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Abstract

Food recognition has a wide range of applications, such as
health-aware recommendation and self-service restaurants.
Most previous methods of food recognition firstly locate in-
formative regions in some weakly-supervised manners and
then aggregate their features. However, location errors of in-
formative regions limit the effectiveness of these methods to
some extent. Instead of locating multiple regions, we propose
a Progressive Self-Distillation (PSD) method, which progres-
sively enhances the ability of network to mine more details
for food recognition. The training of PSD simultaneously
contains multiple self-distillations, in which a teacher net-
work and a student network share the same embedding net-
work. Since the student network receives a modified image
from its teacher network by masking some informative re-
gions, the teacher network outputs stronger semantic repre-
sentations than the student network. Guided by such teacher
network with stronger semantics, the student network is en-
couraged to mine more useful regions from the modified im-
age by enhancing its own ability. The ability of the teacher
network is also enhanced with the shared embedding net-
work. By using progressive training, the teacher network in-
crementally improves its ability to mine more discriminative
regions. In inference phase, only the teacher network is used
without the help of the student network. Extensive experi-
ments on three datasets demonstrate the effectiveness of our
proposed method and state-of-the-art performance.

Introduction
Food is a necessity of human life and the foundation of
human experience. As a basic research in food field, food
recognition has a wide range of applications such as visual
food choice (Chen et al. 2020a), health-aware recommenda-
tion (Nag, Pandey, and Jain 2017) and self-service restau-
rants (Aguilar et al. 2018).

Food recognition belongs to fine-grained recognition,
which refers to the task of distinguishing subordinate cat-
egories, such as birds, dogs and cars. Most previous meth-
ods of food recognition (Martinel and Foresti 2018; Jian-
ing et al. 2019; Min et al. 2020, 2019; Wang et al. 2022)
mainly follow the key solution of fine-grained recognition,
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Part-fixed Fine-grained Images (Barn Swallow)

Food Images (Greek Salad)

Figure 1: Some fine-grained bird images and food images.
There may be three discriminative regions in ‘Barn Swal-
low’ (see bounding boxes), while ‘Greek Salad’ contains
lots of similar regions, each of which is possibly discrimi-
native. Therefore, we think that food images have more in-
formative regions than part-fixed fine-grained images.

which firstly locates informative regions in some weakly-
supervised manners, and then aggregates features of these
regions. Although these methods achieve promising perfor-
mance, they possibly suffer from location errors of those
informative regions, leading to the limited effectiveness to
some extent.

In comparison with part-fixed fine-grained images such
as birds, food images include a variety of similar ingredients
stacked together. As shown in Figure 1, there are some se-
mantic parts (e.g., head and claw) in ‘Barn Swallow’, while
lots of sliced material (e.g., cucumbers and cheese), fruit and
vegetable are stacked together in ‘Greek Salad’. An intu-
itive hypothesis is that food images have more informative
regions than part-fixed fine-grained images. However, it is
challenging to capture so many informative regions under
the existing training mechanism of vanilla networks, since
training these regions together can not effectively learn each
of them.

In this paper, we propose a self-boosting training mech-
anism, called Progressive Self-Distillation (PSD), to learn

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

3879



more details for food recognition. Instead of aggregating
multiple detected local features, the proposed PSD progres-
sively enhances the ability of network to mine other informa-
tive regions from an image with some informative regions
masked. To be more specific, the training of PSD simul-
taneously contains multiple self-distillations. In each self-
distillation, a teacher network and a student network share an
embedding network. The student network receives a modi-
fied image from its teacher network by removing some infor-
mative regions. Thus, the teacher network outputs stronger
semantic representations than the student network. Guided
by such teacher network with stronger semantics, the stu-
dent network is encouraged to mine other discriminative re-
gions from modified images by improving its own ability.
Correspondingly, the ability of the teacher network is also
enhanced with the shared embedding network. In the next
self-distillation, more informative regions are masked in the
input image of the student network based on the previous
self-distillation. The multiple self-distillations are learned
together by adjusting their weights with a ramp-up function
to achieve progressive training. In this way, the teacher net-
work incrementally improves its ability to mine more dis-
criminative regions. Only the teacher network is used for in-
ference without the help of the student network.

The proposed method can be flexibly implemented with
different architectures of the embedding network. Two rep-
resentative architectures are employed, including convolu-
tion neural networks (CNNs) and vision Transformers (e.g.,
Swin Transformer (Liu et al. 2021)). Comprehensive exper-
iments on three benchmark datasets demonstrate the effec-
tiveness and superiority of our method.

The contributions of our paper are summarized as follows:

• We propose a progressive self-distillation method, which
progressively mines more informative regions in a self-
boosting manner for food recognition.

• The proposed method is flexible to architectures of the
embedding network including convolution neural net-
works and vision Transformers.

• We conduct extensive evaluation on three popular food
benchmark datasets to verify the effectiveness of the pro-
posed method.

Related Work
Food Recognition
In the earlier years, some works use hand-crafted features
(Lowe 2004) or combination of hand-crafted features (Mar-
tinel et al. 2015) for food recognition. With the development
of CNNs (He et al. 2016), some works (Kagaya, Aizawa,
and Ogawa 2014) directly employ various types of CNNs
for food recognition.

Recently, some works (Martinel and Foresti 2018; Jianing
et al. 2019; Min et al. 2020, 2019) follow the key solution
of fine-grained recognition, which firstly locates informa-
tive regions in some weakly-supervised manners, and then
combines features of these regions with a global feature for
food recognition. For examples, the information of ingredi-
ent (Min et al. 2019) is leveraged to extract local features,

and these local features and a global feature are combined
to recognize food images. A slice network (Martinel and
Foresti 2018) is proposed to capture specific vertical food
layers, and then combine the features of slice network with
ones from backbone network for food recognition. Although
obtaining the impressive performance, these methods possi-
bly locate some incorrect regions, which limits their effec-
tiveness. Moreover, these methods require to locate multiple
regions and aggregate features of these regions, resulting in
high computational overhead in both training phase and in-
ference phase. Different from the above existing works of
aggregating multiple regions, the proposed PSD learns more
informative regions in a self-boosting manner. Compared
with a standard classification network, the PSD does not
bring extra computational overhead in the inference phase.

Self-supervised Learning
The approaches of self-supervised learning focus on design-
ing auxiliary objectives to learn useful feature representa-
tions by using the structure of the data itself. The auxiliary
objectives can be handcrafted pretext tasks, such as relative
patch prediction (Doersch, Gupta, and Efros 2015), solv-
ing jigsaw puzzles (Noroozi and Favaro 2016) and rotation
prediction (Komodakis and Gidaris 2018). Although these
methods learn useful feature representations with big net-
works and long training (Kolesnikov, Zhai, and Beyer 2019),
they heavily rely on somewhat adhoc pretext tasks, which
limits the generalization ability of learned representations to
some extent.

Recently, contrastive learning (Hadsell, Chopra, and Le-
Cun 2006) is increasingly successful in self-supervised
learning. The core idea of contrastive learning is to attract
the positive sample pairs and repulse the negative sample
pairs. In practice, contrastive learning methods benefit from
a large number of negative samples, which can be main-
tained in a memory bank (Wu et al. 2018). Without re-
quiring specialized architectures or a memory bank, a sim-
ple contrastive self-supervised learning (Chen et al. 2020b)
is proposed while this work requires a large batch size to
work well. And a dynamic dictionary (He et al. 2020) is
used with a queue and a moving-averaged encoder, build-
ing a large and consistent dictionary on-the-fly. To eliminate
the requirement of negative samples for reducing memory
consumption, a series of works (Chen and He 2021; Grill
et al. 2020) retain siamese architectures to learn invariant
features by matching positive samples, and employ a stop-
gradient operation to prevent model from collapsing. Inter-
esting, the representations from contrastive self-supervised
pre-training can outperform their supervised counterparts in
certain tasks. In this paper, we borrow contrastive learning
for food recognition at semantic levels in a self-boosting
manner to some extent.

Knowledge Distillation
The concept of knowledge distillation was firstly proposed
in (Hinton et al. 2015). In a learning paradigm of knowl-
edge distillation, a bigger teacher network guides the train-
ing of a smaller student network to transfer its knowledge to
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Figure 2: The training pipeline of the proposed method PSD. The PSD contains multiple self-distillations, and in each self-
distillation, a teacher network and a student network share the same embedding network but with different head networks.

the student network. The knowledge can be distilled via se-
mantic distributions (Tung and Mori 2019; Zhao et al. 2022;
Chen et al. 2022) or intermediate features (Heo et al. 2019;
Tian, Krishnan, and Isola 2020). To enhance efficiency and
effectiveness in knowledge transferring, self knowledge dis-
tillation is proposed to utilize knowledge from itself, without
the involvement of extra networks. For example, aggregation
of various distortion data is used to achieve self-distillation
(Lee, Hwang, and Shin 2020). Motivated by this, we propose
a progressive self-distillation method to mine more details
for food recognition.

The Proposed Method
The proposed PSD progressively enhances the ability of net-
work to mine more discriminative regions for food recog-
nition. As shown in Figure 2, the training pipeline of PSD
includes multiple self-distillations. In this section, we first
present the framework of self-distillation, and then introduce
how to organize multiple self-distillations for progressive
training. Finally, the method implementation is provided.

Self-Distillation
In self-distillation, there are a teacher network and a stu-
dent network, as shown in Figure 2. The teacher network
and the student network share the same embedding network
but with corresponding head networks. In the teacher net-
work, an original image is inputted. An input image of a
student network is modified from its teacher network by re-

moving some informative regions. Next, we will introduce
how to obtain an input image of a student network, and how
to distill.

Locating Discriminative Region. The discriminative re-
gions are located with high class responses of feature map.
Given an input image x, an embedding network is used to
extract a feature map f(x; θ) = S ∈ RH×W×D, where
f(; θ) represents an embedding network with parameter θ,
D is the number of feature channels, and H ×W is the spa-
tial size of the feature map. When using vision Transformer
as an embedding network, the tokens T × D are reshaped
to a H × W × D feature map. The feature map S is then
fed to a class response module, which contains a global av-
erage pooling layer followed by a fully connected layer. The
weight matrix of the fully connected layer is Θ ∈ RD×C ,
where C is the number of food categories. Then a Class Re-
sponse Map (CRM) of the c-th category Mc is computed as:

Mc =
D∑

d=1

Θd,c × Sd (1)

where Θd,c represents the d-th weight for the c-th category
in Θ , and Sd is a d-th feature map in S. The weight Θ needs
to be learned, and the optimization loss is:

Ll(x, y) = Lce(GAP(f(x; θ)) ∗Θ , y) (2)

where GAP() is a global average pooling operation, ∗ is
a matrix multiplication operation, Lce(, ) is a cross-entropy
loss, and y is the ground truth label.
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Figure 3: Some examples of original images, CRM and
modified images.

The location of high value in the class response map Mc

can represent discriminative area. Therefore, these high val-
ues in Mc is used to locate discriminative regions. A cer-
tain percentile η in Mc is used as a threshold. Supposing the
value of the percentile is ŵm, the location of discriminative
regions for the c-th category is calculated as:

Locc =

{
1, wm ≥ ŵm

0, wm < ŵm
(3)

where wm ∈ Mc.
Masking Discriminative Region. The ground truth label

is used to obtain the location of discriminative regions Locc,
and the discriminative regions are removed in image level.
The formulation of this process is defined as follows:

x̄ = (1− Locc)⊙ x, (4)
where ⊙ means an element-wise multiplication, and x̄ is a
modified image. As shown in Figure 3, the discriminative
regions are masked to form modified images.

Distillation Objective. The image x is fed into a teacher
network, and the modified image x̄ is fed into a student net-
work. Therefore, the teacher network outputs stronger se-
mantic information than the student network. The optimiza-
tion goal is to minimize difference in output distribution be-
tween the teacher network and the student network, and the
loss is as follows:

Ld(x, x̄) = DKL(h(f(x; θ);ϕt), h(f(x̄; θ);ϕs))) (5)
where DKL(, ) is Kullback-Leibler divergence, h(; ) repre-
sents a head network, and ϕt and ϕs are parameters of h(; )
in the teacher network and the student network, respectively.

Guided by stronger semantic information, the student net-
work is encouraged to mine other discriminative regions
from the modified image x̄, improving the ability of the stu-
dent network. The ability of the teacher network is also en-
hanced since the teacher network and the student network
share the same embedding network.

Progressive Training
Progressive training methodology has been widely utilized
for image generation tasks (Ahn, Kang, and Sohn 2018; Kar-
ras, Laine, and Aila 2019). This methodology starts with

generating low-resolution images, and then gradually in-
creases the generated resolution. In this methodology, an
easy task is completed first, and then the difficulty of the task
is gradually increased. Our work uses a progressive train-
ing methodology to organize multiple self-distillations. In
these self-distillations, an input image of the student net-
work is a modified image of student network in the previ-
ous self-distillation, except for the first time. In the first self-
distillation, the input image of student network is a modified
image of the teacher network.

The classification loss is:

Lg(x, y) = Lce(h(f(x; θ);ϕt), y) (6)

Combining with the classification loss, the locating loss Ll

in Eq. 2 and the distillation loss Ld in Eq. 5, the final opti-
mization loss is:

L = Lg(x, y) +
m∑
i=1

(ωl Ll(x̄i−1, y) + ωdLd(x, x̄i)) (7)

where x̄i is an input image of the student network in i-th
self-distillation, x̄0 is x, m is the number of self-distillation,
and ωl and ωd are balance parameters. Instead of using
a step-by-step progressive training like (Ahn, Kang, and
Sohn 2018; Karras, Laine, and Aila 2019), multiple self-
distillations are learned together by adjusting the value of
ωd during training phase. The ωd starts from a small value
to a fixed value α with a ramp-up function (Laine and Aila
2016), and it can be formalized as follows:

ωd =

{
α ∗ exp(−5(1− e

β )
2), e < β

α, e ≥ β
(8)

where e denotes the current epoch during training phase, α
is a scalar, and β is an integer.

At the begin of training, the predictions of the teacher
network may be incorrect. A small value of ωd can prevent
the student network learning incorrect knowledge from the
teacher network. After the predictions of the teacher net-
work become confident, a big value of ωd can encourage
the student network to learn correct knowledge from the
teacher network. Using a ramp-up ωd makes multiple self-
distillations of different difficulties learned together. By us-
ing this progressive training, the teacher network incremen-
tally improves the ability to mine more discriminative re-
gions for food recognition.

Implementation
The embedding network can be implemented with the vast
majority of networks. In this work, we use two types of net-
work architectures including vision transformers and CNN-
based networks. The head network contains a global aver-
age pooling layer and a fully connected layer. The class re-
sponse module acts on the feature map of the third hidden
layer in the embedding network. A stop-gradient operation
is performed on the feature map before inputting the class re-
sponse module. Therefore, the loss in class response module
(i.e., Eq. 2) does not affect the training of the embedding net-
work. Although our method PSD requires multi-stage net-
work calculation in training phase, only one stage network
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calculation (i.e., the teacher network) is used for classifica-
tion in inference phase. Compared with a standard classifi-
cation network, the PSD does not bring additional computa-
tional overhead in the inference phase.

Experiments
We will validate the effectiveness of the proposed method by
answering the following two questions: Q1. Is the proposed
method PSD effective for food recognition? Q2. Does the
proposed method PSD learn more discriminative regions?
In this section, the experimental setup is firstly introduced.
Next, the two questions are answered in experimental results
and analysis. Finally, the further analysis is provided.

Experimental Setup
Datasets. We validate our method on three commonly used
food datasets.

• ETHZ Food-101 (Bossard, Guillaumin, and Van Gool
2014) contains 101,000 images with 101 food categories.
Each category has 1,000 images including 750 training
images and 250 test images.

• Vireo Food-172 (Chen and Ngo 2016) contains 110,241
food images from 172 categories. Following commonly
used splits, 60%, 10%, 30% images of each food cate-
gory are randomly selected for training, validation and
testing, respectively.

• ISIA Food-500 (Min et al. 2020) consists of 399,726 im-
ages with 500 categories. The average number of images
per category is about 800. This dataset is divided into
60%, 10% and 30% images for training, validation and
testing, respectively.

Implementation Details. All experiments are implemented
on the Pytorch platform with one Nvidia A100 GPU. The in-
put image size is set to 224×224 in all experiments. For fair
comparisons and re-implementations, the same random seed
is used to eliminate the training bias in all experiments. Top1
accuracy and Top5 accuracy are used as evaluation metrics.
On Vireo Food-172 and ISIA Food-500, the model of the
highest performance on validation set is used for test. On
ETHZ Food-101, since there is no validation set, the last
model is used for test. We set a percentile η = 5% in Mc as
a threshold, ωl = 1, the ramp-up epochs β = 5 in Eq. 7, and
the number of self-distillation m = 2 in all experiments.

When employing Swin-B (Liu et al. 2021) as an embed-
ding network, the model is optimized by adamw (Kingma
and Ba 2014) algorithm with an initial learning rate of
5× 10−5 and a weight decay of 10−8. The model is initial-
ized with ImageNet-22K pre-trained model. A cosine decay
learning rate scheduler with 5 epochs of warm-up is used.
The total number of training epochs is 50, and a batch size
of 42 and gradient clipping with a max norm of 5 are used.
Similar to the work (Liu et al. 2021), gradient accumulation
step of 2 is used to reduce GPU consumption and stochastic
depth ratio of 0.2 is adopted. In Eq. 8, α = 2.0.

When employing DenseNet161 (Huang et al. 2017) as an
embedding network, the model is optimized using stochas-
tic gradient descent with a momentum of 0.9 and a weight

Method Top1 Top5

MF

WISeR (Martinel and Foresti 2018)† 90.27 98.71
IG-CMAN (Min et al. 2019) 90.37 98.42
PAR-Net (Jianing et al. 2019)† 90.40 -
MSMVFA (Jiang et al. 2019) 90.59 98.25
SGLANet (Min et al. 2020)† 90.92 98.24
IGRL (Wang et al. 2022) 92.36 98.68

SF

SFLR (Bolanos and Radeva 2017) 79.20 94.11
SENet154 (Hu and Shen 2018) 88.62 97.57
DLA (Yu et al. 2018)∗ 90.00 -
Incep-Res-v2 (Yin et al. 2018) 90.40 -
Incep-v4 (Kornblith et al. 2019)∗ 90.80 -
GPipe (Huang et al. 2019) 93.00 -
EfficientNet (Tan and Le 2019) 93.00 -
Grafit (Touvron et al. 2021) 93.70 -
DenseNet161 (Huang et al. 2017) 86.93 97.10
DenseNet161+PSD (our) 87.40 97.20
Swin-B (Liu et al. 2021) 93.91 99.03
Swin-B+PSD (our) 94.56 99.34

Table 1: Accuracy (%) comparison on ETHZ Food-101. †:
10 crop images for test. ∗: 448×448 resolution images. MF:
multi-feature aggregation. SF: single feature for test.

decay of 10−4. The model is initialized with ImageNet-1K
pre-trained model. The learning rate is initially set to 10−3

and divided by 10 after 10 epochs. The total number of train-
ing epochs is 30, and the batch size is 42. In Eq. 8, α = 1.0.

Experimental Results and Aanlysis
Evaluation on Three Benchmark Datasets. The experi-
mental results on ETHZ Food-101 are illustrated on Ta-
ble 1. We build a strong baseline with Swin Transformer
(Liu et al. 2021). The baseline method Swin-B has already
outperformed some previous best methods, including some
methods of multi-feature aggregation (e.g., SGLANet (Min
et al. 2020) and PAR-Net (Jianing et al. 2019)) and some
methods of using advanced architectures (e.g., Grafit (Tou-
vron et al. 2021) and GPipe (Huang et al. 2019)). Although
a strong baseline is achieved with the Swin-B, the proposed
PSD still obtains 0.65% improvements in Top1 accuracy and
0.31% improvements in Top5 accuracy, exhibiting its supe-
riority. When using DenseNet161, the proposed PSD obtains
about 0.5% gains in Top1 accuracy.

The experimental results on Vireo Food-172 are illus-
trated on Table 2. A strong baseline is built with Swin-
B, which outperforms the best method MVANET (Liang
et al. 2021) by 1.67% in Top1 accuracy, and is comparable
with MVANET in Top5 accuracy. Based on this baseline,
the proposed Swin-B+PSD still obtains performance im-
provements. When using DenseNet161, the proposed PSD
achieves 0.75% gains in Top1 accuracy.

The experimental results on ISIA Food-500 are illustrated
on Table 3. A strong baseline is also built with Swin-B,
which outperforms the best method TPSKG (Liu and Wang
2022) by about 1.9% in Top1 accuracy and SGLANet (Min
et al. 2020) by over 1.0% in Top5 accuracy. Note that TP-
SKG also employs vision Transformer as backbone and use
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Method Top1 Top5

MF

IG-CMAN (Min et al. 2019) 90.63 98.40
PAR-Net (Jianing et al. 2019)† 90.20 -
MSMVFA (Jiang et al. 2019) 90.61 98.31
AFN (Liu et al. 2020) 89.54 98.05
SGLANet (Min et al. 2020)† 90.98 98.35
MVANET (Liang et al. 2021) 91.08 98.86

SF

VGG16 (Szegedy et al. 2015) 80.41 95.59
MTDCNN (Chen and Ngo 2016) 82.06 95.88
SENet154 (Hu and Shen 2018) 88.71 97.74
DenseNet161 (Huang et al. 2017) 88.25 97.53
DenseNet161+PSD (our) 89.00 97.70
Swin-B (Liu et al. 2021) 92.75 98.71
Swin-B+PSD (our) 92.91 99.08

Table 2: Accuracy (%) comparison on Vireo Food-172. †: 10
crop images for test.

Method Top1 Top5

MF
NTS-NET (Yang et al. 2018) 63.66 88.48
WS-DAN (Hu and Qi 2019) 60.67 86.48
SGLANet (Min et al. 2020) 64.74 89.12

SF

VGG16 (Szegedy et al. 2015) 55.22 82.77
GoogLeNet (Meyers et al. 2015) 56.03 83.42
ResNet152 (He et al. 2016) 57.03 83.80
WRN50 (Sergey and Nikos 2016) 60.08 85.98
SENet154 (Hu and Shen 2018) 63.83 88.61
DCL (Chen et al. 2019) 64.10 88.77
TPSKG (Liu and Wang 2022)∗ 65.40 -
DenseNet161 (Huang et al. 2017) 60.05 86.09
DenseNet161+PSD (our) 60.94 87.33
Swin-B (Liu et al. 2021) 67.32 90.18
Swin-B+PSD (our) 70.10 92.75

Table 3: Accuracy (%) comparison on ISIA Food-500. ∗:
448× 448 resolution images.

higher resolution images. Despite achieving a strong base-
line, the proposed method still obtains relatively large per-
formance gains, i.e., 2.78% improvements in Top1 accu-
racy and 2.57% improvements in Top5 accuracy, validat-
ing the advantage of the proposed method. When using
DenseNet161, the proposed PSD achieves about 0.9% gains
in Top1 accuracy and 1.24% gains in Top5 accuracy.

To summarize, the proposed method PSD obtains perfor-
mance gains on the above three datasets (e.g., ETHZ Food-
101, Vireo Food-172 and ISIA Food-500) in two architec-
tures (e.g., Swin-B and DenseNet161). This can validate that
the proposed method is effective for food recognition (Q1).

Visualization of Response Map. To demonstrate more
informative regions learned by the proposed PSD, we vi-
sualize the class response map of both Swin-B and Swin-
B+PSD, as shown in Figure 4. We can obviously observe
that the proposed Swin-B+PSD obtains more high-response
regions than Swin-B. These high-response regions are also
discriminative, which can explain that the proposed method
learns more discriminative regions (Q2).
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Figure 4: Some visualizations of Class Response Map.
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Test on Masked Images. Furthermore, we test the trained
model with modified images where some regions are ran-
domly masked. The mask percentage for each test im-
age ranges from 0% to 40%. The experimental results on
ETHZ Food-101 are exhibited in Figure 5. Both the base-
line method Swin-B and the proposed Swin-B+PSD degrade
performance with increasing mask percentage of each test
image. Top1 and Top5 accuracy of Swin-B drops over 25%
and 10%, respectively. In contrast, Top1 and Top5 accuracy
of Swin-B+PSD drops less than 20%, and 7%, respectively.
The performance drop of the proposed PSD is lower than the
baseline method in both Top1 accuracy and Top5 accuracy.
This can explain that the proposed PSD learns more effec-
tive features than the baseline method from masked images.
To some extent, this also can explain that the proposed PSD
learns more discriminative regions (Q2).
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Method Food-101 (%) Food-500 (%)
Top1 Top5 Top1 Top5

Swin-B 93.91 99.03 67.32 90.18
Swin-B+PSD (m=1) 94.46 99.25 69.47 92.24
Swin-B+PSD (m=2) 94.56 99.34 70.10 92.75
Swin-B+PSD (m=3) 94.44 99.30 69.94 92.63

Table 4: Comparisons with numbers of self-distillations.

Method Food-101 (%) Food-500 (%)
Top1 Top5 Top1 Top5

Swin-B+PSD (SbS) 94.40 99.30 69.30 92.01
Swin-B+PSD (HS) 94.39 99.28 69.79 92.47
Swin-B+PSD (our) 94.56 99.34 70.10 92.75
Swin-B 93.91 99.03 67.32 90.18
Swin-B (DA Mask5%) 93.87 98.90 67.41 90.13
Swin-B (DA Mask10%) 93.88 98.94 67.43 90.12

Table 5: Comparisons with progressive training and Data
Augmentation (DA). SbS: step-by-step. HS:head shared.

Further Analysis
Comparisons with Numbers of Self-distillations. The ex-
perimental results of different numbers of self-distillations
on ETHZ Food-101 and ISIA Food-500 are illustrated in
Table 4. Compared with the baseline method Swin-B, the
proposed method equipped with 1, 2, or 3 self-distillations
obtains improvements, demonstrating the effectiveness of
the proposed method. Among them, the proposed method
equipped with 2 self-distillations achieves the best perfor-
mance. Based on two self-distillations, adding a third self-
distillation results in performance drops. The third self-
distillation is a tougher task than the first two, since it re-
moves more informative regions. This tough task possibly
increases the difficulty of training.

Comparisons with Settings of Progressive Training.
We consider the following two variants of progressive train-
ing, including i) step-by-step progressive training: multiple
self-distillations are trained from first to last, ii) head shared
progressive training: the teacher network and the student
network share the head network. The experimental results
of two variants are illustrated at the top of Table 5. Our
progressive training obtains better performance than the two
variants, demonstrating its advantages.

Comparisons with Data Augmentation. Masking dis-
criminative regions from images with the class response
module is considered as a manner of data augmentation. The
experimental results of this data augmentation are illustrated
at the bottom of Table 5. This data augmentation does not
bring performance improvements based on Swin-B. This can
illustrate that the performance improvement obtained by our
method PSD is not due to the use of modified images.

Comparisons with Other Learning Methods. We com-
pare the proposed method with other learning methods BAN
(Furlanello et al. 2018) and MutL (Zhang et al. 2018). The
two works use the same backbone (i.e., Swin-B), batch size
and the settings of optimizer as ours. Experimental results
are shown in Table 6. The proposed method obtains higher

Method Food-101 (%) Food-500 (%)
Top1 Top5 Top1 Top5

BAN 94.10 99.02 68.01 91.15
MutL 94.29 99.23 69.23 92.22
Our 94.56 99.34 70.10 92.75

Table 6: Comparsions with other learning methods.
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Figure 6: Top1 accuracy comparison on CUB Birds, Stan-
ford Dogs, and Stanford Cars.

accuracy than the two works on ETHZ Food-101 and ISIA
Food-500, illustrating its superiority.

Experiments on Part-fixed Fine-grained Recognition.
We employ the proposed method on three commonly used
fine-grained datasets (i.e., CUB Birds (Wah et al. 2011),
Stanford Dogs (Khosla et al. 2011) and Stanford Cars
(Krause et al. 2013)). The experimental results are shown
in Figure 6. Based on Swin-B, our method hardly obtains
performance gains on three part-fixed fine-grained datasets.
Compared with food images, the number of discriminative
regions in part-fixed fine-grained images is limited, making
it difficult to mine more discriminative details.

Conclusions
In this paper, we propose a Progressive Self-Distillation
method (PSD) to learn more details for food recognition.
Instead of locating multiple regions, the proposed PSD pro-
gressively enhances the ability of network to mine more in-
formative regions. The training of PSD simultaneously con-
tains multiple self-distillations. In each self-distillation, the
student network is guided with stronger semantic represen-
tations from the teacher network to improve its ability. The
ability of the teacher network also be improved with a shared
embedding network in the student network. By using pro-
gressive training to organize multiple self-distillations, the
teacher network incrementally improves the ability to mine
more discriminative regions. Comprehensive experiments
on three benchmark datasets demonstrate the effectiveness
of our proposed method.
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