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Abstract

The scribble-supervised semantic segmentation is an important
yet challenging task in the field of computer vision. To deal
with the pixel-wise sparse annotation problem, we propose
a Progressive Bayesian Inference (PBI) framework to boost
the performance of the scribble-supervised semantic segmen-
tation, which can effectively infer the semantic distribution
of these unlabeled pixels to guide the optimization of the seg-
mentation network. The PBI dynamically improves the model
learning from two aspects: the Bayesian inference module (i.e.,
semantic distribution learning) and the pixel-wise segmenter
(i.e., model updating). Specifically, we effectively infer the se-
mantic probability distribution of these unlabeled pixels with
our designed Bayesian inference module, where its guidance
is estimated through the Bayesian expectation maximization
under the situation of partially observed data. The segmenter
can be progressively improved under the joint guidance of
the original scribble information and the learned semantic
distribution. The segmenter optimization and semantic distri-
bution promotion are encapsulated into a unified architecture
where they could improve each other with mutual evolution
in a progressive fashion. Comprehensive evaluations of sev-
eral benchmark datasets demonstrate the effectiveness and
superiority of our proposed PBI when compared with other
state-of-the-art methods applied to the scribble-supervised
semantic segmentation task.

Introduction
Semantic segmentation, which refers to achieving accurate
dense pixel-wise class prediction of an image, is a funda-
mental computer vision task (Krähenbühl and Koltun 2011;
Chen et al. 2017). It serves many other tasks such as multi-
task learning (Cui et al. 2022; Zhou et al. 2020), intelligent
diagnostic (Falk et al. 2019), video segmentation (Xu et al.
2021a; Zhou et al. 2021) etc. For now, great progress has
been achieved due to the rapid development of deep seg-
mentation networks. However, sufficient training of deep
networks requires a great amount of fully annotated seg-
mentation masks, which suffer great labeling burdens for
pixel-wise annotations. Towards relieving the heavy reliance
on highly costly annotations, scribble-supervised semantic
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segmentation resorts to arbitrarily drawn lines to train a satis-
factory segmentation model. The scribbles are much easier
to obtain and provide sparse annotations which could indi-
cate the rough location of the semantic regions to guide the
segmenter learning.

The scribble-supervised semantic segmentation task is
formed as interactive segmentation in the early stage, and
it is usually solved by utilizing graphical models to build
inter-pixel or inter-region relationships to expand the scrib-
bles towards those unknown regions (Rother, Kolmogorov,
and Blake 2004; Grady 2006). When it comes to the neural
network era, some methods attempt to combine graphical
models and deep neural networks to produce better segmen-
tation. Pan et al. perform a random walk process in the deep
features to decrease the representation uncertainty to pro-
duce more confident segmentation. NormalCut (Tang et al.
2018a) and KernelCut (Tang et al. 2018b) utilize the graph
cuts to build extra regularization terms to constrain the seg-
menter learning for more stable segmentation results. The
graphical methods demand specific designs for certain sce-
narios and they are hard to deploy in practical applications.
In addition, BPG (Wang et al. 2019) introduces a pre-trained
edge detection network to provide complementary boundary
supervision to regulate the segmenter learning, but it will
inevitably introduce extra information from other datasets.
Despite directly relying on the original scribbles to supervise
the network update, other works resort to inferring pseudo
labels in the unlabeled regions to mine more supervision
signals. ScribbleSup (Lin et al. 2016) generates pseudo la-
bels in the whole image by jointly considering the scribbles
and prediction probabilities to solve a CRF (Lin et al. 2016)
optimization objective. RAWKS (Vernaza and Chandraker
2017) develops a random walk process to generate pseudo
labels in the unlabeled regions to train a better segmenter by
utilizing the hitting probabilities as label transmission matri-
ces. A2GNN (Zhang et al. 2021b) introduces a graph neural
network to learn to expand the supervision signals from the
scribbles to unlabeled regions. PSI (Xu et al. 2021b) learns
adaptive thresholds with a network module imposed on the
features and probabilities to generate the pseudo labels. All
existing pseudo-label methods only utilize the prediction un-
certainties of those unlabeled pixels to generate hard pseudo
labels, but they give insufficient consideration to the feature
distribution correlations of the labeled and unlabeled regions
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during the label inference process.
In this paper, we propose a progressive Bayesian inference

(PBI) framework which infers the semantic distribution of
these unlabeled data to provide auxiliary supervision. The
segmentation network could be progressively optimized with
the semantic distributions which are inferred from the scrib-
bles by mining the feature distribution correlations between
the labeled and unlabeled regions to boost the segmentation
performance. Specifically, we design a Bayesian inference
module to effectively learn the semantic distribution of these
unlabeled/unobserved data in the feature space, which for-
mulates it as learning under the situation of the partially
observed data. In particular, to optimize the network parame-
ters of the Bayesian inference module, we use the Bayesian
expectation maximization strategy to estimate the posterior
probability distribution of these unlabeled data by performing
the maximum likelihood estimation in an iterative solution.
To achieve more robust semantic distributions of these un-
labeled data, the Bayesian inference module is then used to
perform distribution learning with the guide of the estimated
probability information. Subsequently, we utilize both the
scarce scribble annotations as well as the learned semantic
distributions to guide the segmenter learning. The proposed
PBI builds an iterative optimization process by exploiting the
inferred semantic distribution, then dynamically improves
the model learning from two aspects: the Bayesian inference
module (i.e., semantic distribution mining) and the pixel-wise
segmenter (i.e., model updating). The segmenter optimization
and semantic label distribution promotion are encapsulated
into a unified architecture where the two parts could improve
each other with mutual evolution in a progressive fashion.
Extensive experiments have demonstrated that our proposed
PBI could boost the performance of the scribble-supervised
semantic segmentation and state-of-the-art segmentation per-
formances have been achieved in standard benchmarks.

To summarize, our major contributions are as follows:
i) We propose a novel progressive Bayesian inference
(PBI) framework to boost the performance of the scribble-
supervised semantic segmentation, where the semantic dis-
tribution is effectively inferred under the situation of par-
tially observed data, and then adopted to guide the segmenter
learning in an iterative manner. ii) We specifically design a
Bayesian inference module for learning robust semantic dis-
tribution with a probabilistic inference net, which is trained
by the estimated Bayesian posterior distribution of class-wise
features. iii) We conduct extensive experiments to validate
the effectiveness of the proposed method on the scribble-
supervised semantic segmentation task and report state-of-
the-art performances on the PASCAL VOC 2012 dataset (Ev-
eringham et al. 2010) and the PASCAL Context dataset (Har-
iharan et al. 2011).

Related Works
Scribble-supervised semantic segmentation The scribble-
supervised semantic segmentation task arises from the urgent
demand of effective deep segmentation network training with
little annotation cost. Some methods designed specific loss
functions to constrain the network training. For example, Nor-
malCut (Tang et al. 2018a) and KernelCut (Tang et al. 2018b)

resolved to the CRF (Krähenbühl and Koltun 2011) crite-
rion to derive topology-constrained optimization objectives.
URNE (Pan et al. 2021) resorted to a siamese structure to de-
sign a self-supervised constraint for the network optimization
to encourage consistent segmentation. Different from them,
the proposed PBI does not rely on any specific regularization
terms but the normal ones. BPG (Wang et al. 2019) brought
in extra information of an auxiliary edge detection network
to provide boundary supervision for more accurate segmen-
tation prediction. In contrast, our proposed PBI framework
resorts to no extra sources except for a clustering assumption
which is usually utilized for the segmentation tasks to pro-
duce complementary information. Other methods produced
pseudo labels to mine more supervision signals in the unla-
beled regions for segmenter learning. ScribbleSup (Lin et al.
2016) built up a deep framework that generated a hard pseudo
map over the whole image region according to the original
scribble as well as a CRF (Krähenbühl and Koltun 2011)
model to train the segmentation network. RAWKS (Vernaza
and Chandraker 2017) utilized the random-walk model to
propagate the scarce scribbles to those unlabeled regions by
treating the hitting probabilities as label transmission matri-
ces. A2GNN (Zhang et al. 2021b) learned an affinity atten-
tion graph neural network to infer hard pseudo labels in the
unlabeled regions. PSI (Xu et al. 2021b) proposed to learn
dynamic thresholds via an auxiliary module to generate hard
one-hot pseudo labels for the segmentation network train-
ing. All the above methods utilized the hard pseudo labels
which solely rely on the pixel prediction uncertainties of the
unlabeled pixels to train the segmenter. In contrast, our PBI
induces semantic distributions for those unannotated data by
building a Bayesian inference module to explore the feature
distribution correlations between the labeled and unlabeled
regions in the feature space.

Pseudo label learning The pseudo label is commonly
adopted in tasks where enough supervision is lacking. Some
methods directly generated hard pseudo-labels to make up
for the loss of sufficient training supervision. Lee et al. (Lee
et al. 2013) first introduced the pseudo label method into
the deep network by selecting the classes which achieved
the maximum probability for the unlabeled data to produce
fake supervisions to relieve the supervision deficiency. Fix-
Match (Sohn et al. 2020) regulated the model training by
generating pseudo labels based on the weakly augmented
samples to supervise the strongly augmented counterparts.
FlexMatch (Zhang et al. 2021a) generated adaptive pseudo-
labels by calculating one customized threshold for each class
with a curriculum learning framework. Some other methods
generated probabilistic distributions as supervisions for the
unlabeled samples to facilitate sufficient network training.
For example, DLDL (Gao et al. 2017) generated the label
distributions by minimizing its distance to the rough ground-
truth labels to overcome the label ambiguity. PENCIL (Yi
and Wu 2019) produced label distributions by regarding them
as learnable parameters to defeat the label noises. Although
they also produce the label distributions, the proposed PBI
differs greatly from them as they update the label distribu-
tion probabilities as learnable variables while our semantic
label distributions are inferred from a specifically introduced
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probabilistic inference net.

The Proposed Method
Overview As shown in Fig. 1, we propose a progressive
Bayesian inference (PBI) framework to perform the scribble-
supervised semantic segmentation, where the segmenter
could be progressively optimized by the learned semantic
distribution. The whole architecture is mainly composed
of two parts: the segmenter learning and the Bayesian in-
ference module, which are implemented in an alternating
manner. Given an image X as the input sample, we can
predict the pixel-wise segmentation probability P by em-
ploying a segmenter with the encoder-decoder architecture:
P = fseg(X,Φ), and Φ is the segmenter parameters. The
convolutional features F of the segmenter are fed into the
probabilistic inference net Ψ to induce the semantic label
distribution Q, i.e., Q = finfer(F,Ψ). The network param-
eters of the segmenter can be learned under the joint su-
pervisions provided by the original scribble information S
as well as the inferred semantic label distributions Q, i.e.,
Lce(P, S) + αLld(P,Q). In the Bayesian inference module,
we use the Bayesian expectation maximization strategy to
devise the semantic probability distribution Q̂, which is then
adopted to facilitate the effective learning of the probabilistic
inference net Ψ by using the supervision function Lbi(Q, Q̂).
The Bayesian expectation-maximization process can com-
prehensively consider the segmentation prediction P , the
convolutional feature F , as well as the scribble information
S to derive the auxiliary supervision Q̂ in a Bayesian manner.
The segmenter Φ and probabilistic inference net Ψ are opti-
mized in an alternating way to form a close-looping learning
framework, among which the two nets could be promoted
each other for mutual evolution.

Bayesian Expectation Maximization For Q̂ In the case
of sparse annotation, the key is how to effectively mine in-
formation from unlabeled data to guide the network learning
process. Different from existing work that generates hard
pseudo-labels of unlabeled samples based on the prediction
uncertainties, we utilize the feature distribution correlations
of the labeled and unlabeled regions to mine the semantic
distribution of unlabeled data in the learning process. In par-
ticular, given an image X as the input sample, we use D
and U to represent the labeled and unlabeled pixels, i.e.,
X = 〈D,U〉. We try to find the approximating distribution
Q̂ of unlabeled data by constructing with a known parametric
distribution P from the labeled regions. To deal with this
problem, we minimize the relative entropy (also known as
Kullback-Leibler divergence, KL) between two probability
distributions to solve Q̂:

arg min
Q̂

KL(Q̂||P). (1)

The relative entropy formulation can be also expanded as the
expectation of the logarithmic difference between the two
probabilities Q̂ and P:

KL(Q̂||P) = EQ̂

[
log Q̂/P

]
= EQ̂[log Q̂]−EQ̂[logP].

(2)

We can then use the Bayesian posterior estimation method to
get the distribution P over these unlabeled pixels by applying
this to the case of learning from partially observed data (i.e.,
scribble annotations):

P = P̃/Z. (3)

Here the distribution P is built over these unlabeled pixels
U (i.e., P(U |D,Θ)), where the observed data D and the
corresponding parameters Θ are fixed now. Z is the distri-
bution over these labeled data P(D|Θ) and P̃ is the joint
probability P(U,D|Θ). Let l(Θ : 〈D,U〉) denote the log-
likelihood of the parameters Θ with respect to all completed
pixels. The logarithm of the joint probability can be rewritten
as log P̃ = l(Θ : 〈D,U〉). By using the entropy definition
EQ̂[log Q̂] = −HQ̂(U), the relative entropy can be rewrit-
ten as:

KL(Q̂||P) = −HQ̂(U)− EQ̂[log P̃] + EQ̂[logZ]

= −HQ̂(U)− EQ̂[l(Θ : 〈D,U〉)] + logZ.
(4)

Note that the term logZ does not depend on Q̂. Hence, mini-
mizing the relative entropy KL(Q̂||P) is equivalent to maxi-
mizing the following energy functional:

arg max
Q̂,Θ

HQ̂(U) + EQ̂[l(Θ : 〈D,U〉)], (5)

where the first term HQ̂(U) is the entropy value of the seman-

tic distribution Q̂ over these unlabeled pixels, and the second
term EQ̂[l(Θ : 〈D,U〉)] is the expected log-likelihood rel-

ative to Q̂. Here we can use the common Gaussian mixture
model to model the distribution of these labeled data, i.e.,
Θ = {(µc,k,Σc,k)|c = 0, 1, · · · , C; k = 1, 2, · · · ,K}, and
C and K separately represent the total number of the se-
mantic classes and the number of mixtures for each class.
µc,k and Σc,k are the mean and diagonal covariance matrix
for the k-th mixture of class c. The solution of the objective
(i.e., Eqn. (5)) leads to an expectation-maximization iteration
which alternates between optimizing the parameters Θ and
semantic distribution Q̂.

In the E-step, we fix the semantic distribution Q̂ to max-
imize the log-likelihood w.r.t the parameters Θ. The class
mixture parameters are separately estimated in the corre-
sponding class regions V c

q = {(x, y)|q̂x,y > τ c} where τ c
is a confidence threshold and we set it to 0.97 for the fore-
ground classes (i.e., c = 1, 2, · · · , C) and 0.6 for the back-
ground class (i.e., c = 0) as in the previous work (Kolesnikov
and Lampert 2016). Considering the feature representation
capability of the trained segmenter, we also determine a sam-
pling region V = {V c|c = 0, 1, · · · , C} to sample stable
features, and V c

f = {(x, y)| ‖x− xc‖1 ≤ r, ‖y − yc‖1 ≤
r, ∀(xc, yc) ∈ Dc}, where Dc denotes the scribble regions
for the c-th class with r being a sampling radius. Hence the
sampling region V c is an intersection of the two regions
(i.e., V c = V c

q ∩V c
f ), and the mixture model parameters µc,k

and Σc,k are then solved following the conventional Gaussian
mixture model solution with a k-means clustering initializa-
tion. In the M-step, we fix the mixture model parameters to
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Figure 1: An overview of the proposed PBI. The whole architecture is mainly composed of two complementary components: the
segmenter learning and the Bayesian inference module, and the two parts are implemented in an alternating way for co-evolution.
For more details, please refer to the manuscript.

solve the semantic distribution Q̂. It is exactly to estimate
the class portion in each pixel p with the currently estimated
mixture parameters. The distribution value qcp of Q̂ in pixel p
for the class c are calculated via:

q̂cp =
maxkN (fp|µc,k,Σc,k)∑C
c=0 maxkN (fp|µc,k,Σc,k)

, (6)

whereN (f |µ,Σ) is the probability density of the correspond-
ing feature f w.r.t the Gaussian distribution with mean µ and
covariance matrix Σ.

The above EM-iteration requires a good initialization, and
thus we directly use the segmenter estimated probability as
an initialization for Q̂. Hence the produced distribution Q̂
is a Bayesian posterior of the semantic distributions, and it
effectively mines the correlation between the labeled and un-
labeled feature distributions with the built EM iterations. The
estimated posterior distribution Q̂ is then utilized to optimize
the probabilistic inference net Ψ. To embrace the details as
well as the class semantics, we concatenate the low and high
level features to form the feature F . Considering the evolved
representation capability of the gradually trained segmenter,
we progressively enlarge the sampling radius r by 20 every
20 epochs. As a consequence, a larger sampling region could
envelop more feature variations, and in turn, the resulting
semantic distribution could produce more stable feature rep-
resentations. Our experiment results have demonstrated that
the progressive Bayesian posterior estimation process could
generate useful semantic label distribution for better learning
the probabilistic inference net, and then improve the predic-
tion capability of the segmenter to boost the segmentation
performance.

PBI Learning Φ And Ψ The goal of the proposed PBI
framework is to explore the semantic distribution of unla-
beled pixels for learning a better segmenter. The overall PBI
training process is composed of two alternating optimiza-
tion steps: the segmenter learning and the Bayesian inference
module. During segmenter learning, the input image X is

first forwarded into the segmenter Φ to produce the segmen-
tation prediction P. Meanwhile, the convolutional features of
the input image F are also fed into the probabilistic inference
net Ψ to learn a more robust semantic distribution Q. Then
the semantic distribution Q along with the original scribbles
S are jointly utilized as the supervision signal to guide the
segmenter update:

Φ← Ω(Φ,Lseg(P,Q, S)),

= Ω(Φ,Lseg(fseg(X,Φ), Q, S)),
(7)

where Lseg is the segmentation loss function, Ω is an opti-
mizer. The segmentation loss function Lseg considers both
the original scribble annotation S and the inferred semantic
label distribution Q as follows:

Lseg(P,Q, S) = Lce(P, S) + αLld(P,Q), (8)
where Lce is the commonly used cross-entropy between
P and S for these labeled pixels. Lld refers to the KL-
divergence KL(Q‖P ) for making P approximate Q in the
unlabeled areas, and it also includes the entropy loss as a
constraint. α is a factor to balance the effects from scribbles
S and the explored semantic distributions Q, and we linearly
grow it from 0.0 to 0.5 in the beginning 100 epochs and it is
fixed in the following epochs.

The Bayesian inference module is to train the probabilistic
inference net Ψ to produce a robust global approximation
of the semantic distribution by fixing the segmenter param-
eters Φ. The probabilistic inference net Ψ consists of three
cascaded convolutional layers as well as a softmax activation
layer, and it takes the intermediate segmentation features F
as input to produce the semantic distribution Q. We utilize
the Bayesian posterior Q̂ induced by the developed Bayesian
posterior estimator to update the net Ψ following:

Ψ← Ω(Ψ,Lbi(Q, Q̂)),

= Ω(Ψ,Lbi(finfer(F,Ψ), Q̂)),
(9)

where Lbi is the Bayesian inference loss to make a robust ap-
proximation of the estimated posterior distribution Q̂. Since
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bothQ and Q̂ are probability distributions, we utilize a robust
variant of the KL divergence as:

Lbi = KLrobust(Q‖Q̂), (10)

=
∑
u∈U

C∑
c=0

q̂cu log (a+ b · qcu), (11)

where qcu and q̂cu are the values of Q and Q̂ for the class c
at pixel u, a = 0.4

C−1 and b = 1 − C · a following (Larsen
et al. 1998). It is also possible to directly utilize the estimated
posterior distribution Q̂, instead of the learned probability
Q, as the auxiliary supervision. However, Q̂ is closely rele-
vant to P due to the EM iteration, and directly using Q̂ as
the pseudo-labels is prone to introduce accumulated errors.
Hence, the probabilistic inference net Ψ is specifically de-
signed to learn a more robust semantic distribution Q as the
global approximation for the segmenter optimization. Our
experimental results have also demonstrated the effectiveness
of the introduced probabilistic inference net.

The segmenter learning and Bayesian inference module
are optimized alternately to mine better segmentation feature
representations and semantic distributions. Our experimen-
tal results have demonstrated superior performances of the
proposed method over the hard pseudo-label methods, verify-
ing the effectiveness of the proposed progressive Bayesian
inference framework. In the testing stage, we directly input
the testing images into the trained segmenter Φ to produce
the segmentation predictions, and the Bayesian expectation
maximization, as well as the probabilistic inference net, are
no longer required for the segmentation mask inference.

Experiment Results
Experiment Settings
Following the standard protocol (Zhang et al. 2021b; Xu
et al. 2021b; Pan et al. 2021), we utilize the PASCAL VOC
2012 semantic segmentation dataset (Everingham et al. 2010)
and the PASCAL Context dataset (Mottaghi et al. 2014)
to evaluate our proposed PBI framework. We adopt the
DeepLabV3+ (Chen et al. 2018) with backbone ResNet101 as
the segmenter Φ. We follow the conventional model initializa-
tion protocol as previous work (such as ScribbleSup (Lin et al.
2016), PSI (Xu et al. 2021b)). The segmenter is initialized
from the ImageNet pre-trained ResNet and the Prob. Infer. net
is initialized from scratch following the ‘Kaiming_normal’
strategy. The SGD optimizer with momentum and weight de-
cay being 0.9 and 5e-4 is adopted as the optimizer Ω to train
the networks. The learning rate is initially set to 1e-4 and
then slowly decayed with a ‘poly’ schedule, and the whole
framework is trained for 200 epochs with a batch size of 8.
For the first 100 epochs, the sampling region V remains in
the original scribbles S. Starting from the 100-th epoch, we
progressively expand the sampling region V with a radius r
of 21 every 20 epochs. The Gaussian mixture numberK is set
to 3 empirically. In the optimization process, we implement
random augmentations including scaling ([0.5, 2.0]), flipping
(p=0.5), rotation ([−10, 10]) and cropping (512× 512). The
multi-scale, as well as the flipping strategies, are adopted

Method Sup. Backbone mIoU(%)
DeepLab F ResNet101 76.8
TreeFCN F ResNet101 80.9

MCOF I ResNet101 60.3
AffinityNet I ResNet38 58.4
ICD I VGG16 64.0
IAL I VGG16 62.0

BoxSup B VGG16 62.0
SDI B VGG16 65.7

ScribbleSup* S VGG16 63.1
RAWKS S ResNet101 59.5
NormalCut S ResNet101 72.8
KernelCut S ResNet101 73.0
BPG S ResNet101 73.2
PSI S ResNet101 74.9
URNE S ResNet101 76.1
A2GNN S TreeFCN 76.2

PBI (Ours) S ResNet101 77.2

Table 1: Comparison with state-of-the-art methods on the
PASCAL VOC 2012 validation set. ‘F’,‘I’,‘B’ and ‘S’ sep-
arately mean the full supervision, the image-level tags, the
boxes and the scribbles. The symbol ‘*’ means CRF post-
processing.

Method Sup. mIoU(%)

PSPNet F 47.8
DANet F 52.6
OCR F 56.2

BoxSup Semi 40.5

ScribbleSup* S 36.1
RAWKS S 36.0
DeepLabV3+ S 37.1
PSI S 43.1

PBI (Ours) S 43.7

Table 2: Comparison with state-of-the-art methods on the
PASCAL Context dataset. ‘F’ and ‘S’ separately mean the
full supervisions and the scribbles. The symbol ‘*’ means the
CRF post-processing.

during the testing phase, but no CRF (Adams, Baek, and
Davis 2010) post-processing is utilized which is the same as
in other methods (Wang et al. 2019; Xu et al. 2021b). All
the experiments are implemented with the PyTorch frame-
work (Paszke et al. 2019). Following the previous literature,
we adopt the mean Intersection-over-Union (mIoU) score as
our evaluation metric.

Comparison With State-of-the-art Methods
PASCAL VOC 2012: We first compare our proposed PBI
with other state-of-the-art methods on the PASCAL VOC
2012 dataset (Everingham et al. 2010). The detailed results
have been listed in Table 1. Our proposed PBI achieves the
best performance of 77.2% among all the scribble-supervised
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segmentation methods. Our PBI exceeds those regularization
based methods including NormalCut (Tang et al. 2018a),
KernelCut (Tang et al. 2018b) and URNE (Pan et al. 2021)
separately by 4.4%, 4.2% and 1.1%. It may be that our
mined semantic distribution could implicitly provide bet-
ter segmentation learning regularization. Our method out-
performs BPG (Wang et al. 2019) which introduces extra
boundary supervisions by 4.0%, and it indicates that our
proposed method is able to make up for the loss of accu-
rate edge information. It may be that the proposed multi-
Gaussian-based Bayesian posterior estimation could embrace
a great number of class variations including those edge pix-
els. Finally, when compared with PSI (Xu et al. 2021b) or
A2GNN (Zhang et al. 2021b) which produce hard pseudo
labels, our method achieves performance improvements of
2.3% and 1.0%. It verifies the effectiveness of our mined se-
mantic distributions in training better segmentation networks.
It’s worth noting that our PBI could bridge the performance
gap between scribble-supervised methods and fully super-
vised methods (Wu, Shen, and Van Den Hengel 2019; Song
et al. 2019) by a large margin, where it even outperforms the
WiderResnet (Wu, Shen, and Van Den Hengel 2019) by 0.4%.
It further validates the effectiveness of our proposed PBI in
training better segmentation networks.
PASCAL Context: We additionally conduct experiments on
the more challenging PASCAL Context dataset (Hariharan
et al. 2011) to further evaluate the generalization capability
of our PBI. The detailed results have been listed in Table 2.
All the compared scribble-supervised methods including ours
obey the pure scribble-supervision principle. But the Box-sup
method has adopted the fully annotated masks in the PAS-
CAL Context dataset (Hariharan et al. 2011) along with all
the bounding-box annotated images from the PASCAL 2007
(Everingham et al. 2010) dataset. It could be observed that
among all the compared scribble-supervised methods, our
proposed PBI achieves the best performance of 43.7%, ex-
celling the second-best method PSI (Xu et al. 2021b) which
generates hard pseudo labels by 0.6%. It is obviously a non-
trivial improvement and shows that our method could gen-
eralize to more complicated datasets, which verifies the ef-
fectiveness of the semantic distributions mined by our PBI.
It is also worth noting that our proposed PBI could further
narrow the performance gap between the fully supervised
and the weakly supervised methods, further validating the
effectiveness of the PBI framework.

Ablation Studies
All ablation studies are conducted on the PASCAL VOC
2012 dataset.

We first conduct experiments to evaluate the effectiveness
of our adopted parts and the experiment results are listed in
Table 3. We first train a baseline solely by the original scrib-
bles, and it achieves a mIoU of 70.1%. When the hard label
is generated as extra supervision signals (i.e. Hard One-hot
Label), the performance is boosted by 3.0% to 73.1%. After-
ward, the probabilistic inference net is introduced to generate
the semantic distributions. We first compute the Bayesian
posterior based on the original scribbles and only use the
induced class posterior distribution to finetune the segmenter.

Hard One-hot Label X
Bayesian posterior estimation X X
Prob. Infer. net. learning X X
Progressive sampling X X
mIoU(%) 70.1 73.1 73.6 76.4 74.5 77.2

Table 3: The performances of our method with different parts
enabled on the PASCAL 2012 validation set.

We then utilize the estimated Bayesian posterior Q̂ to finetune
the segmenter (Bayesian posterior estimation), and it obtains
a performance of 73.6%. It surpasses the hard pseudo label
variant by 0.5% and verifies the effectiveness of our induced
Bayesian posterior estimation. The probabilistic inference
net (Prob. infer. net learning) is further introduced to learn
robust semantic distribution, and it boosts the performance
by 0.9%. It verifies that the introduced probabilistic infer-
ence net could produce more robust semantic distributions
for segmenter learning. We further conduct an experiment
based on the above two semantic distribution variants by
implementing the progressive sampling region growing strat-
egy for the posterior estimation (i.e., Progressive sampling),
and the performances further grow by 2.8% and 2.7%. The
non-trivial performance increment clearly shows that the pro-
posed progressive Bayesian posterior inference procedure
could effectively promote semantic label distribution mining
to train better segmentation networks.

We have also plotted the utilized supervision signals in-
cluding the hard pseudo labels as well as the learned semantic
distributions (including the maximum classes and probabil-
ities) in Fig. 2. Our learned semantic label distributions are
able to better capture the semantic object occupations than
the hard labels. It also demonstrates that the mined seman-
tic distributions could decrease the label uncertainties when
compared with the hard labels for instance the sheep in the
first row and the plant in the second row. It vividly shows the
superiority of the semantic distributions learned in PBI.

We conduct experiments to analyze the adopted low and
high level features and the Gaussian mixture number K,
and the results are listed in Table 4. When only adopting
the low-level features, the model struggles to achieve satis-
factory performances since the class feature clusters highly
overlap and much harmful information will be introduced.
If only use the high-level features, the performances will
be greatly boosted because the highly abstracted deep se-
mantic features could provide accurate feature clustering for
most pixels. When both the low and high level features are
jointly adopted, it could further boost the segmentation and
achieve satisfactory performances. It is in that the hybrid
feature could provide complementary features for accurate
class clusters and boundaries. The performance saturates at
a moderate mixture number K = 3 which could effectively
balance the feature variations and noises.

We evaluate the effectiveness of the progressive progress
of the Bayesian posterior estimation, and the results are listed
in Table 5 with growing sampling radii and changing iter-
ation numbers. When only sampling feature vectors in the
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Figure 2: Visual comparison between the hard pseudo label and the learned semantic distribution.

Feature K=1 K=2 K=3 K=4 K=5

low 68.6 70.1 70.3 70.5 70.4
high 74.7 75.8 76.4 76.3 76.0

low+high 76.1 76.6 77.2 77.1 77.0

Table 4: The mIoU(%) on the PASCAL VOC 2012 (Evering-
ham et al. 2010) validation set with different level features as
well as different mixture numbers K for Bayesian posterior
estimation.

Radius r 0 21 41 61 81 101 121 141
Iteration 80 100 120 140 160 180 200 220

mIoU(%) 75.4 76.1 76.6 76.9 77.0 77.2 77.1 76.8

Table 5: The performances on the PASCAL VOC 2012 (Ev-
eringham et al. 2010) validate set with growing radius r for
Bayesian posterior estimation.

original scribble regions (iteration=80) to learn the semantic
distributions, the proposed method could achieve a mIoU
of 75.4%. The performance keeps increasing when the ra-
dius grows from 21 to 101 and it saturates at ‘r=101’ since
a growing sampling region could embrace more class fea-
ture variations. When the radius further grows from 101 to
141, the performance drops a little which may be that the
accumulated noises interfere with the segmenter training.

We conduct experiments to analyze the time consumption
for each training stage and the inference time, and the time is
averaged over all the images. The detailed time consumption
comparison results have been listed in Table 6. In the training
process, the majority of time consumption is on the gradient
backward process, where the segmenter backward requires
updating 116 layers with 76.9ms while the Prob. infer. net
backward only needs to update 9 layers with 2.5ms. The
optimization for the Prob. infer. net only takes about 6% of
the whole training time (5.3ms vs 86.7 ms) for one training
sample in each iteration, and the Bayesian EM iteration for
posterior estimation consumes 13.5ms per sample. Hence

Stages SF SB EM PF PB TF

Time (ms) 4.5 76.9 13.5 2.8 2.5 1.7

Table 6: The consumed time for different stages of PBI. ‘SF’,
‘SB’ ‘EM’, ‘PF’, ‘PB’, and ‘TF’ separately represent the seg-
menter forward, segmenter backward, Bayesian EM iteration,
Prob. infer. net forward, Prob. infer. net backward and testing
forward stages.

our introduced Bayesian inference module will not bring too
many extra computation burdens. In the testing stage, we
abandon the Bayesian inference module and segmenter back-
propagation, so that the segmentation prediction is very fast
with 1.7 ms/sample, which is as efficient as other methods.

Conclusion

In this paper, a novel progressive Bayesian inference (PBI)
framework is proposed to boost the scribble-supervised se-
mantic segmentation performances by inferring the semantic
probability distribution of the unlabeled data. The semantic
label distribution is induced for segmenter optimization by a
specifically introduced probabilistic inference network which
could be well learned in the Bayesian inference module. We
derive the Bayesian posterior by mining the feature correla-
tions of the labeled and unlabeled data so that effective opti-
mization of the inference network could be realized. The PBI
dynamically improves the model learning from two aspects:
the pixel-wise segmenter (i.e., model updating) and Bayesian
inference module (i.e., semantic label distribution mining),
where the two parts are encapsulated into a close-looping
optimization process for mutual promotion. Our experiments
have demonstrated the effectiveness of the proposed PBI
framework and state-of-the-art results have been reported
in the PASCAL VOC 2012 dataset and the PASCAL Con-
text dataset. In the future, we might consider applying the
proposed PBI framework to other weakly-supervised tasks.
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