pr[r = ⊤] to denote the probability p in
case the probability is not specified in the context.

The satisfying probability of Φ is defined recursively by

• Pr[⊤] = 1, Pr[⊥] = 0,

• Pr[∃x.Φ′] = max(Pr[Φ′[⊥/x]],Pr[Φ′[⊤/x]]), and

• Pr[

Rp x.Φ′] = (1− p) · Pr[Φ′[⊥/x]] + p · Pr[Φ′[⊤/x]].

Given an SSAT formula Φ and some θ ∈ [0, 1], deciding
whether Pr[Φ] ≥ θ is PSPACE-complete (Papadimitriou
1985).

2.3 Dependency Stochastic Boolean Satisfiability
Dependency stochastic Boolean satisfiability (DSSAT) is
proposed in (Lee and Jiang 2021) as a generalization of SSAT
and DQBF.

Definition 3 (DSSAT syntax). Let V = R ∪ E be a
set of Boolean variables, where R = {r1, . . . , rn} and
E = {e1, . . . , em} are the sets of randomized and existential
variables, respectively. A DSSAT formula Φ over V is of the
form

Rp1 r1, . . . ,

Rpn rn, ∃e1(De1), . . . , ∃em(Dem).ϕ ,

where each Dej ⊆ R is the dependency set of variable ej ,
and ϕ is a quantifier-free Boolean formula over V .

Given a strategy F = (f1, . . . , fm) for Φ, the satisfying
probability of Φ with respect to F is defined by

Pr[Φ|F ] =
∑

α∈A(R)

1ϕ|F (α)w(α) ,

where 1ϕ|F (α) is the indicator function indicating whether
α satisfies ϕ|F , and w(α) =

∏n
i=1 p

α(ri)
i (1 − pi)

1−α(ri) is
the weighting function for the assignment.

Given a DSSAT formula Φ and some θ ∈ [0, 1], deciding
whether Pr[Φ] ≥ θ is NEXPTIME-complete (Lee and Jiang
2021).
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3 Dependency Elimination
The idea of dependency elimination is proposed in (Wim-
mer et al. 2017) as a generalization to expansion-based tech-
niques that transform a DQBF into QBF and then solve it
using a QBF solver. Instead of expanding universal variables
completely to linearize the quantifier prefix, the technique
eliminates the dependency of a single variable e on u ∈ De,
thereby enabling a more general choice of dependencies to
eliminate.

Theorem 1 (Dependency Elimination for DQBF (Theorem 1
of Wimmer et al. 2017)). Let Φ be a DQBF and assume,
without loss of generality, that u1 ∈ De1 . Then, Φ is equisat-
isfiable to

Φ′ = ∀u1, . . . , ∀un, ∃e01(De1 \ {u1}), ∃e11(De1 \ {u1}),
∃e2(De2), . . . , ∃em(Dem).ϕ

[
(¬u1 ∧ e01) ∨ (u1 ∧ e11)/e1

]
.

In addition, the problem of finding the optimal set of de-
pendencies to eliminate is formulated as an integer linear
program with dynamically added constraints.

As opposed to DQBF, where an expanded universal vari-
able can be removed from the formula using universal reduc-
tion, the counting nature of DSSAT makes the elimination-
based methods invalid on randomized variables. On the other
hand, dependency elimination generalizes naturally to the
setting of DSSAT, as it merely deals with the dependency
structure. We modify Theorem 1 as follows.

Theorem 2 (Dependency Elimination for DSSAT). Let Φ be
a DSSAT formula and assume, without loss of generality, that
r1 ∈ De1 . Then, Φ has the same satisfying probability as

Φ′ =

R

r1, . . . ,

R

rn, ∃e01(De1 \ {r1}), ∃e11(De1 \ {r1}),
∃e2(De2), . . . , ∃em(Dem).ϕ

[
(¬r1 ∧ e01) ∨ (r1 ∧ e11)/e1

]
.

Proof. Note that in the proof of Theorem 1 in (Wimmer
et al. 2017), each Skolem function for Φ has a corresponding
Skolem function for Φ′ that satisfies exactly the same univer-
sal assignments. Hence, applying dependency elimination on
the DSSAT formula Φ results in some Φ′ with the same sat-
isfying probability, witnessed by the corresponding Skolem
function.

4 Preprocessing for (D)SSAT
Even with the high degree of freedom in manipulating depen-
dencies, dependency elimination may blow up the formula
exponentially. Its massive success in DQBF solving relies
heavily on the power of DQBF preprocessing techniques in
HQSpre (Wimmer, Scholl, and Becker 2019). Since there
is currently no SSAT—let alone DSSAT—preprocessor to
the best of the authors’ knowledge, we modify HQSpre to
adapt to the stochastic nature (D)SSAT formulas. In addition
to making the translation from DSSAT to SSAT practical,
the implementation may also serve as a standalone prepro-
cessor for SSAT and DSSAT formulas. A summary of lifted
techniques is shown in Table 1.

Technique Applicability Note

Unit propagation △ Theorem 3
Pure literal △ Theorem 4
Equivalent literals △ Theorem 5
Universal reduction X Theorem 6
SAT-based filters O Proposition 1
Rewriting O Proposition 1
Resolution O Proposition 1
Subsumption O Proposition 1
Self-subsumption O Proposition 1
Hidden subsumption O Proposition 1
Vivification O Proposition 1

Note: The symbol “O” denotes that a technique can be applied to
(D)SSAT without modification; “△” denotes that a technique can
be extended for (D)SSAT with modification; “X” denotes that a
technique is unsound for (D)SSAT.

Table 1: Summary of DSSAT extension of DQBF preprocess-
ing techniques.

4.1 Backbones and Monotonic Literals
Definition 4 (Backbone). A literal l is a backbone if ϕ[⊥/l]
is unsatisfiable.

Intuitively, a backbone is a literal assigned true in all satis-
fying assignments of ϕ. The most well-known backbones are
unit literals.

Definition 5 (Unit literal). A literal l is a unit literal if {l} ∈
ϕ.

In (D)QBF, existential backbones can be propagated di-
rectly, while universal backbones immediately imply the for-
mula is unsatisfiable. In (D)SSAT, existential unit clauses can
be propagated directly. Moreover, randomized unit clauses
should be propagated as well, since the unsatisfiable cofactor
contributes 0 to the satisfying probability. In addition to per-
forming Boolean constraint propagation, the satisfying proba-
bility of the backbone, i.e., Pr[l = ⊤], must be recorded. We
summarize the handling of backbones in (D)SSAT formulas
in Theorem 3.

Theorem 3. If l is a backbone in the DSSAT formula Φ =
Q .ϕ, then

Pr[Φ] =

{
Pr[Q .ϕ[⊤/l]] if l is existential
Pr[l = ⊤] · Pr[Q .ϕ[⊤/l]] if l is randomized.

Proof. Let l be a positive backbone in Φ, and let F =
(se1 , . . . , sem) be a strategy for Φ.

First consider the case where l is existential, and as-
sume, without loss of generality, that l = e1. Let F ′ =
(s′e1 , . . . , sem) be the strategy obtained from replacing se1
with the constant function that always assigns e1 to ⊤. Since
ϕ[⊥/l] is unsatisfiable, we have Pr[Φ|F ′ ] ≥ Pr[Φ|F ]. Since
F is arbitrary, it follows that Pr[Φ] = Pr[Φ[⊤/l]].

Next consider the case where l is randomized, and assume,
without loss of generality, that l = r1. Since ϕ[⊥/l] is unsat-
isfiable, we have Pr[Φ|F ] = 0 + Pr[l = ⊤] · Pr[Φ[⊤/l]|F ].
Since F is arbitrary, it follows that Pr[Φ] = Pr[l = ⊤] ·
Pr[Φ[⊤/l]].
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The case where l is a negative backbone follows analo-
gously.

We demonstrate the application of unit propagation in
Example 1.

Example 1. Consider the DSSAT formula Φ0 =

R0.6 r1,R0.8 r2,

R0.5 r3,

R0.7 r4, ∃e1(r1), ∃e2(r2), ∃e3(r3),
∃e4(r4).(¬e1 ∨ r1)(e1)(r2 ∨ r3 ∨ ¬e4)(¬r2 ∨ r3)
(¬r1∨¬r3∨e2)(¬e2∨e3)(r4∨¬e4)(r1∨e4)(r2∨¬e1∨¬e3).

Since the clause (e1) is unit and e1 is existential, we per-
form unit propagation and obtain Φ1 =

R0.6 r1,

R0.8 r2,R0.5 r3,

R0.7 r4, ∃e2(r2), ∃e3(r3), ∃e4(r4).(r1)(r2 ∨ r3 ∨
¬e4)(¬r2∨r3)(¬r1∨¬r3∨e2)(¬e2∨e3)(r4∨¬e4)(r1∨e4)
(r2 ∨ ¬e3).

After the propagation, (r1) becomes a unit clause as well,
and since r1 is randomized, we need to record the probabil-
ity p = Pr[r1 = ⊤] = 0.6 in addition to performing unit
propagation. The resulting formula is Φ2 =

R0.8 r2,

R0.5 r3,R0.7 r4, ∃e2(r2), ∃e3(r3), ∃e4(r4).(r2∨r3∨¬e4)(¬r2∨r3)
(¬r3 ∨ e2)(¬e2 ∨ e3)(r4 ∨ ¬e4)(r2 ∨ ¬e3).

We next discuss monotonic variables.

Definition 6 (Monotonic variables). A variable v is positively
(negatively) monotonic if ϕ[⊥/v]∧¬ϕ[⊤/v] (resp. ϕ[⊤/v]∧
¬ϕ[⊥/v]) is unsatisfiable.

Intuitively, a positively (negatively) monotonic variable is
such that if the assignment α with α(v) = ⊥ (resp. α(v) =
⊤) satisfies ϕ, then the assignment α′ that agrees with α
on all variables but v also satisfies ϕ. The most well-known
monotonic variables are the pure literals.

Definition 7 (Pure literal). A literal l is a pure literal if ¬l
does not appear in ϕ.

Since existential variables aim at satisfying ϕ, we can as-
sign any positively (resp. negatively) monotonic existential
variable v to ⊤ (resp. ⊥) while preserving the satisfying prob-
ability. On the other hand, as observed in propositional model
counting literature (Lagniez and Marquis 2014), monotonic
randomized variables cannot be used directly to simplify the
formula.

Theorem 4. If an existential variable v is positively (resp.
negatively) monotonic in Φ, then Pr[Φ] = Pr[Φ[⊤/v]] (resp.
Pr[Φ[⊥/v]]).

Proof. Let v be positively monotonic and, without loss of
generality, assume v = e1. Let F = (se1 , . . . , sem) be a
strategy for Φ, and let F ′ = (s′e1 , . . . , sem) be the strategy
obtained from replacing se1 with the constant function that
always assigns e1 to ⊤. Since v is positively monotonic,
for any assignment α ∈ A(R), α satisfies ϕ|F ′ whenever
it satisfies ϕ|F . Hence, Pr[Φ|F ′ ] ≥ Pr[Φ|F ]. Since F is
arbitrary, we conclude that Pr[Φ] = Pr[Φ[⊤/v]].

The case where v is negatively monotonic follows analo-
gously.

We demonstrate the application of pure literal elimination
in Example 2.

Example 2. Consider the DSSAT formula Φ2 in Example 1.
We note that e4 appears negatively in all clauses, i.e. it is
negatively monotonic. Since it is existentially quantified, we
can assign it to ⊥, and obtain the formula Φ3 =

R0.8 r2,R0.5 r3, ∃e2(r2), ∃e3(r3).(¬r2 ∨ r3)(¬r3 ∨ e2)(¬e2 ∨ e3)
(r2 ∨ ¬e3).1 The recorded probability is still p = 0.6.

4.2 Equivalent Literals
A clause C = (l1 ∨ l2) in ϕ can be interpreted as an impli-
cation ¬l1 → l2 and equivalently ¬l2 → l1. By modeling
literals as vertices and implications as directed edges, we
can construct an implication graph. Each strongly connected
component (SCC) in the implication graph forms a set of
equivalent literals. Intuitively, the matrix may only be sat-
isfied when all equivalent literals are assigned to the same
value. A formal definition is given in Definition 8.
Definition 8 (Equivalent literals). The literals l1 and l2 are
equivalent with respect to formula ϕ if ϕ ≡ (ϕ ∧ (l1 ≡ l2)).

The cases for (D)QBF are summarized in Theorem 4 of
(Wimmer, Scholl, and Becker 2019). Theorem 5 shows the
corresponding results in (D)SSAT.
Theorem 5. Let l1 and l2 be equivalent literals in the DSSAT
formula Φ = Q .ϕ, where var(l1) = v1 ̸= var(l2) = v2.2

• If both v1 and v2 are randomized, then Pr[Φ] =
Pr[l1 = l2] ·Pr

[
Q′ .ϕ[v/l1, l2]

]
, where the quantifier pre-

fix Q′ modifies Q as follows:
–

Rpv1 v1,

Rpv2 v2 are replaced with

Rpv v, where v is a
fresh randomized variable quantified with probability

pv =
Pr[l1 = l2 = ⊤]

Pr[l1 = l2]
,

– for each existential variable e, the dependency set of e
in Q′ is defined as

D′
e =

{
De if De ∩ {v1, v2} = ∅
De ∪ {v} \ {v1, v2} otherwise.

Otherwise, we assume, without loss of generality, that v1 is
existential.
• If v2 is randomized and v2 ∈ Dv1

, then Pr[Φ] =
Pr[Q .ϕ[l2/l1]].

• If v2 is existential and Dv2 ⊆ Dv1 , then Pr[Φ] =
Pr[Q .ϕ[l2/l1]].

Proof. Let l1 and l2 be equivalent literals in the DSSAT
formula Φ, where var(l1) = v1 ̸= var(l2) = v2. We assume,
without loss of generality, that l1 = v1 and l2 = v2 are both
positive literals to ease notation.

First consider the case where both v1 and v2 are random-
ized. We note that since ϕ ∧ (l1 ̸≡ l2) is unsatisfiable, we
have

Pr[Φ] = Pr[l1 = l2 = ⊤] · Pr[Φ[⊤/l1, l2]]
+ Pr[l1 = l2 = ⊥] · Pr[Φ[⊥/l1, l2]]

= Pr[l1 = l2] · (pv · Pr[Φ[⊤/l1, l2]]
+ (1− pv) · Pr[Φ[⊥/l1, l2]]) .

1Note that since r4 is no longer present in the matrix, we also
drop its quantifier prefix for simplicity.

2If v1 = v2 and l1 ̸= l2, i.e., l1 = ¬l2, then the formula is
unsatisfiable.
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In addition, since v1 and v2 agree on all satisfiable assign-
ments, any existential variable e that may depend on one
of them can essentially depend on both of them, as the as-
signment of e where the two disagree does not affect the
satisfying probability.

Next consider the case where v1 is existential, and, without
loss of generality, assume v1 = e1. Let F = (se1 , . . . , sem)
be a strategy for Φ. If v2 is randomized and v2 ∈ Dv1 , let
F ′ = (s′e1 , . . . , sem) be the strategy obtained from replacing
se1 with the function s′e1(α) = v2 for α ∈ A(De1). Since
ϕ ∧ (l1 ̸≡ l2) is unsatisfiable, we have Pr[Φ|F ′ ] ≥ Pr[Φ|F ],
hence Pr[Φ] = Pr[Φ[l2/l1]]. Finally, if v2 is existential, and
Dv2

⊆ Dv1
, we assume, without loss of generality, that

v2 = e2. Let F ′ = (s′e1 , . . . , sem) be the strategy obtained
from replacing se1 with the function

s′e1(α) = se2(α|De2
)

for α ∈ A(De1). Since ϕ∧(l1 ̸≡ l2) is unsatisfiable, we again
have Pr[Φ|F ′ ] ≥ Pr[Φ|F ], hence Pr[Φ] = Pr[Φ[l2/l1]].

We demonstrate the application of equivalent literals in
Example 3.

Example 3. Consider the DSSAT formula Φ3 in Example 2.
Since the implication graph induced by the two-literal clauses
has a strongly connected component {r2, r3, e2, e3}, these lit-
erals are all equivalent. We start by simplifying using r2 ≡ r3.
The corresponding fresh randomized variable r is quantified
with probability pr = 0.8·0.5

0.8·0.5+0.2·0.5 = 0.8, and the recorded
probability is updated by p′ = 0.6 · (0.8 · 0.5 + 0.2 · 0.5) =
0.3. The resulting formula is Φ4 =

R0.8 r, ∃e2(r), ∃e3(r).
(¬r ∨ e2)(¬e2 ∨ e3)(r ∨ ¬e3). Since both e2 and e3 may
depend on r, we can then replace them with r and obtain
Φ5 = ⊤. Hence, we conclude that Pr[Φ0] = 0.3.

In particular, note that the cases where (1) an existential
literal is equivalent to a randomized one outside of its de-
pendency, and (2) two existential literals with incomparable
dependencies3 are equivalent are not covered by Theorem 5.
For DQBF, the first case will directly imply that the formula
is unsatisfiable, and the second case may be simplified by
replacing v1 and v2 with a fresh existential variable v, whose
dependency set is De = De1 ∩ De2 . We remark that both
cases do not hold in the setting of DSSAT. In the first case, it
only shows that Pr[Φ] < 1, but there is still a non-zero prob-
ability that the existential variable “guesses” the randomized
one. In the second case, we show in Example 4 that guessing
based on incomparable information may be beneficial in the
stochastic setting.

Example 4. Reconsider the formula Φ3 in Example 2. Al-
though e2 ≡ e3 holds, if we substitute them with a fresh ex-
istential variable e with dependency De = De2 ∩De3 = ∅,
the formula will become Φ′

4 =

R0.8 r2,

R0.5 r3, ∃e(∅).
(¬r2 ∨ r3)(¬r3 ∨ e)(r2 ∨ ¬e), which has satisfying prob-
ability Pr[Φ′

4] = 0.4 < Pr[Φ3] = 0.5.

3This case only occurs in DSSAT formulas.

4.3 Other Incorporated Techniques
In addition to the techniques described above, we note that
all techniques that yield a logically equivalent matrix can be
lifted directly to (D)SSAT.

Proposition 1. If a preprocessing technique always yields a
logically equivalent matrix, then it is sound for (D)SSAT.

This includes SAT-based filters (Cadoli et al. 2002),
rewriting existential variables, resolution-based variable
elimination (Eén and Biere 2005), subsumption elimina-
tion (Biere, Heule, and van Maaren 2009), self-subsuming
resolution (Eén and Biere 2005), hidden subsumption elimi-
nation (Heule, Järvisalo, and Biere 2010), vivification (Piette,
Hamadi, and Sais 2008), etc. Interested readers may refer
to (Wimmer, Scholl, and Becker 2019) for implementation
details.

4.4 Universal Reduction
Universal reduction is one of the most powerful prepro-
cessing techniques for (D)QBF. Its validity is stated in
Lemma 1 (Wimmer, Scholl, and Becker 2019).

Lemma 1. Let Q .ϕ ∧ C be a DQBF and l ∈ C a universal
literal such that for all existential literal k ∈ C we have
var(l) /∈ Dvar(k). Then Q .ϕ ∧ C and Q .ϕ ∧ (C \ {l}) are
equisatisfiable.

It utilizes the fact that to falsify the formula, it suffices to
falsify only one clause. Hence, if the clause C is not satisfied
by any literal in C \ {l}, then by assigning l to ⊥, the whole
formula will be falsified.

Randomized literals, on the other hand, will be assigned
to both polarities with a non-zero probability. Therefore, uni-
versal reduction cannot be generalized to (D)SSAT.

Theorem 6. Universal reduction cannot be directly gener-
alized for (D)SSAT. That is, let Φ = Q .ϕ ∧ C be a DSSAT
formula and l ∈ C a randomized literal such that for all
existential literal k ∈ C we have var(l) /∈ Dvar(k). Let Φ′ =
Q .ϕ ∧ (C \ {l}). Then, it is possible that Pr[Φ] ̸= Pr[Φ′].

Proof. As a counterexample, consider the DSSAT formula
Φ =

R0.5 r1.(r1). Applying “randomized reduction” on Φ
gives Φ′ = ⊥. Clearly, Pr[Φ] = 0.5 ̸= Pr[Φ′] = 0.

Moreover, we argue that it is unlikely to have a sound
and efficient lifting of universal reduction in (D)QBF to ran-
domized reduction in (D)SSAT even by adding some side
conditions, because an SSAT formula with only randomized
variables is essentially an instance of weighted model count-
ing, which is #P-complete. Hence, any form of “randomized
reduction” would substantially increase the formula size.

5 Experimental Results
Our implementation of the dependency elimination and pre-
processing procedures, named DSSATpre,4 is written in
C++ under the framework of HQSpre (Wimmer, Scholl, and
Becker 2019). Inherited from the structure of HQSpre, the
dependency elimination in DSSATpre is interleaved with

4Available at https://github.com/NTU-ALComLab/DSSATpre.
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DSSAT (partial prep.) DSSAT (full prep.) DQBF

Benchmark Family #Instance #Sol PAR2 #Sol PAR2 #Sol PAR2

Biere

adder 3 2 100 100 0.05 100 0.05 100 0.00
adder 3 4 100 100 0.05 100 0.05 100 0.03
adder 3 6 100 100 0.21 100 0.18 100 0.04

bitcell 16 2 100 99 22.50 100 0.05 100 0.00
bitcell 16 4 100 96 94.33 100 0.08 100 0.00
bitcell 16 6 100 88 263.25 100 0.63 100 0.00

lookahead 16 2 100 100 0.11 100 0.05 100 0.00
lookahead 16 4 100 98 43.03 100 0.13 100 0.00
lookahead 16 6 100 91 228.05 100 2.79 100 0.02

pec xor2 100 89 220.01 100 0.00 100 0.00
pec xor3 100 100 0.02 100 0.03 100 0.00
pec xor4 100 100 12.38 100 0.11 100 0.10

Total 1200 1161 73.67 1200 0.35 1200 0.02

Scholl

c432 240 49 1600.98 45 1637.03 34 1722.49
c432 nondisjoint 100 12 1775.67 16 1707.47 17 1664.52
c499 nondisjoint 128 8 1880.47 8 1877.40 65 1002.30

comp 240 87 1286.44 86 1293.18 148 779.52
comp nondisjoint 64 56 255.25 55 290.48 60 175.04
term1 nondisjoint 44 44 0.34 44 0.21 44 8.99

z4 240 240 0.13 237 25.14 240 0.80
z4 nondisjoint 60 60 0.04 60 0.04 60 0.02

Total 1116 556 1010.43 551 1020.56 668 812.74

Table 2: Experimental results of DSSAT solving using dependency elimination.

preprocessing, and is implemented as one of the optional
preprocess options. Thus, unless otherwise specified, the
experiments of dependency elimination were run with pre-
processing fully enabled.

The experiments were conducted on a Linux machine with
Intel Xeon Silver 4210 CPU processor at 2.2GHz. All in-
stances are subject to a time limit of 1000 seconds. The
performance is judged based on the number of instances
solved within the time limit and the penalized average run-
time (PAR2) score, which penalizes unsolved instances with
two times the time limit.

We conducted two experiments: The first experiment tests
the applicability of solving DSSAT with dependency elimina-
tion. The second experiment aims to study the effectiveness
of (D)SSAT preprocessing. We use DC-SSAT (Majercik and
Boots 2005), ClauSSat (Chen, Huang, and Jiang 2021), and
ElimSSAT (Wang et al. 2022) as the SSAT solvers. DC-
SSAT adopts a CDCL-based solving scheme, ClauSSat lifts
the abstraction-based technique clause selection from QBF,
and ElimSSAT solves SSAT using quantifier elimination.
Note that since ElimSSAT approximates non-0.5 probabili-
ties with 4-bit precision, the performance between ElimSSAT
and other solvers shall be compared with care. This does not
affect the evaluation of our implementation.

5.1 Dependency Elimination
Since there are neither DSSAT benchmarks nor competing
solvers in the literature, we conduct the experiment by taking
DQBF benchmarks encoding partial equivalence checking
(PEC) problem from (Fröhlich et al. 2014) and (Scholl and

Becker 2001), and reinterpret them as the probabilistic partial
design equivalence checking problem (Lee and Jiang 2018,
2021) by changing each universal variable into a randomized
variable with probability 0.5. In the PEC problem, a com-
pletely specified design and a partially specified design that
contains some black boxes are given. The task is to deter-
mine whether there exists some implementation for the black
boxes such that both designs are functionally equivalent. In
the DQBF encoding, the universal variables correspond to the
primary inputs of the designs. When universal variables are
reinterpreted as randomized ones associated with probability
0.5, we essentially find an implementation of the black boxes
such that the two designs coincide on the largest proportion
of the input assignments.

The benchmark set Biere consists of 12 families, each of
100 instances, and the benchmark set Scholl consists of 8
families, with a total number of 1116 instances. Biere is a
benchmark set that is easy for modern DQBF solvers, while
Scholl contains medium to hard instances.5

The results of DSSAT solving are shown in Table 2, where
DSSAT solvings under partial and full preprocessing are
compared along with the reference DQBF solving. Among
the studied SSAT solvers, we report only the results of
ElimSSAT in solving the SSAT formulas after dependency
elimination of the translated DSSAT formulas due to the rel-
atively good performance of ElimSSAT. As no competing
DSSAT solver exists for comparison, we solve the original
DQBF instances using the DQBF solver HQS (Wimmer

5The benchmarks are taken from https://github.com/jurajsic/
DQBFbenchmarks.
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DC-SSAT ClauSSat ElimSSAT

w/o prep. w/ prep. w/o prep. w/ prep. w/o prep. w/ prep.

Family # #S PAR2 #S PAR2 #S PAR2 #S PAR2 #S PAR2 #S PAR2

pipesnotankage 9 0 2000.00 2 1555.56 0 2000.00 3 1334.69 2 1558.32 2 1555.57
MaxCount 25 4 1716.69 8 1360.17 8 1368.44 13 986.83 10 1219.29 9 1280.05
ev-pr-4x4 7 0 2000.00 7 44.43 1 1714.75 1 1716.24 1 1792.97 1 1715.20

Tiger 5 5 312.47 5 0.01 2 1218.31 5 1.35 5 0.58 5 0.01
stracomp 60 28 1082.50 32 971.14 60 54.39 60 37.56 44 591.04 44 583.57

depots 9 0 2000.00 0 2000.00 0 2000.00 0 2000.00 0 2000.00 0 2000.00
sand-castle 25 24 147.49 22 276.24 11 1166.99 11 1138.26 14 920.30 14 902.55

gttt 3x3 9 9 2.92 9 1.51 9 114.60 4 1167.78 0 2000.00 0 2000.00
RobotsD2 10 3 1404.59 4 1209.39 10 31.30 10 39.13 5 1099.46 5 1067.50

Tree 14 14 0.00 14 0.00 14 2.57 14 3.03 14 22.71 14 18.10
arbiter 10 0 2000.00 0 2000.00 0 2000.00 1 1800.13 0 2000.00 0 2000.00
MPEC 8 4 1126.35 4 1000.10 1 1750.01 2 1500.01 8 2.20 8 5.91

conformant 24 2 1872.74 2 1835.51 2 1849.03 2 1859.89 6 1519.18 6 1524.13
Connect2 16 16 0.24 16 14.67 10 801.28 8 1034.69 2 1871.15 13 430.51
ToiletA 77 42 946.37 62 480.57 46 888.27 52 698.95 77 36.73 74 112.08

PEC 8 0 2000.00 4 1000.32 3 1267.07 3 1250.14 7 413.23 6 561.98
k branch n 10 2 1602.80 6 800.25 1 1800.23 1 1800.05 2 1600.98 2 1600.13

k ph p 4 3 675.77 3 507.89 3 671.63 3 579.43 4 17.66 4 20.74
tlc 13 13 0.28 13 0.05 13 1.72 13 0.05 13 0.24 13 0.05

Adder 6 4 666.85 4 666.76 5 411.80 5 412.35 4 673.87 5 457.62
Counter 8 4 1015.48 8 167.90 4 1066.11 7 352.15 8 0.10 8 0.16

Total 357 177 1038.88 225 773.87 203 906.35 218 809.47 226 771.77 233 722.65

Table 3: Experimental results of SSAT preprocessing.

et al. 2017) as a reference. As the effect of preprocessing
will be discussed in Section 5.2, we focus on comparing
DSSAT solving under full preprocessing and DQBF solving.
As can be seen from the table, despite the increased hardness
brought by the stochastic nature of DSSAT, dependency elim-
ination performs well on the benchmarks. With ElimSSAT,
it solves all the instances from Biere and around half the
instances from Scholl. In particular, HQS solves 164 SAT
instances and 504 UNSAT ones from Scholl, whereas
DSSATpre+ElimSSAT solves 226 SAT ones and 325 UN-
SAT ones. The fact that DSSATpre+ElimSSAT performs
worse in UNSAT instances is expected since refuting a false
DQBF is often computationally more manageable than the
corresponding counting task, while knowing that a DQBF
is true directly implies that the satisfying probability of
the corresponding DSSAT formula is 1. Surprisingly, for
the families c432 and term1 nondisjoint, DSSAT-
pre+ElimSSAT outperforms HQS even though it is solving
the harder DSSAT problem. Since HQS adopts the same
dependency elimination procedure, the result may suggest
that the quantifier elimination procedure in ElimSSAT works
exceptionally well on these two families.

5.2 Preprocessing
In this section, we examine the effect of preprocessing on
(D)SSAT solving. Since preprocessing is embedded into
the dependency elimination procedure and no other DSSAT
solver exists, we shall focus mainly on SSAT preprocessing.

Nonetheless, before discussing the results of SSAT prepro-
cessing, we note that preprocessing is crucial to the success

of DSSAT solving with dependency elimination. The results
of DSSAT solving under partial preprocessing in Table 2 are
obtained using DSSATpre with only unit propagation, pure
literal elimination, and equivalent literals elimination being
enabled.6 Under this setting, 39 instances from the family
Biere can no longer be solved within the time limit, while
some Scholl instances unsolved under full preprocessing
become solvable and some solved under full preprocessing
become unsolvable. These differences suggest that prepro-
cessing plays a nontrivial role in DSSAT solving, and the
effect shall be further studied when more DSSAT solving
techniques are available in the future.

To evaluate the effectiveness of preprocessing on SSAT
instances, we took the benchmarks of (Chen, Huang, and
Jiang 2021) for evaluation.7 We compare the performance
of SSAT solvers DC-SSAT, ClauSSat and ElimSSAT on
the original and preprocessed instances to examine the power
of SSAT preprocessing. The results are summarized in Ta-
ble 3. We note that 30 out of the 357 instances were solved
during preprocessing. From the table, we see that DC-SSAT
benefits from preprocessing consistently across all families,
with a reduction of 25.5% in the PAR2 score. On the other
hand, ClauSSat and ElimSSAT seem to benefit slightly
from preprocessing in most families, but drastically slowed
down on certain families, such as gttt 3x3 for ClauSSat

6These three techniques are embedded into the dependency elim-
ination procedure and cannot be turned off.

7The benchmarks are taken from https://github.com/NTU-
ALComLab/ClauSSat.
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Figure 1: Ablation study of SSAT preprocessing.

and ToiletA for ElimSSAT. The reason behind such a
phenomenon requires further investigation.

We performed an ablation study on the techniques listed in
Table 1 to further examine the effect of different techniques
on the three solvers. The results are shown in Figure 1, where
the group “w/o preprocessing” shows the results without
preprocessing, “default” shows the results with all prepro-
cessing techniques enabled, and each of the other groups
shows the results of default but with one technique being
disabled. It can be seen that DC-SSAT performs roughly
the same among all configurations with preprocessing. On
the other hand, ClauSSat performs worse when resolution
is turned off, and ElimSSAT performs terribly when sub-
sumption is turned off. The results suggest that ClauSSat
might benefit from incorporating resolution-like techniques
into its procedure, and, similarly, ElimSSAT may benefit
from subsumption-based techniques. Additionally, we learn
that different solvers may benefit from different techniques,
and the optimal configuration may vary from solver to solver.
Finally, while the performance of each solver may improve
slightly when a certain technique is turned off, the default
setting seems to fit the three solvers well.

Overall, the experiments show that SSAT preprocessing is
powerful and that state-of-the-art SSAT solvers may benefit
from preprocessing.

6 Conclusions and Future Work
This paper has introduced the first DSSAT solver by lifting
the dependency elimination technique for DQBF (Wimmer
et al. 2017) and developed the first standalone preprocessor
for SSAT and DSSAT by modifying the (D)QBF preproces-
sor HQSpre. Experimental results have shown the feasibility
of DSSAT solving with dependency elimination and demon-
strated the effectiveness of preprocessing in SSAT formula
solving by DC-SSAT.

For future work, we plan to develop new methods for
DSSAT solving besides dependency elimination and study
the effects of DSSAT preprocessing on different DSSAT
solvers.
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