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Abstract

The Maximum Satisfiability (MAXSAT) problem is an opti-
mization version of the Satisfiability problem (SAT) in which
one is given a CNF formula with n variables and needs to find
the maximum number of simultaneously satisfiable clauses.
Recent works achieved significant progress in proving new
upper bounds on the worst-case computational complexity
of MAXSAT. All these works reduce general MAXSAT to
a special case of MAXSAT where each variable appears a
small number of times. So, it is important to design fast al-
gorithms for (n, k)-MAXSAT to construct an efficient exact
algorithm for MAXSAT. (n, k)-MAXSAT is a special case of
MAXSAT where each variable appears at most k times in the
input formula.
For the (n, 3)-MAXSAT problem, we design a O∗(1.1749n)
algorithm improving on the previous record running time
of O∗(1.191n). For the (n, 4)-MAXSAT problem, we con-
struct a O∗(1.3803n) algorithm improving on the previous
best running time of O∗(1.4254n). Using the results, we de-
velop a O∗(1.0911L) algorithm for the MAXSAT where L
is a length of the input formula which improves previous al-
gorithm with O∗(1.0927L) running time.

Introduction
The Satisfiability problem (SAT) is one of the most influen-
tial problems with applications in Computer Science, Arti-
ficial Intelligence, and other fields. Its optimization version,
Maximum Satisfiability problem (MAXSAT), also signifi-
cantly impacts many areas. It was successfully used in plan-
ning, scheduling, configuration problems, AI and data anal-
ysis problems, combinatorial problems, verification and se-
curity, and bioinformatics (Bacchus, Järvisalo, and Martins
2021). For a detailed survey about SAT and MAXSAT prob-
lems, we refer to (Biere, Heule, and van Maaren 2021).

It is well-known that SAT and MAXSAT are NP-hard
along with their many special cases (Garey and Johnson
1979). Many approaches were tested to cope with the NP-
hardness of SAT and MAXSAT: randomized, approxima-
tion, exact, parameterized algorithms, and others. In re-
cent years significant progress was achieved from the ex-
act exponential algorithms point of view for both prob-
lems. New upper bounds were proved on the computa-
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tional complexity in the worst-case scenario for SAT and
MAXSAT. Moreover, the new upper bounds significantly
improve previously known results, some of which stayed
without progress for decades. For example, Chu et al. (Chu,
Xiao, and Zhang 2021) presented an O∗(1.234m) algo-
rithm, Peng and Xiao (Peng and Xiao 2021) constructed a
O∗(1.0646L) for the Satisfiability problem where m is the
total numbers of clauses and L is the total number of liter-
als in the input formula. Similar results were obtained for
Maximum Satisfiability in papers (Xu et al. 2019b; Xiao
2022; Alferov and Bliznets 2021) provingO∗(1.2886m) and
O∗(1.0927L) upper bounds.

All three last-mentioned papers used the branch-and-
bound method with sophisticated reduction and branch-
ing rules, including detailed reasoning. Roughly speaking,
in such algorithms input instance is usually transformed
into an equivalent instance where each variable appears at
most five times. After that, we reduce to an instance where
each variable occurs at most four times, and finally, an in-
stance where each variable appears at most three times is
solved. So, in the worst-case scenario, the algorithm’s effi-
ciency for MAXSAT highly depends on how quickly we can
solve (n, k)-MAXSAT for k ∈ {3, 4, 5}. Recall that (n, k)-
MAXSAT is a special case of MAXSAT in which the input
CNF contains only variables that appear at most k times. It
is known that (n, k)-MAXSAT is NP-hard for k ≥ 3 (Ra-
man, Ravikumar, and Rao 1998). We note that on its own
(n, 3)-MAXSAT attracts much attention (see table 1). In the
paper we sufficiently improve the running time for (n, 3)-
MAXSAT and (n, 4)-MAXSAT getting new upper bounds
O∗(1.1749n) and O∗(1.3803n) correspondingly. These im-
provements allow us to design a O∗(1.0911L) algorithm for
the MAXSAT problem where L is the total number of liter-
als in the input formula (or simply the length of the formula).
Historical progress for MAXSAT in terms of L is shown in
table 2.

Except for measures n,L, there are natural mea-
sures/parameters m (the total number of clauses in the in-
put formula) and k (the number of clauses that must be
satisfied). Generally, such measures take a lot of work
to compare. However, we manage to show that our algo-
rithms imply O∗(1.1554k) algorithm for (n, 3)-MAXSAT
and O∗(1.2989k) algorithm for (n, 4)-MAXSAT. These ob-
tained upper bounds are significantly better than one might
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Running time Reference
O∗(1.732n) (Raman, Ravikumar, and Rao 1998)
O∗(1.3248n) (Bansal and Raman 1999)
O∗(1.27203n) (Kulikov and Kutskov 2009)
O∗(1.2600n) (Bliznets 2013)
O∗(1.237n) (Xu, Chen, and Wang 2016)
O∗(1.194n) (Xu et al. 2019a)
O∗(1.191n) (Belova and Bliznets 2020)
O∗(1.1749n) this paper

Table 1: Known results for (n, 3)-MAXSAT. Here, n de-
notes the number of variables in the input formula.

Running time References
O∗(1.1279L) (Niedermeier and Rossmanith 1999)
O∗(1.1057L) (Bansal and Raman 1999)
O∗(1.1049L) (Alferov and Bliznets 2021)
O∗(1.0927L) (Alferov and Bliznets 2021)
O∗(1.0911L) this paper

Table 2: Progress for MAXSAT in terms of L

derive from paper (Chen, Xu, and Wang 2017) that presents
the best upper bound for the general case of MAXSAT. We
note that O∗(ck) algorithm for MAXSAT immediately im-
plies O∗(cm) algorithm since k ≤ m. So, our algorithms
produce competitive upper bounds for MAXSAT in terms
of m since the best algorithm was O∗(1.2989m) in (Li
et al. 2022). Moreover, the bottleneck for this algorithm was
dealing with 4-variables. We warn that algorithm from (Li
et al. 2022) gives a slightly better upper bound for (n, 4)-
MAXSAT than ours in the 5-th digit after the dot and very re-
cently were published an improvement by (Xiao 2022) with
the running time O∗(1.2886m).

Preliminary
The paper assumes familiarity with concepts such as
boolean variables, literals, and clauses. Interested readers
may find details and further information in (Marek 2009).

By length of a formula or a clause, we mean the total num-
ber of literals used to write the formula or clause. An assign-
ment is a function that assigns values 0 or 1 to each variable
in the formula. An assignment satisfies a clause if some of its
literals have value 1. An assignment is optimal if it satisfies
the maximum number of clauses.

A variable x is an (i, j)-variable in the formula F if lit-
eral x and literal x appear i times and j times in F , respec-
tively. A variable is called an h-variable if it is an (i, j)-
variable such that i + j = h. In this case, we refer to h as
a degree variable. A variable of degree at least h is called
h+-variable, and a variable of degree at most h is called
h−-variable. Since replacing literals x, x with x, x respec-
tively in the entire formula does not change the answer for
the problem instance, we always assume i ≥ j for (i, j)-
variables. A clause is called a unit-clause if it contains only
one literal. If x is (i, j)-variable, i = j, and variable x ap-
pears in a unit clause, then we rename it so that there is a

unit clause x.
A subset of the initial formula’s clauses is a sub-formula.

If a variable with literals inside the sub-formula does not
have any literals outside the sub-formula, the sub-formula is
said to be closed.

Variable x appears in clause C if either literal x or literal
x appears in C. Variables x and y co-appear in clause C
if variables x and y appear in C. x and y are neighbours if
there is a clause in F , where they co-appear. Similar notions
we define for literals.

Our algorithm employs the standard branch-and-bound
technique, with the time analysis augmented by the measure-
and-conquer approach. Like other algorithms that use this
technique, our algorithm consists of reduction and branching
rules. A reduction rule, or R-Rule for short, is a polynomial-
time algorithm that converts one MAXSAT instance into an
equivalent instance with the same or a lower measure value.
A polynomial-time algorithm known as a branching rule (B-
Rule) divides a MAXSAT instance into several instances
with lower measure values, on which the algorithm is then
run recursively. If a branching rule transforms in polynomial
time an instance with measure L to several instances with
measures L−a1, L−a2, . . . , L−ak we call (a1, a2, . . . , ak)
– the branching vector of this rule. The only positive root
of the polynomial xL = xL−a1 + xL−a2 + · · · + xL−ak

is called the branching number of the corresponding rule.
If an algorithm uses only branching rules with branching
numbers c1, c2, . . . , ct, then the algorithm’s running time is
bounded by (maxt

i ci)
Lpoly(L). More details about branch

and bound technique can be found in book (Fomin and
Kratsch 2010). We exhaustively apply R-rules and B-rules
in the order they appear in the paper. Moreover, we repeat
the process from the beginning after the rule application, as
some previous rules might become applicable after branch-
ing. In most cases, our branching rules have two branches,
and we can set a variable x in one branch x = 0 and x = 1
in the second branch. In this case, we denote a decrease of
measure by ∆i in branch x = i.

Branching on a variable x is a B-Rule that transforms a
formula F into two formulas Fx=0 and Fx=1 (same formula
assuming x = 0 and x = 1, respectively). Clearly, this rule
is always correct.

We examine the complexity of our method using the so-
called discounted length, which was first presented in the
(Alferov and Bliznets 2021) article, rather than measuring it
in terms of L. The discounted length of a formula F equals
L − n3 = 2n3 + 4n4 + 5n5 + . . . , where L is the length
of a formula F , and ni is the number of i-variables. The
measure is crucial for our proofs; without the measure, we
do not know how to prove claimed results. Since d ≤ L, if
we achieve the O(cd) algorithm, we also obtain the O(cL)
algorithm.

Proofs of R-Rules, B-Rules, lemmas, and theorems
marked by (*) are deferred to the full version of the paper
due to space constraints.

Reduction Rules
First of all, we list some reduction rules. Note that all these
rules do not increase the discounted length d of the formula.
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We write (F, k)→ (F ′, k′) if reduction rule transforms for-
mula F into F ′ in polynomial time and it is possible to sat-
isfy k clauses in F if and only if it is possible to satisfy
k′ clauses in F ′. Most of the presented reduction rules are
widely known and are given without proof.

R-Rule 1. Let x be a (i, j)-variable such that its positive
literal x appears t > j times in unit clauses. Then we can
set x = 1.

R-Rule 2. If F = (x∨x∨C)∧F ′, then (F, k)→ (F ′, k−1).

R-Rule 3. If F = (x ∨ C) ∧ (x ∨ C) ∧ F ′, then (F, k) →
(C ∧ F ′, k − 1).

R-Rule 4 ((Bansal and Raman 1999)). Let x be a (1, 1)-
variable in formula F = (x ∨ C) ∧ (x ∨D) ∧ F ′, then we
can replace clauses (x∨C) and (x∨D) with clause (C∨D),
i.e. (F, k)→ ((C ∨D) ∧ F ′, k − 1).

R-Rule 5 ((Xu et al. 2019b)). Let x be a (i, 1)-variable and
i > 2 and F = (x∨ l∨C1)∧ ...∧(x∨ l∨Ci)∧(x∨D)∧F ′,
then we can remove l from all clauses containing x and add
it to the clause containing x, i.e. (F, k)→ ((x ∨C1) ∧ ... ∧
(x ∨ Ci) ∧ (x ∨ l ∨D) ∧ F ′, k).

R-Rule 6 (*). Let x be a (i, 1)-variable and 1 6 j 6 i and
F = (x ∨ l ∨ C1) ∧ ... ∧ (x ∨ l ∨ Cj) ∧ (x ∨ Cj+1) ∧ ... ∧
(x ∨Ci) ∧ (x ∨ l ∨D) ∧ F ′ and G = (x ∨C1) ∧ ... ∧ (x ∨
Ci) ∧ (x ∨ l ∨D) ∧ F ′.

In this case, we can remove literal l from clauses with
literal x. i.e. (F, k)→ (G, k)

R-Rule 7. If formula F = F1 ∧ F2 and F1, F2 are closed
sub-formulas, then solve F1 and F2 independently and com-
bine results.

R-Rule 8. If there are at most 10 distinct variables in F ,
solve F in constant time.

R-Rule 9 ((Xu, Chen, and Wang 2016)). There is a
polynomial-time algorithm that takes an instance (F, k) of
the MAXSAT problem as an input and outputs a new instance
(F ′, k′) satisfying the following conditions: (i) k′ 6 k;
(ii) (F, k) is a Yes-instance if and only if (F ′, k′) is a Yes-
instance; (iii) there are no two 3-variables in F ′ that co-
appear twice or more.

Proof. In the original paper, authors formulate this state-
ment for (n, 3)-MAXSAT. However, their proof can be re-
peated for the general case of MAXSAT without changes.
Indeed, they never use the fact that they have an instance of
(n, 3)-MAXSAT instead of the general MAXSAT.

Additionally, let us introduce a few auxiliary lemmas.

Lemma 1 ((Gaspers and Sorkin 2012)). Maximum Satisfia-
bility problem restricted to formulas with clauses of length
at most 2, MAX-2-SAT, can be solved in 2

m
6.321 time where

m is the number of clauses in the input formula.

Corollary 1 (*). MAXSAT on instances where each vari-
able appears more than three times and each clause has a
length exactly two can be solved in 2

d
12.642 which essentially

corresponds to (12.642, 12.642)-branching vector.

Lemma 2 (*). If there is a (p, q)-variable z, and (i, 1)-
variable y and formula has the following type: F = (z ∨
C1) ∧ ... ∧ (z ∨ Cp) ∧ (z ∨D1) ∧ ... ∧ (z ∨Dq) ∧ F ′, then
after application of R-Rules 5 and 6 y can appear at most
i− 1 times in C1, ..., Cp. Similar result hold for D1, ..., Dq .

Rules for 6+-Variables
This section aims to reduce general MAXSAT to (n, 5)-
MAXSAT. We achieve this result by branching in variables
with a high degree. We start with the following important
lemma.

Lemma 3 (Lemma 2 in (Alferov and Bliznets 2021)). Let
x be an (i, j)-variable (i + j > 4) in the formula F =
(x ∨C1) ∧ ... ∧ (x ∨Ci) ∧ (x ∨D1) ∧ ... ∧ (x ∨Dj) ∧ F ′.

The branching on x gives at least a (i + j +
i∑

k=1

|Ck|, i +

j +
j∑

k=1

|Dk|) branching vector in measure d.

B-Rule 1 (*). If x is a (i, j)-variable such that i + j ≥ 6
and (i, j) 6= (4, 2), then branching on x gives at least (9, 7)-
branching.

From now on, if we have a 6+-variable in the formula, it
must be a (4, 2)-variable. So either our formula already does
not contain 6+-variables or has the following type:
F = (x ∨ C1) ∧ (x ∨ C2) ∧ (x ∨ C3) ∧ (x ∨ C4) ∧ (x ∨

D1) ∧ (x ∨D2) ∧ F ′.
B-Rule 2 (*). Let F has the type described above, and at
least one of the conditions below is met:

• |D1|+ |D2| > 0;
• |C1|+ |C2|+ |C3|+ |C4| > 4;
• there is a 3- or 4-variable in C1, C2, C3, C4;
• there is a 5-variable that appears in C1, C2, C3, C4 more

than once.

Branching on x gives at least (11, 6)-branching.

Now we can assume that D1, D2 are empty and |C1| =
|C2| = |C3| = |C4| = 1.

B-Rule 3. If x, y are (4, 2)-variables such that F = (x ∨
ly)∧ (x∨C2)∧ (x∨C3)∧ (x∨C4)∧ (x)∧ (x)∧F ′, where
ly is a literal of y, then branching on y gives at least (12, 6)
branching.

Proof. Branching on y gives us at least (10, 6) by similar
reasons as in the proof of B-Rule 1. However, in ly = 0

branch after elimination ly and its neighbors x still will be at
least 3-variable and R-Rule 3 would be applicable. So in this
branch measure additionally drops at least by 2. The mea-
sure’s decrease will increase by at least two. Hence, depend-
ing on ly the branching vector is at least (10+2, 6) = (12, 6)
or (10, 6 + 2) = (10, 8).

It is left to consider only the situation described below.

B-Rule 4. Let x be a (4, 2)-variable and formula has the
following type: F = (x∨ l1)∧ (x∨ l2)∧ (x∨ l3)∧ (x∨ l4)∧
(x) ∧ (x) ∧ F ′ where l1, l2, l3, l4 are literals of four distinct
5+-variables. Consider the following branching:
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• x = 1;
• x = 0, l1 = 1;
• x = 0, l1 = 0, l2 = l3 = l4 = 1.

It gives at least (10, 11, 26)-branching.

Proof. First of all, we prove the correctness of this rule. Let
σ be an optimum assignment such that at most two literals
from l1, l2, l3, l4 are set to true and σ(x) = 0. Then, if we flip
the value of x, the new assignment σ′ will satisfy at least the
same number of clauses as σ. So, it is enough considering
only assignments such that either x equals 1, or x equals 0,
and at least three literals among l1, l2, l3, l4 are 1.

In the first branch, we eliminate variable x and literals
l1, l2, l3, l4. Variable x and variable of literal l1 are elim-
inated in the second branch. Since l1 is a literal of a 5+-
variable, the measure drops at least by 11. Finally, in the
third branch, variables of x, l1, l2, l3, l4 are eliminated. So
the measure decreases at least by 6 + 5 · 4 = 26.

Presented branching rules exhaust all possibilities of how
6+-variable can appear in the input formula. Essentially
we reduce MAXSAT problem to (n, 5)-MAXSAT. The
worst branching is (9, 7), so if we manage to solve (n, 5)-
MAXSAT in O∗(1.0911d) time, we also solve MAXSAT
within this running time. Hence, also in O∗(1.0911L).

Rules for 5-Variables
In this section, we present reduction and branching rules that
allow us to handle 5-variables and produce at least (7, 9)-
branching with respect to measure d.

Lemma 4 (* (Alferov and Bliznets 2021)). It is enough to
consider only input formulas F of the following type:

(x∨C1)∧ (x∨C2)∧ (x∨C3)∧ (x∨D1)∧ (x∨D2)∧F ′

where all 5-variables are (3, 2)-variables, C1, C2, C3 are
not empty, |D1| ≥ |D2| and D1 is not empty.

Below we consider two separate cases depending on
whether D2 is empty.

D2 is empty
R-Rule 10 (*). If there are two (3, 2)-variables x and y such
that F = (x∨ y)∧ (x∨ y ∨C1)∧ (x∨ y ∨C2)∧ (x∨ y)∧
x ∧ (y ∨D) ∧ F ′, then set x = y.

B-Rule 5. If there are two (3, 2)-variables x and y such that
F = (x ∨ ly) ∧ (x ∨C2) ∧ (x ∨C3) ∧ (x ∨D1) ∧ (x) ∧ F ′
and literal ¬ly appear in at most 2 clauses with variable x,
then branching on y gives us at least (11, 6)-branching.

Proof. Let s be the total number of literals co-appearing
with literal ¬ly . We consider two branches, ly = 0 and
ly = 1. In branch ly = 0, R-Rule 3 would be applicable
for variable x.

Let us analyze the decrease of measure in branch ly = 0:

• if literal ¬ly and variable x do not share any clauses, then
the measure decreases at least by ∆ > s + 3 since x
becomes a 3-variable after application of R-Rule 3.

• if literal ¬ly and variable x share one clause, then ∆ >
s + 4, since x becomes a 4-variable after assignment of
ly = 0 and disappears after R-Rule 3.

• if literal ¬ly co-appears twice with variable x, then ∆ >
s + 1 + 2 = s + 3, since x becomes 3-variable after
assigning ly = 0 and disappears after the application of
R-Rule 3.

By Lemma 4, we know that y’s positive literals have at least
three neighbors, and its negative literals have at least one
neighbor. Branching on y gives at least (6, 8)-vector. The
above argument implies that the measure additionally drops
by 3 in one of the branches. So we have at least (6, 11) or
(9, 8)-branching.

R-Rule 11 (*). If x is a (3, 2)-variable, y is a (2, 2)-variable
and F = (x∨ y)∧ (x∨ y)∧ (x∨ y ∨C)∧F ′, then we can
set x = y.

B-Rule 6. If x is a (3, 2)-variable and F = (x∨C1)∧ (x∨
C2) ∧ (x ∨ C3) ∧ (x ∨ D) ∧ x ∧ F ′, then branching on x
gives at least (11, 6)-branching vector.

Proof. We can claim, using lemma 2, that each 3-variable
appears in C1, C2, C3 at most once and each (3, 1)-variable
appears in C1, C2, C3 at most twice.

If Ci contains only one literal and it belongs to 5-variable,
then one of the following is true: (i) B-Rule 5 is applicable;
(ii) R-Rule 10 is applicable; (iii) F = (x ∨ y) ∧ (x ∨ y ∨
C1) ∧ (x ∨ y ∨ C2) ∧ (x ∨ y ∨ E) ∧ x ∧ (y ∨D) ∧ F ′ and
|E| > 0.

In case (iii) branching on x gives:

∆0 > 5︸︷︷︸
x

+ 1︸︷︷︸
E

+ 1︸︷︷︸
y

= 7

∆1 > 5︸︷︷︸
x

+ 5︸︷︷︸
y

= 10

⇒ (10, 7)

If 4-variable appears three times in the union of
C1, C2, C3, then the formula has the following type F =
(x∨y∨C ′1)∧(x∨y∨C ′2)∧(x∨y∨C ′3)∧(x∨D)∧x∧F ′.

If at least two clauses among C ′1, C
′
2, C

′
3 are not empty,

then branching on x leads to:

∆0 > 5︸︷︷︸
x

+ 1︸︷︷︸
D

= 6

∆1 > 5︸︷︷︸
x

+ 4︸︷︷︸
y

+ 2︸︷︷︸
C′

1,C
′
2,C

′
3

= 11

⇒ (11, 6)

If C ′3 is empty, then C ′1 and C ′2 are not empty; otherwise,
R-Rule 3 is applicable. So, if C ′3 = ∅ we have (11, 6)-
branching.

If C ′3 6= ∅, then either we have a (11, 6)-branching or
C ′1 = C ′2 = ∅. In this case, R-Rule 11 is applicable.

At this point, we have that if Ci = l for some i, l, then l is
not a literal of a 5-variable, each 3-variable appears at most
once in C1, C2, C3, and each 4-variable appears at most
twice inC1, C2, C3. Hence, deletion ofCi for any i = 1, 2, 3
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decreases measure at least by 2. Since C1, C2, C3 are not
empty, branching on x gives us:

∆0 > 5︸︷︷︸
x

+ 1︸︷︷︸
D

= 6

∆1 > 5︸︷︷︸
x

+ 2 + 2 + 2︸ ︷︷ ︸
C1,C2,C3

= 11

⇒ (11, 6)

D2 is not empty
B-Rule 7 (*). If x is a (3, 2)-variable and F = (x ∨C1) ∧
(x∨C2)∧(x∨C3)∧(x∨D1)∧(x∨D2)∧F ′ and |D1|, |D2| >
0, then branching on x gives at least (7, 9)-branching.

Again, in the section the worst branching vector is (9, 7)
so it is left to solve (n, 4)-MAXSAT in O∗(1.0911d), or
faster than 1.4172n.

Rules for 4-Variables
This section presents an algorithm for branching on 4-
variables in (n, 4)-MAXSAT. Before we proceed, we recall
a Lemma from (Alferov and Bliznets 2021):
Lemma 5. Let x be a 4-variable in (n, 4)-MAXSAT for-
mula such that literal x has t neighbors. Let Fx=1 be the
formula obtained by setting x = 1 in F and exhaustive ap-
plication of R-Rules 1-7. Then d(F )− d(Fx=1) ≥ 4 + 2t

(2, 2)-variables
Our formula can be represented as:
F = (x ∨ C1) ∧ (x ∨ C2) ∧ (x ∨D1) ∧ (x ∨D2) ∧ F ′.
R-Rule 12 (R-Rule 10 in (Alferov and Bliznets 2021)). If
x is (2, 2)-variable and F = (x ∨ l) ∧ (x ∨ l) ∧ F ′ or
F = (x ∨ l) ∧ (x ∨ l) ∧ F ′, then we can set l = x or l = x
respectively.

Claim 1. Clauses C1, C2 contain at least two variables.
Moreover, if |D1|, |D2| > 0, then clauses D1, D2 also con-
tain at least two variables.

Proof. If the statement is not true, R-Rule 3 or R-Rule 12
are applicable.

Due to R-Rules 1, 3 at most one of the clauses
C1, C2, D1, D2 is empty. Let it be D2. Below we consider
two cases: |D2| > 0 and |D2| = 0.

D2 is empty First, we present some reduction rules.
R-Rule 13 (R-Rule 13 in (Alferov and Bliznets 2021)). If x
is (2, 2)-variable, F = (x ∨ C1) ∧ (x ∨ C2) ∧ (x ∨D1) ∧
(x) ∧ F ′ and C1, C2 contain complementary literals, then
set x = 0.

R-Rule 14 (*). If x is a (2, 2)-variable x and F = (x ∨ l ∨
C1) ∧ (x ∨ C2) ∧(x ∨ l) ∧ x ∧ F ′, then set x = 0.

R-Rule 15 (R-Rules 15-16 in (Alferov and Bliznets 2021)).
Suppose x is a (2, 2)-variable, ly, ty are literals of 3-
variable y and F = (x ∨ ly ∨ C ′1) ∧ (x ∨ C2) ∧ (x ∨ ly)
∧x ∧ (ty ∨ E) ∧ F ′. Let G = (x ∨ C ′1 ∨ E) ∧ (x ∨ C2)
∧x ∧ F ′.

• If ly = ty , then set x = l;
• If ly = ty , then: (F, k)→ (G, k − 2).

R-Rule 16 (*). If x is a (2, 2)-variable and y is a 4-variable
such that F = (x∨ y∨C ′1)∧ (x∨ y∨C ′2)∧ (x∨ y)∧ (x)∧
(ly ∨ E) ∧ F ′, then set x = 0.

R-Rule 17 (*). If x is a (2, 2)-variable, l is a literal, F =
(x ∨ l) ∧ (x ∨ C) ∧ (x ∨ l) ∧ x ∧ F ′, then set x = l.

B-Rule 8 (*). Let x be a (2, 2)-variable, |D2| = 0, |C1|,
|C2|, |D1| > 0, then it is enough to consider branching into
two cases: (i) x = 0; (ii) x = 1, C1 = C2 = 0, D1 6= 0.
It gives at least (12, 6)-branching. We note that if |D1| = 1,
we setD1 = 1; otherwise, we are not using information that
D1 6= 0.

D2 is not empty To tackle the case, first, we present a re-
duction rule.
R-Rule 18 (*). Let x be a (2, 2)-variable, y be a (2, 2) or (2,
1)-variable andF = (x∨ly)∧(x∨ly)∧(x∨C)∧(x∨D)∧F ′,
where ly is a literal of y and C,D do not contain y. We can
set x = ly .

B-Rule 9. Let x be a (2, 2)-variable and |C1|, |C2|, |D1|,
|D2| > 0. In this situation branching on x produce at least
(10, 8)-branching.

Proof. To analyze this branching rule, we consider sev-
eral cases. Note that clauses D1, D2 are symmetrical with
C1, C2; this allows us to reduce the number of considered
cases.

If C1, C2 contains at least three distinct variables, then:

∆0 > 4︸︷︷︸
x

+ 2 + 2︸ ︷︷ ︸
D1∪D2

= 8

∆1 > 4︸︷︷︸
x

+ 2 + 2 + 2︸ ︷︷ ︸
C1∪C2

= 10

⇒ (8, 10)

Recall that by Claim 1 C1, C2 contain at least two differ-
ent variables, as well asD1, D2. So, now it is enough to con-
sider the case when the union ofC1, C2 contains exactly two
variables and the union of D1, D2 also contains exactly two
variables. Assume that the union of C1, C2 contains vari-
ables y, z.

Firstly, we consider the case when y appears in C1 and
C2.

From Lemma 2 follows that y is a 4-variable. Note that
∆0 ≥ 8 as in the previous case and ∆1 > 4 + 4 + 2 = 10
(variables x, y disappear and one literal). Hence, again we
have a (8, 10)-branching.

It is left to consider the case when |C1| = |C2| = |D1| =
|D2| = 1. Let C1 = ly, C2 = lz , here ly is a literal of
variable y, and lz is a literal of variable z.

If variable y appears inD1 orD2, then the formula can be
represented as:

F = (x ∨ ly) ∧ (x ∨ lz) ∧ (x ∨ sy) ∧ (x ∨D2) ∧ F ′

If sy = ly , then R-Rule 3 is applicable. Hence, sy = ly . If
y is a (2, 2) or (2, 1)-variable, then R-Rule 18 is applicable.
So y is a (3, 1)-variable. It follows that F ′ either contains
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two clauses with ly or two clauses with ly . In this case, R-
Rule 1 would be applicable for y either in branch x = 0 or
in branch x = 1. Consequently, the measure drops at least
by 4 + 2 + 2 = 8 in the first branch (we eliminate x and two
literals of different variables) and at least by 4 + 4 + 2 = 10
in the second (we eliminate x, y and one additional literal).
Hence, we have a (10, 8)-branching.

The last case is when |C1| = |C2| = |D1| = |D2| = 1
and the union of these clauses contains four distinct vari-
ables.

If there is a (k, 1)-variable among C1, C2, D1, D2. Let it
be variable y. Without loss of generality, variable y appears
in C1. There are two possibilities: either C1 = y or C1 = y.
In the first case F = (x∨y)∧(y∨E2)∧ ...∧(y∨Ek)∧(y∨
H) ∧ F ′ and R-Rule 1 would be applicable for y in branch
x = 0. So we get:

∆0 > 4︸︷︷︸
x

+ 2 + 2︸ ︷︷ ︸
D1∪D2

+ 2︸︷︷︸
y

= 10

∆1 > 4︸︷︷︸
x

+ 2 + 2︸ ︷︷ ︸
C1∪C2

= 8

⇒ (10, 8)

In the second case formula F can be represented as:

F = (x ∨ y) ∧ (x ∨ lz) ∧ (y ∨ E1) ∧ ... ∧ (y ∨ Ek) ∧ F ′

In branch x = 1, we apply R-Rule 1 to eliminate y. If
there is a variable w in

⋃k
i=1Ei distinct from z, then in

branch x = 1 we eliminate variables x, y as well as liter-
als of variables z, w. So we have:

∆0 > 4︸︷︷︸
x

+ 2 + 2︸ ︷︷ ︸
D1∪D2

= 8

∆1 > 4︸︷︷︸
x

+ 2 + 2︸ ︷︷ ︸
C1∪C2

+ 2︸︷︷︸⋃k
i=1 Ei

= 10

⇒ (8, 10)

If there is no such variable, then y and z co-appear at least
twice. So they cannot be both 3-variables; otherwise, R-Rule
9 is applicable. It means that at least one of these variables
is a 4-variable. Since we apply R-Rule 1 in branch x = 1,
we set y = 1, and after simplification, variable z disappears.
∆0 is the same as in the previous case. ∆1 > 4 + 4 + 2 =
10, since we eliminate x, y, z (two 4-variables and one 3+-
variable).

The only unconsidered case is when all of the variables
in C1, C2, D1, D2 are (2, 2)-variables. Since B-Rule 8 and
all previous cases are not applicable, there is a closed sub-
formula on (2, 2)-variables with each clause consisting of
exactly two variables. So we can apply R-Rule 7 and then
Corollary 1.

(3, 1)-variables
We know that all 4-variables in our formula are (3, 1)-
variables. So either our formula contains only of 3-variables,
or we can apply the following branching rule:

B-Rule 10. Let x be a (3, 1)-variable and F has the follow-
ing type: F = (x∨C1)∧(x∨C2)∧(x∨C3)∧(x∨D)∧F ′,
then branch into two cases:

1. x = 0, C1 = C2 = C3 = 1, D = 0;
2. x = 1

Proof. The soundness of this rule is guaranteed by Lemma 1
from (Alferov and Bliznets 2021).

First of all, we prove an auxiliary claim:

Claim 2. In branch x = 1 our measure decrease by 4 +
2(|C1|+ |C2|+ |C3|).

Proof. In order to show the statement, it is enough to prove
that each 3-variable can appear at most once in C1, C2, C3

and each 4-variable appears at most twice in C1, C2, C3.
This claim is a direct corollary from Lemma 2. Indeed,

since 4-variables are actually (3, 1)-variables they can ap-
pear at most twice in C1, C2, C3. The same may be said
about 3-variables that are (2, 1)-variables.

Equipped with the recently proved claim, we show at least
(4, 16)-branching. To show this, we consider several cases
depending on the values of |C1|, |C2|, |C3|. Note that all
|Ci| > 0, since R-Rule 1 is inapplicable.

1. If |C1| = |C2| = |C3| = 1: we know that in branch
x = 0 it is sufficient to consider Ci 6= 0, so literals from
Ci’s will be assigned. Moreover, there are at least two
variables in the union of C1, C2, C3, so we have ∆0 >
4 + (2 + 2) = 8 and ∆1 > 4 + 2(1 + 1 + 1) = 10 by the
proved claim.

2. If there is i, j such that |Ci| = 1 and |Cj | > 1, then we
have: ∆0 > 4 + 2 = 6 and ∆1 > 4 + 2(1 + 1 + 2) = 12

3. If |C1|, |C2|, |C3| > 1, then we have: ∆0 > 4 and ∆1 >
4 + 2(2 + 2 + 2) = 16.

The worst branching vector in this section is (4, 16),
so we can solve (n, 4)-MAXSAT in O∗(1.08391d) (in
O∗(1.3803n)) if we show how to solve (n, 3)-MAXSAT in
O∗(1.08391d).

Rules for 3-Variables
In this section, we present an algorithm for (n, 3)-MAXSAT.
As we can eliminate variables that appear once and twice,
we may assume that all variables appear exactly three times.
In (Belova and Bliznets 2020), it was shown that either we
can apply some reduction rules on formula F or we can find
variable x such that

F = (x ∨ C1) ∧ (x ∨ C2) ∧ (x ∨ C3) ∧ F ′,

with |C1|, |C2|, |C3| > 0.
Moreover, the algorithm from (Belova and Bliznets 2020)

has the following structure: (i) it applies exhaustively re-
duction rules in polynomial time; (ii) it applies branching
rules from (Xu et al. 2019a) for cases when (C1, C2, C3) ∈
{(1, 2, 2), (2, 2, 1), (≥ 3,≥ 2, 1)}; (iii) branching rules for
all others cases depending on values of |C1|, |C2|, |C3|. It
is important to note that step (ii) contains all bottle-neck
cases of algorithm from (Belova and Bliznets 2020). As the
branching vector for rules from step (iii) is at least (6, 3) in
terms of n and (12, 6) in terms of measure d. So it is enough
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to replace branching rules from step (ii) with more effi-
cient ones. We consider two cases: (i) |C1| = 1, |C2| = 2,
|C3| = 2 and (ii) |C1| ≥ 2, |C2| ≥ 2, |C3| = 1. We present
branching with vectors at least (12, 6) and (16, 4) corre-
spondingly. The discussion above shows that it is enough
to prove a O∗(1.1749n) upper bound for (n, 3)-MAXSAT.

Before we proceed, we recall that no 3-variables co-
appear more than once due to R-Rule 9. Besides, we use
the following lemma.

Lemma 6. If F = (x ∨ y) ∧ (x ∨ C1) ∧ (x ∨ C2) ∧ (y ∨
D1) ∧ (y ∨D2) ∧ F ′ then we can set x = y.

Proof. Indeed, after assigning x to 1, variable y appears as
positive literal only, so we should assign y = 1.

It is left to show that for an optimum assignment with x =
0, y = 1, we can find another optimum assignment with x =
1, y = 1. Indeed, if we substitute y = 1 in the formula and
simplify, the formula will contain clauses (x), (x∨C1), (x∨
C2) and it is evident that if we flip the value of x from 0 to
1, we gain at least one satisfied clause and lose at most one
clause. So we get an optimum assignment with x = y =
1.

B-Rule 11. (*) If |C1| = 1, |C2| = |C3| = 2, then there is
at least (16, 4)-branching.

B-Rule 12. If |C1| > 2, |C2| > 2, |C3| = 1, then there is a
(16, 4)-branching

Proof. We consider two cases: C3 = y or C3 = y.
If C3 = y then:

F = (x∨C1)∧(x∨C2)∧(x∨y)∧(y∨D1)∧(y∨D2)∧F.′

Simple branching on x = 1 and x = 0 gives us:

∆0 > 2︸︷︷︸
x

+ 2︸︷︷︸
y

+ 4︸︷︷︸
D1,D2

= 8

∆1 > 2︸︷︷︸
x

+ 4︸︷︷︸
C1

+ 4︸︷︷︸
C2

= 10

⇒ (8, 10),

since D1 and D2 are not empty and cannot share variables,
as well as |C1|, |C2| ≥ 2 and also do not share any variables
due R-Rule 9.

If C3 = y then:

F = (x∨C1)∧(x∨C2)∧(x∨y)∧(y∨E1)∧(y∨E2)∧F ′.

Here, we can apply Lemma 6 with roles of x, y changed.
So after simplification, we get a (3, 1)-variable, and we can
apply branching on it having at least (4, 16)-branching.

The worst branching vector in this section is (4, 16). So
we can solve (n, 3)-MAXSAT in O∗(1.08391d) running
time which is O∗(1.1749n). And with previous sections
this imply O∗(1.08391d), O∗(1.08391L), O∗(1.3803n) al-
gorithms for (n, 4)-MAXSAT, as well as O∗(1.0911d),
O∗(1.0911L) algorithms for MAXSAT.

Algorithms in Terms of k and m

Theorem 1. (Belova and Bliznets 2020) Assume that
MAXSAT parameterized above matching can be solved in
O∗(ck

′

1 ) time, (n, s)-MAXSAT can be solved in O∗(cn2 ) and

c = c2
log c1

log c1+log c2 . In this case, we can check if in the input
CNF we can satisfy at least k clauses in O∗(ck).

Proof. We note that in (Belova and Bliznets 2020) the theo-
rem is formulated only for s = 3. However, the proof never
uses the fact and can be repeated for any s.

Theorem 2. (n, 3)-MAXSAT can be solved in O∗(1.1554k)
running time. (n, 4)-MAXSAT can be solved inO∗(1.2989k)
running time.

Proof. In Corollary 6 from (Basavaraju et al. 2016), it
was shown that MAXSAT parameterized above matching
can be solved in O∗(4k

′
). In the paper, we showed that

(n, 4)-MAXSAT and (n, 3)-MAXSAT admit O∗(1.3803n)
andO∗(1.1749n) algorithms respectively. Hence, we proved
claimed results by Theorem 1.

Conclusion
In the paper, we improve an algorithm for MAXSAT
from O∗(1.0927L) to O∗(1.0911L). Moreover, we signif-
icantly improve running times for (n, 4)-MAXSAT from
O∗(1.4254n) to O∗(1.3803n) and for (n, 3)-MAXSAT
from O∗(1.191n) to O∗(1.1749n). Besides the results im-
ply upper bounds in terms of k for (n, 3)-MAXSAT and
(n, 4)-MAXSAT. The new upper bounds in terms of k are
(1.1554k) and O∗(1.2989k) respectively. So, most proba-
bly, for future improvements of MAXSAT, one only has to
focus on 5-variables.

We note that results for (n, 4)-MAXSAT in terms of n
were achieved thanks to the discounted measure introduced
in (Alferov and Bliznets 2021), so our research once again
emphasizes the importance of using non-standard measures
in evaluating the complexity of input formulas. Also, our
paper shows the usefulness of the measure even in obtaining
results in terms of k and m.

Some of our reduction rules might be used in preprocess-
ing steps of solvers. However, their efficiency requires fur-
ther research. We found our new reduction rule, R-Rule 6,
especially useful in proving upper bounds and analyzing
our algorithm. However, its practical usefulness requires
more investigation. Newly designed branching rules also
might positively influence the construction of branching-
based solvers.
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