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Abstract

Active Object Tracking (AOT) aims to maintain a specific
relation between the tracker and object(s) by autonomously
controlling the motion system of a tracker given observations.
AOT has wide-ranging applications, such as in mobile robots
and autonomous driving. However, building a generalizable
active tracker that works robustly across different scenar-
ios remains a challenge, especially in unstructured environ-
ments with cluttered obstacles and diverse layouts. We argue
that constructing a state representation capable of modeling
the geometry structure of the surroundings and the dynam-
ics of the target is crucial for achieving this goal. To address
this challenge, we present RSPT, a framework that forms a
structure-aware motion representation by Reconstructing the
Surroundings and Predicting the target Trajectory. Addition-
ally, we enhance the generalization of the policy network by
training in an asymmetric dueling mechanism. We evaluate
RSPT on various simulated scenarios and show that it outper-
forms existing methods in unseen environments, particularly
those with complex obstacles and layouts. We also demon-
strate the successful transfer of RSPT to real-world settings.
.

Introduction
Active object tracking (AOT) aims to follow a target ob-
ject by autonomously controlling the motion system of an
embodied agent. Specifically, the agent must perceive the
movement of the target and its surroundings and subse-
quently adjust its posture to continuously position the tar-
get at the center of its view with an appropriate size. AOT
has a vast array of applications, including drones (Ci et al.
2023), mobile robots (Wang et al. 2018), and autonomous
driving (Jin and Han 2022).

Although recent years have witnessed remarkable
progress in embodied AI (Chrisley 2003), it remains chal-
lenging for an agent to actively track a moving object in
complex unstructured scenarios (Zhong et al. 2019a). In
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Figure 1: This exemplar case highlights the challenges of ac-
tive object tracking, particularly in environments with clut-
tered obstacles. In this scenario, the target (a human) is oc-
cluded by obstacles, and the tracker (a robot) must find a
way to follow the target without encountering occlusions.

these environments, obstacles are usually cluttered and ar-
ranged in a variety of ways. For example, in a family scene,
different families have different room layouts, different fur-
niture placements, and different appearances. The outdoor
environment is more complex, e.g., unpredictable obstacles
may be encountered at any time. As shown in Figure 1, the
tracker (robot) is required to find a path to follow the target
(human) while avoiding occlusion and collision. In these en-
vironments, the performance of existing models, especially
end-to-end networks (Luo et al. 2018; Zhong et al. 2019b),
are dropped significantly.

The inadequate generalization of these models can be at-
tributed to two primary factors: visual perception and phys-
ical movement. The diversity in appearances and layouts of
obstacles results in various unseen situations for the tracker.
Additionally, target occlusion by obstacles makes it invisi-
ble to the tracker, hindering data-driven methods. In terms
of physical movement, obstacles may impede the tracker’s
path, necessitating route planning to bypass obstacles and
re-localize the target.

To develop a generalizable tracker, it is essential to con-
struct a structure-aware motion representation that meets
three requirements: 1) abstraction of the scene’s geometric
structure to identify target objects, obstacles, and free space;
2) prediction of the target’s future movement based on geo-
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metric structure; and 3) real-time computation of the overall
pipeline.

In this paper, we propose a novel framework for gener-
alizable active object tracking called RSPT (Reconstruct
Surrounding and Predict Trajectory). RSPT consists of
four modules: Target Localization, Structure Reconstruc-
tion, Structure-aware Trajectory Prediction, and a Motion
Controller. The Target Localization estimates the 2D loca-
tion of the target using an off-the-shelf video tracker and
transforms it into 3D space with depth images. The Structure
Reconstruction module builds a tracker-centric grid map of
the environment in real-time using depth images and cam-
era poses. The Structure-aware Trajectory Prediction mod-
ule integrates historical relative trajectory data with the re-
constructed map to predict future target movement. Finally,
the Motion Controller, trained by Reinforcement Learning
(RL) (Sutton and Barto 1998; Mnih et al. 2015), outputs ac-
tions to move the agent step-by-step using the constructed
structure-aware motion representation. We adopt the asym-
metric dueling mechanism (Zhong et al. 2019b,a) to improve
tracker robustness in complex environments.

We demonstrate that the RSPT-based tracker outperforms
previous AOT methods in terms of accumulated reward,
episode length, and success rate in both simple and complex
environments with cluttered obstacles and diverse layouts.
Experimental results show that when obscured or blocked
by obstacles, the tracker can predict the target’s movement
and plan a path considering surrounding structure to follow
the target. Even when the target leaves the field of view, the
tracker can retrieve it and continue tracking using memory.
Additionally, we deploy the tracker on a real-world robot to
demonstrate its strong generalization capabilities both quan-
titatively and qualitatively.

The contributions of our work can be summarized as:
1. we introduce a structure-aware motion representation

that combines the structure of surroundings and dynamic
of the moving target in a grid map. This allows for im-
proved tracking route planning in complex environments.

2. We present a practical framework that integrates off-the-
shelf methods for structure reconstruction, video track-
ing, trajectory prediction and policy learning to achieve
the desired representation.

3. We evaluate trackers in six unseen virtual environ-
ments and three real-world robot scenarios, demonstrat-
ing strong cross-domain generalization of our RSPT
framework.

Related Work
Active Object Tracking (AOT). We can divide the AOT

methods into two branches: one-stage methods and two-
stage methods. Traditional methods perform in the two-stage
manner (Kim et al. 2005; Hong et al. 2018), where the per-
ception module provides a handcrafted state representation,
e.g., the 2D bounding box of the target (Ross et al. 2008;
Mei and Ling 2009; Hu et al. 2012), then the controller
actively adjusts the camera poses accordingly. Such a so-
lution performs well in most simple cases, however, fails
to handle complex cases, e.g., occlusions. In recent years,

Deep Reinforcement Learning (DRL) is employed by some
works (Luo et al. 2018; Zhang et al. 2018; Luo et al. 2020) to
realize AOT tracker in an end-to-end manner. In the follow-
up works (Zhong et al. 2019a; Devo, Dionigi, and Costante
2021; Dionigi et al. 2022; Zhong et al. 2021; Xi et al. 2021)
demonstrated that multi-agent games can significantly im-
prove tracker’s generalization on unseen target, occlusions
or distractors. (Li et al. 2020) proposed a multi-camera col-
laboration solution to track the target in complex environ-
ments for PTZ camera networks. However, it is still diffi-
cult to deploy these methods in complex real-world environ-
ments, as the sim2real gap. In this work, we aim to build a
generalizable tracker that performs well in unseen and com-
plex real-world environments. We focus on state representa-
tion and introduce a novel structure-aware motion represen-
tation for the tracker. Additionally, we employ an asymmet-
ric dueling mechanism in learning based on AD-VAT.

Structure Reconstruction. Map represents the geome-
try of a scene. Previous works (Zhang and Singh 2014,
2015; Zhong et al. 2018; Campos-Macı́as et al. 2021)
have used the point clouds from LiDAR or RGB-D cam-
era as input for map reconstruction. However, point clouds
are high-dimensional and inefficient for downstream tasks
such as policy learning. Autonomous navigation frame-
works (Campos-Macı́as et al. 2021) have been proposed us-
ing depth sensors or visual SLAM (Campos et al. 2021;
Qin, Li, and Shen 2018) in unknown environments, but these
methods have limitations such as cumulative errors and high
storage requirements. (Usenko et al. 2017) proposed a robot-
centric 3D circular buffer to represent the local environment
efficiently. In AOT, robots rely more on their surroundings
than the global environment, making a local robot-centric
map more suitable and efficient for tracking.

Trajectory Prediction. Human motion prediction is pre-
viously studied in computer vision (Zhao et al. 2019; Tang
and Salakhutdinov 2019). (Lee et al. 2017; Nikhil and Mor-
ris. 2018) draw historical position on a grid map to take
its sequential and spatial properties into consideration, re-
sulting in increased computation operations. At present, the
main method of historical position still takes it as sequential
data, through Recurrent Neural Networks (RNN) (Medsker
and Jain 2001) to extract the features. Recently, (Kim et al.
2017) proposed a method based on Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) to predict
the future trajectory of the target over the occupancy grid
map. (Ridel et al. 2020) propose a model based on grid rep-
resentations to forecast agent trajectories. They encode the
scene and past trajectories using convolutional layers and
generate trajectory forecasts using a Convolutional LSTM
(ConvLSTM) (Xingjian et al. 2015). In AOT, the tracker is
required to predict the target’s motion from a first-person
view. To account for cluttered obstacles, we integrate scene
structure and historical trajectory of the target to forecast the
target’s trajectory distribution.

Method
The RSPT framework aims to create a structure-aware mo-
tion representation, denoted by Φt, using the RGB im-
age It, the depth image Dt, and the camera pose of the
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Figure 2: An overview of the RSPT framework for active object tracking. It forms a structure-aware motion representation by
Reconstructing the Surroundings of the tracker and Predicting the Trajectory of the target. The tracker first localizes the target
by a video tracker, and simultaneously constructs a local grid map with the depth image and camera pose, then predicts the
future trajectory of the target in the map. Based on the representation, the controller learns the tracking policy via Reinforcement
Learning (RL) under the asymmetric dueling mechanism (Zhong et al. 2019a).

tracker, P 0
t . The framework consists of four main compo-

nents, namely, target localization, structure reconstruction,
structure-aware trajectory prediction, motion controller, as
shown in Figure 2. By using this state representation, a
generalizable tracker can be trained through reinforcement
learning (RL) in an asymmetric dueling mechanism, as pro-
posed in AD-VAT (Zhong et al. 2019b).

Target Localization
The most basic function of the tracker is to identify and lo-
calize the target. In this regard, we employ an off-the-shelf
video tracker, denoted by V T , to estimate the 2D location
of the target object in the image space. Specifically, we first
crop the first RGB image I0 according to the initial target
bounding box B0, which serves as a template denoted by
Itemp. Then, we use V T to detect the bounding box Bt of
the target object in the subsequent RGB image It. To im-
prove cross-domain generalization, we adopt DiMP (Bhat
et al. 2019), which can online tune the network parameters
to better fit the target appearance during testing. The overall
formula can be expressed as follows:

Bt = V T (It, Itemp). (1)

To model the historical trajectory of the target, it is nec-
essary to transform the bounding box Bt in image space
into the target’s location P 0,1

t in the camera coordinate sys-
tem. Specifically, we obtain the central location (u, v) of the
bounding box Bt and the corresponding depth value d in the
depth image Dt. Next, we use the camera intrinsic param-
eters K to convert the (u, v, d) triplet into the target’s 3D
relative position P 0,1

t . The formula for this transformation
is as follows:

P 0,1
t = CT (K,Dt, Bt). (2)

The coordinate transforms CT is used to obtain the rela-
tive pose of the target with respect to the tracker. Here K, Dt

and Bt represent the camera intrinsic parameters, the depth
image, and the 2D bounding box of the target, respectively.
The coordinates (x, y) represent the position P 0,1

t of the tar-
get relative to the tracker, where x and y correspond to the
lateral and longitudinal directions, respectively. At each time
step, we set the tracker’s coordinate as (0, 0), and the target’s
coordinate at time step t is denoted by (xt, yt).

To help the tracker in inferring the current location of the
target, we define the visibility state of the target V is1t =

[P 0,1
t , P 1

last, Cinv]. Specifically, P 0,1t represents the current
position of the target relative to the tracker, P 1

last represents
the last observed position of the target, and Cinv denotes the
number of consecutive time steps during which the target
has not been observed by the tracker. In instances where the
target is not visible, the video tracker outputs a ”not found”
flag and sets the relative position P 0,1

t to all zeros. Notably,
all position values are relative to the tracker.

Structure Reconstruction
The aim of the structure reconstruction module SR is to re-
construct the environment in real-time to represent the re-
cent state of the tracker’s surroundings. Visual SLAM sys-
tems (Campos et al. 2021) can perform this task, but their
maps are not suitable for downstream tasks in real time.
This is because processing 3D point clouds requires heavy
computation, and sparse keypoint clouds provided by most
SLAM systems lack necessary information for decision-
making, such as the absence of points in a blank wall.

Motivated by this, we utilize a grid map (Fankhauser,
Bloesch, and Hutter 2018) that is based on the depth image
Dt and the estimated pose P 0

t at each time step. To reduce
computation costs, we recover point clouds within a certain
height from the depth image and camera intrinsic parame-
ters K. This approach may lead to a loss of map precision,

3707



especially in scenarios with large variations in ground height
and variable obstacle sizes. Nevertheless, we argue that this
trade-off between accuracy and computational efficiency is
acceptable. Empirical results demonstrate that such maps are
generally suitable for downstream decision-making tasks.
We then update the occupancy probability of each grid cell
based on the density of the corresponding point cloud, al-
lowing the grid map to reflect the probability of being occu-
pied by obstacles, including dynamic ones like the target.
Additionally, the 2D grid map is more amenable to real-
time computation by convolutional neural networks, which
is necessary for downstream tasks such as trajectory predic-
tion and motion control. We combine obstacle information
seen at different times with the tracker pose P 0

t , and finally
obtain the tracker-centric local map M0

t by transforming the
grid-based map to the current pose coordinate. Note that the
pose can be obtained from a localization system equipped in
most robots or simulated by adding noise to a grounded pose
in virtual environments. The overall formula is as follows:

M0
t = SR(Dt,K, P 0

t ). (3)

The local grid map is partitioned into fixed-size rectangu-
lar grids of equal size. To ensure a valid distance range of the
RGB-D sensors and avoid accumulating errors, we limit the
coordinate of the surrounding structure to within -10 to 10
meters. In our method, we employ a grid size of (40 × 40),
with each grid spanning 50cm in both length and width. This
grid-based representation can be efficiently processed by a
Neural Network for real-time decision making.

Structure-aware Trajectory Prediction
To predict the trajectory of the target on the map,
we employ a trajectory predictor TP to estimate the
target trajectory τ1t+1:t+F . At each time step, we use
the most recent H samples of the target’s coordi-
nates, τ1t−H+1:t = [(xt−H+1, yt−H+1), ..., (xt, yt)], to
forecast the F subsequent coordinates, τ1t+1:t+F =
[(xt+1, yt+1), ..., (xt+F , yt+F )]. We formulate this module
as follows:

τ1t+1:t+F = TP (Emap(M
0
t ), Etraj(τ

1
t−H+1:t)). (4)

We employ Convolutional Neural Networks (CNN) as a
feature extractor Emap to capture the spatial surrounding
structure. For the sequential information of the target’s his-
torical location τ1t−H+1:t, we use Long Short-Term Mem-
ory (LSTM) as a feature extractor Etraj . In order to pre-
dict the target’s trajectory, we compare the performance
of simple regression and Mixture-Density Recurrent Net-
work (Hu, Zhan, and Tomizuka 2018; Makansi et al. 2019)
(MDN-RNN). Our experiments demonstrate that regression
can only model the average distribution of the trajectories,
whereas MDN-RNN can capture the distribution of the tra-
jectories and generate multiple possible future trajectories.
Specifically, for each future time step, MDN-RNN outputs
the core weights, the mean and variance of the relative coor-
dinate x and y in each GMM core, and concatenates them to
form the target trajectory τ1t . The final trajectory distribution

is then computed accordingly. Our PT module has two key
advantages. Firstly, it conditions the trajectory prediction on
the spatial distribution and size of obstacles in the environ-
ment, leading to more accurate trajectory forecasts in clut-
tered settings. Secondly, it estimates the likelihood of mul-
tiple potential paths, allowing the tracker to react more flex-
ibly and rapidly to changes in the target’s behavior, rather
than assuming a regular movement pattern. We validate the
effectiveness of our PT module by comparing it against a
Kalman Filter, as detailed in Section .

Then, we construct a structure-aware motion represen-
tation that comprises the visibility state of the target, the
tracker-centric local map, and the predicted trajectory, de-
noted as Φt = [V is1t , E

′
map(M

0
t ), E

′
traj(τ

1
t )]. Notably, the

encoder E′
map and E′

traj employ the identical network ar-
chitecture as Emap and Etraj , respectively, but possess in-
dependent network parameters for learning.

Motion Controller

We propose a neural network-based motion controller, de-
noted by at = MC(Φt), which takes the structure-aware
motion representation Φt as input and outputs the action for
the tracker at time step t. The motion controller is trained
through reinforcement learning (Luo et al. 2020), where the
objective is to maximize the expected cumulative reward
over a finite horizon.

To enhance tracker robustness, we employ the asymmet-
ric dueling mechanism (Zhong et al. 2019a) to automatically
generate diverse target trajectories while training. Specifi-
cally, the target is an end-to-end network, and its input is the
grounded location of all agents obtained in the simulation.
This allows the target to identify weaknesses in the tracker’s
movements, thereby learning from successful escape paths.
The reward structure is based on AD-VAT+ (Zhong et al.
2019a). Specifically, the reward for the tracker is defined
as r0 = 1 − ∆ρ − ∆θ, where ∆ρ and ∆θ denote the er-
rors in relative distance and angle, respectively. As the tar-
get approaches the expected position, the tracker’s reward
increases. The target’s reward is the negative of the tracker’s
reward written as r1 = −r0, incentivizing the target to evade
the tracker. By training with an adversarial target, the robust-
ness of the tracking policy is improved concurrently.

Experiments
In this section, we conduct experiments to address the fol-
lowing questions: 1) How does the performance of the pro-
posed framework compare with that of existing methods?
2) To what extent does each module contribute to the over-
all improvement of the framework? 3) What is the primary
bottleneck for active object tracking? 4) Can the proposed
framework effectively handle noisy observations? 5) Can the
framework be successfully deployed in real-world robotic
applications? These experiments provide insights into the
effectiveness and limitations of our approach, as well as its
potential for practical applications.

The details of the experiments are introduced as follows.

3708



FlexibleRoom+ UrbanRoad UrbanCity Garage+ SnowForest Garden

Figure 3: Examples of the environments for training (leftmost) and testing (others). The top row features first-person views of
the trackers, while the bottom row displays third-person views

Environments

We employ six high-fidelity environments from AD-
VAT+ (Zhong et al. 2019a) to evaluate our approach, as
shown in Figure 3. These environments contains diverse ob-
stacles with varying shapes and layouts among these en-
vironments. The FlexibleRoom+ environment is used for
training, where we randomize the layouts, shapes, and sizes
of obstacles in each episode. The remaining six realis-
tic environments (UrbanCity, UrbanRoad, Garden, Garage,
Garage+, and SnowForest) are utilized to evaluate the gen-
eralization of the trackers in unseen environments. The ac-
tion space is akin to (Zhong et al. 2019b), with seven dis-
crete actions: Move-forward, Turn-left, Turn-left-and-move-
forward, Turn-right, Turn-right-and-move-forward, Stop,
and Move-backward.

Evaluation Metric

In our experiment, we set the maximum length of each
episode to 500 time steps. Besides, a visible area is de-
fined as a fan shape area in front of the tracker with a ra-
dius of 750cm and a range of 90 degrees. The target is
considered lost if it moves outside of this visible area, and
the episode terminates if the target remains lost for more
than 5 seconds. To evaluate the tracking performance, each
method runs over 50 episodes in each environment, and we
report average results for three metrics: Accumulated Re-
ward, Episode Length, and Success Rate. 1) Accumulated
Reward (AR). This metric, consistent with other RL tasks,
measures the cumulative reward across an entire episode,
and reflects both accuracy and robustness of the tracker. 2)
Episode Length (EL). We calculate the average episode
length based on the defined episode termination condition,
which reflects the long-term tracking performance. 3) Suc-
cess Rate (SR). An episode is considered successful if its
length reaches the maximum of 500 steps. We calculate the
rate of successful episodes across all episodes, which serves
as a measure of model robustness. Higher values indicate
greater robustness.

Comparison with Baselines
In the following, we compare our model with four two-stage
methods and two end-to-end methods in six realistic unseen
environments. Results are shown in Table 1.

Comparison with Two-stage Methods. In the two-stage
methods, there are a visual perception module and a con-
troller. For perception, we use an off-the-shelf video tracker
(VT) or a semantic segmentation model (Seg) to encode the
raw-pixel observation into a state representation, e.g., the
bounding box of target or the pixel-level segmentation mask.
Specifically, we employ pretrained DiMP (Bhat et al. 2019)
to track objects in videos and UNet + FCN from MMSeg-
mentation1 for semantic segmentation. For control, We build
three kinds of control strategy, namely Rule, Planner, and
RL. To be specific, the Rule-based controller is a PID-like
controller, which outputs action based on the errors between
the target location and the expectation. The Planner will re-
construct the surrounding map and uses the path planning
algorithms, e.g., A* (Hart, Nilsson, and Raphael 1968) to
navigate the tracker to the expected distance next to the tar-
get. The RL-based method is trained via deep reinforcement
learning to handle high-dimensional state representation.

First, we can see that RL-based controller achieved the
best performance among the three VT-based method (VT +
Rule, VT+ Planner, VT + RL), showing the good tracking
performance of the RL-based method. The VT + Planner
adds path planning to achieve obstacle avoidance. However,
it always has a delay, leading to the worst performance. In-
tuitively, when the tracker plans the path and starts walking
according to optimal location in the current state, the target
has left its previous position. This makes it difficult to main-
tain a specific distance and angle with the target. We also
notice that VT + RL and Seg + VT + RL achieve a compa-
rable results, showing that additional semantic information
about the scene is useless to the tracker.

Comparison with End-to-end Methods. We compare
our proposed RSPT with three end-to-end methods (AD-
VAT, AD-VAT+, TS), which also utilize RGB-D data as in-
puts. It is worthy to notice that the AD-VAT tracker was
trained in the FlexibleRoom without any obstacles. Differ-

1https://github.com/open-mmlab/mmsegmentation
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Methods UrbanCity UrbanRoad Garage Garage+ Garden SnowForest Mean
VT + Rule 263/428/0.72 250/452/0.75 261/418/0.74 223/385/0.67 208/381/0.61 119/301/0.43 221/394/0.65

VT + Planner 215/476/0.84 200/ 464/0.84 145/445/0.70 162/421/0.66 173/450/0.74 72/ 343/0.46 161/433/0.71
VT + RL 363/500/1.00 355/490/0.94 284/427/0.70 239/393/0.56 234/394/0.56 152/295/0.38 271/416/0.69

Seg + VT + RL 303/437/0.83 311/469/0.91 283/425/0.65 243/416/0.63 205/403/0.67 232/364/0.59 263/419/0.71
AD-VAT 335/484/0.88 246/429/0.60 86/302/0.20 39/273/0.10 112/297/0.16 169/364/0.44 164/358/0.39

AD-VAT+ 389/497/0.94 326/471/0.80 267/439/0.60 166/366/0.40 108/277/0.16 182/365/0.44 240/402/0.55
TS 341/496/0.94 308/480/0.84 265/472/0.89 237/462/0.78 55/209/0.02 234/424/0.63 240/424/0.68

RSPT (Ours) 341/500/1.00 346/500/1.00 314/480/0.80 285/445/0.73 283/444/0.72 248/410/0.80 302/463/0.84

Table 1: The quantitative results compared with the baselines, where the best results are shown in bold. Note that the top
four methods are two-stage methods. VT and Seg represent two kinds of perception modules, i.e., VT = Video Tracker, Seg
= Semantic Segmentation. Rule, Plan, and RL represent three kinds of controllers. TS indicates an end-to-end training tracker
with the teacher-student learning strategy introduced in (Zhong et al. 2021). Note that all the end-to-end methods (AD-VAT,
AD-VAT+, and TS) use the RGB-D image as the input. The three numbers in each cell represent Accumulated Reward (AR),
Episode Length (EL), and Success Rate (SR) respectively.

Methods UrbanCity UrbanRoad Garage Garage+ Garden SnowForest Mean
VisT 239/401/0.66 168/308/0.33 166/327/0.48 100/215/0.40 154/315/0.34 128/278/0.53 159/307/0.45

VisT + RS 313/500/1.00 305/500/1.00 284/477/0.76 249/431/0.69 247/438/0.70 171/365/0.60 261/451/0.79
VisT + PT 335/500/1.00 316/451/0.80 311/472/0.78 244/390/0.63 277/417/0.68 184/380/0.61 277/435/0.75

RSPT (MDN-RNN) 341/500/1.00 346/500/1.00 314/480/0.80 285/445/0.73 283/444/0.72 248/410/0.80 302/463/0.84
RSPT (KF) 329/500/1.00 318/500/1.00 284/459/0.70 262/439/0.71 251/440/0.68 219/387/0.65 277/454/0.79

Table 2: The quantitative results compared with the ablations, where the best results are highlighted in bold. VisT denotes the
visibility state of the target, RS represents Reconstruct Structure, PT indicates Predict Trajectory, and KF is a Kalman Filter
that offers similar functionality to our PT module. Each cell displays three numbers, which represent the Accumulated Reward
(AR), Episode Length (EL), and Success Rate (SR), respectively.

ently, AD-VAT+ is an extension of AD-VAT and aims to
handle more complex environments with obstacles via a
two-stage learning strategy. Besides, we construct a vari-
ant of (Zhong et al. 2021), namely TS, we employ the
teacher-student learning framework to train the end-to-end
RGB-D tracker. Unlike (Zhong et al. 2021), the teacher
takes grounded agent-centric grid maps as input for obsta-
cle avoidance instead of relative agent poses. To ensure a
fair comparison, we avoid introducing the distracting player
in any of the training environments.

The results, as shown in Table 1, demonstrate that our
method has a higher reward outperform the best end-to-end
baseline by more than 100 points in Garden. Our success
rate is also significantly higher than baselines in the Garden
and SnowForest. The results indicates that it is challenging
for end-to-end trackers to extract enough information about
the non-current field of view by implicitly encoding raw-
pixel observations, leading to suboptimal decision-making.
In contrast, using our structure-aware motion representation
allows the tracker to develop a better understanding of the
surrounding environment and the targets’ movements, which
is helpful to track in complex environments.

Ablation Study
We design some ablation versions of RSPT, namely VisT
(Visibility of Target), VisT+RS (Reconstruct Structure),
VisT+PT (Predict Trajectory), and RSPT (KF). The results
are shown in Table 2.

VisT serves as the foundational component of the state
representation, with additional RS, PT, and KF modules

added to create three other methods. Specially, in RS + KF,
we replaces PT module in VisT + PT with an off-the-shelf
Kalman Filter 2 as our trajectory prediction module. This
linear KF filter is used to forecast the future state of a dy-
namic process using a collection of (low-dimensional) ob-
servations.

Compared VisT with the VT + RL results in Table 1, VT +
RL achieved better performance, indicating that only using
the location of the visible target is helpless to improve the
generalization of tracker. Our results indicate that RS en-
ables the tracker to plan an optimal tracking route around
obstacles by leveraging structural information. Meanwhile,
PT enables the tracker to adjust its trajectory in anticipa-
tion of the target’s predicted motion. These improvements
highlight the importance of incorporating both structural in-
formation and motion prediction in active object tracking.
The performance gap observed between the two ablations
(VisT + RS and VisT + PT) and our RSPT (MDN-RNN)
demonstrates the effectiveness of the missing components.
The performance gap between the two choices of PT mod-
ule (MDN-RNN vs. KF) underscores the importance of ac-
counting for surrounding obstacles and considering multiple
possibilities for the target trajectory in trajectory prediction.
Our results suggest that the MDN-RNN model’s ability to
model the target’s motion uncertainty and leverage struc-
tural information leads to improved trajectory predictions
and overall tracking performance compared to the simpler
KF module. These findings demonstrate the value of incor-

2https://github.com/zziz/kalman-filter
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UrbanCity UrbanRoad Garage Garage+ Garden SnowForest Mean
Object Mask 302/494/0.98 353/499/0.94 177/378/0.52 232/420/0.64 162/389/0.38 37/264/0.01 210/407/0.57
Target Mask 407/500/1.00 392/494/0.96 359/474/0.84 218/444/0.66 377/497/0.98 305/461/0.83 343/478/0.87

RSPT with GT 375/500/1.00 356/500/1.00 347/493/0.90 350/479/0.84 385/500/1.00 384/500/1.00 366/492/0.93
RSPT (Ours) 341/500/1.00 346/500/1.00 314/480/0.80 285/445/0.73 283/444/0.72 248/410/0.80 302/463/0.84

Table 3: The quantitative results with different grounded state. The top two methods take Object Mask, and Target Mask as
input, separately, while the RSPT with GT method replace the estimated pose in RSPT with the grounded pose. Note that the
RSPT with GT methods provides an upper bound of our RSPT methods. The three numbers in each cell represent Accumulated
Reward (AR), Episode Length (EL), and Success Rate (SR) respectively.

Noisy Input UrbanCity UrbanRoad Garage Garage+ Garden SnowForest Mean
Clean Input 341/500/1.00 346/500/1.00 314/480/0.80 285/445/0.73 283/444/0.72 248/410/0.80 302/463/0.84

Depth 350/500/1.00 331/473/0.82 281/445/0.73 264/411/0.68 259/417/0.69 204/375/0.62 281/436/0.75
Pose 339/500/1.00 347/500/1.00 305/477/0.77 262/429/0.64 266/436/0.70 229/404/0.78 291/457/0.81

Depth + Pose 336/500/1.00 328/466/0.81 244/407/0.62 265/423/0.66 254/402/0.64 198/368/0.57 270/427/0.71

Table 4: Evaluating RSPT with different noisy inputs. The four methods take grounded information, noise depth + grounded
pose, grounded depth + noise pose, and noise depth + noise pose as input, separately. The three numbers in each cell represent
Accumulated Reward (AR), Episode Length (EL), and Success Rate (SR) respectively.

porating advanced motion models and structure-aware tra-
jectory prediction.

Tracking with Grounded States
To identify the bottleneck for AOT, we devised two state
representations utilizing different grounded states: seman-
tic segmentation masks and depth images. The first repre-
sentation, Object Mask, employs instance-level object seg-
mentation masks and depth images as inputs. The second
representation, Target Mask, makes use of binary masks of
the target and background, as well as depth images as in-
puts. Additionally, we constructed RSPT with GT by re-
placing the estimated poses in RSPT (which are based on
video tracker and depth image) with ground truth poses. This
method serves to verify the upper-bound of the structure-
aware motion representation-based approach without being
impacted by the accuracy of the video tracker.

Shown as Table 3, the Target Mask model outperforms the
Object Mask model due to the binary mask filtering out ir-
relevant background semantics. This allows the model to fo-
cus more on the target and the structure information, leading
to improved performance. Despite the Target Mask model’s
improved performance, it still exhibits significant shortcom-
ings in dealing with various unseen environments due to
a lack of awareness of environmental structure and target
movement. In contrast, utilizing the proposed RSPT method
for constructing the tracker achieved a 100% success rate
in four out of six diverse testing environments, demonstrat-
ing that this approach can significantly enhance robustness
in complex environments.

Robustness Analysis
To evaluate the robustness of the trackers, we introduce
noise to the input and conduct experiments. The video
tracker is trained on real data, bridging the gap between sim-
ulation and reality in RGB processing. However, the depth
image captured by a real RGB-D sensor is often noisy, and

the mapping method is frequently affected by cumulative er-
rors of the pose, making noise on camera poses a signifi-
cant concern. To add noise to the depth image, we use the
random-shift/laterally-corruption cooperation from the ICL-
NUIM dataset (Handa et al. 2014). Additionally, we apply
Gaussian noise with a mean of 0 and a variance of 0.5 me-
ters to the pose to simulate noisy pose.

As shown in Table 4, our method is not greatly affected
by pose errors by constructing tracker-centric surrounding
maps. The noise on depth causes more drop in the perfor-
mance, but our method with noisy input remains achieved
higher scores than end-to-end trackers with clear depth.

Real-world Deployment
To verify the practical value of the proposed RSPT tracker,
trained in FlexibleRoom+ with 1m expected distances, we
conduct experiments on a physical robot in real-world set-
tings. The tracker’s performance is tested in three situations:
Moving Forward, Moving Backward, and Tracking with Vi-
sual Occluding. Moving Forward involves the target winding
around the obstacle or S-type line, testing the tracker’s abil-
ity in obstacle avoidance and target movement prediction.
Moving Backward tests the tracker’s ability to remember ob-
stacles outside the field of view as the target moves along the
reverse direction of the mobile robots into the edge of the
barrier. Tracking with Visual Occluding tests the tracker’s
ability to handle visual occlusion as the target hides behind
the obstacle.

In terms of quantification, we mainly consider the success
rate, distance error, and direction error as (Luo et al. 2020).
We collected 79 minutes of real-world tracking sequences, a
total of 47k steps, to evaluate the model. For each frame, we
calculate the three indicators using the bounding box, and
compute the average value over all frames for each situa-
tion. A higher success rate indicates a more robust tracker,
while smaller distance error and direction error correspond
to higher tracking accuracy.
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[In Virtual Environment]

[In Real-world Environment]

Figure 4: Exemplar sequences of RSPT in different environments. The reconstructed map depicts the target as a red dot, the
tracker as a blue dot, obstacles as white, free space as black, and the unexplored area as gray. Meanwhile, the predicted trajectory
displays the historical trajectory via a black line and the future trajectory distribution via a green area. The latter reflects the
probability density function, with brighter colors indicating higher probabilities.

Situation Method SR Distance Error Direction Error

MF VT + Planner 0.90 0.21±0.05 0.13±0.07
RSPT 0.97 0.14±0.03 0.08±0.06

MB VT + Planner 0.83 0.29±0.08 0.20±0.09
RSPT 0.91 0.25±0.09 0.11±0.05

VO VT + Planner 0.68 0.32±0.10 0.37±0.12
RSPT 0.95 0.17±0.06 0.14±0.08

Table 5: We present quantitative results in three real-world
situations: Moving Forward (MF), Moving Backward (MB),
and Visual Occluding (VO). The three numbers in each cell
represent Accumulated Reward (AR), Episode Length (EL),
and Success Rate (SR) respectively. We compare our results
with the VT + Planner baseline and highlight the best results
in bold.

The quantitative results are shown in Table 5. VT +
Planner represents the traditional two-stage method. As the
sim2real gap, all the end-to-end methods fail to deploy in our
robot. Our proposed RSPT tracker outperforms VT + Plan-
ner in terms of success rate, distance error, and direction
error. Specifically, the RSPT tracker achieved a higher suc-
cess rate in the Moving Forward (MF) situation, which is the
most frequently occurring situation in the training data. In
addition, even in the Moving Backward (MB) situation with
limited space, our approach maintains robust tracking per-
formance. Moreover, our method demonstrates better per-
formance than the traditional method in the Visual Occlud-

ing (VO) situation where the 2D tracker is ineffective. This
is due to the ability of the RSPT method to utilize the pre-
dicted state of the target for control, which enables normal
tracking to be maintained.

Exemplar Cases
For a better understanding of the workflow of the RSPT
tracker, we further provide demo sequences in Figure 4, in-
cluding simulation and reality scenarios.

Figure 4 shows that the RSPT tracker can predict the
target’s position using map and historical trajectory infor-
mation when visual occlusion occurs, enabling continuous
tracking. In cases where the target is hiding in a corner, the
tracker leverages map information to predict the target’s in-
tention and remains stationary, awaiting the target’s emer-
gence. However, the future trajectory proposed by the PT
module appears suboptimal in some cases, as it must adapt
to diverse learning targets with varying walking strategies.
As future work, we plan to classify the target and predict its
trajectory based on the pattern of movement.

Conclusion
In the field of active object tracking, we assert that accurate
prediction of target trajectory and awareness of surrounding
obstacles are critical for successful tracking, particularly in
environments with clustered obstacles and diverse layouts.
To address these challenges, we propose a structure-aware

3712



motion representation to develop a generalizable RGB-D
tracker. Our approach includes key modules such as target
localization, structure reconstruction, structure-aware trajec-
tory prediction, and motion controller. Through experimen-
tal results on a range of realistic virtual environments, we
demonstrate that our approach exhibits superior generaliza-
tion performance. Additionally, we confirm the effectiveness
of our approach in real-world scenarios by deploying it on a
quadruped robot, which shows promising sim-to-real gener-
alization capabilities.

Our work opens up several interesting directions for fu-
ture research. Firstly, each module of the RSPT tracker can
be further developed to address specific challenges. For ex-
ample, in the structure reconstruction module, it would be
important to efficiently build 3D maps for uneven terrain.
Additionally, the tracker should be designed to avoid dy-
namic obstacles such as distractors without colliding with
other obstacles. Secondly, for the video tracker, a promis-
ing direction is to incorporate the structure representation
with image features to improve robustness to distractors and
occlusion. Thirdly, for trajectory prediction, we consider
adopting the machine theory of mind approach to predict
the target’s intention (Wang et al. 2022) for more precise tra-
jectory prediction. Furthermore, it would be valuable to ex-
plore ways to make the modules mutually beneficial. Lastly,
our framework could be extended to more challenging multi-
agent settings such as team formation (Jin et al. 2022), tar-
get coverage control (Xu, Zhong, and Wang 2020; Pan et al.
2022), 3D human pose estimation (Ci et al. 2023).
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Parra-Vilchis, J. I.; and Gómez-Gutiérrez, D. 2021. Au-
tonomous navigation of MAVs in unknown cluttered envi-
ronments. Journal of Field Robotics, 38(2): 307–326.
Chrisley, R. 2003. Embodied artificial intelligence. Artificial
Intelligence, 149(1): 131–150.
Ci, H.; Liu, M.; Pan, X.; Zhong, F.; and Wang, Y. 2023.
Proactive Multi-Camera Collaboration for 3D Human Pose
Estimation. In The Eleventh International Conference on
Learning Representations.
Devo, A.; Dionigi, A.; and Costante, G. 2021. Enhancing
continuous control of mobile robots for end-to-end visual

active tracking. Robotics and Autonomous Systems, 142:
103799.
Dionigi, A.; Devo, A.; Guiducci, L.; and Costante, G. 2022.
E-VAT: An Asymmetric End-to-End Approach to Visual Ac-
tive Exploration and Tracking. IEEE Robotics and Automa-
tion Letters, 7(2): 4259–4266.
Fankhauser, P.; Bloesch, M.; and Hutter, M. 2018. Proba-
bilistic Terrain Mapping for Mobile Robots With Uncertain
Localization. IEEE Robotics and Automation Letters, 3(4):
3019–3026.
Handa, A.; Whelan, T.; McDonald, J.; and Davison, A. J.
2014. A benchmark for RGB-D visual odometry, 3D recon-
struction and SLAM. In 2014 IEEE international conference
on Robotics and automation (ICRA), 1524–1531. IEEE.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation, 9(8): 1735–1780.
Hong, Z.-W.; Yu-Ming, C.; Su, S.-Y.; Shann, T.-Y.; Chang,
Y.-H.; Yang, H.-K.; Ho, B. H.-L.; Tu, C.-C.; Chang, Y.-
C.; Hsiao, T.-C.; et al. 2018. Virtual-to-real: Learning to
control in visual semantic segmentation. arXiv preprint
arXiv:1802.00285.
Hu, W.; Li, X.; Luo, W.; Zhang, X.; Maybank, S.; and
Zhang, Z. 2012. Single and multiple object tracking using
log-Euclidean Riemannian subspace and block-division ap-
pearance model. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(12): 2420–2440.
Hu, Y.; Zhan, W.; and Tomizuka, M. 2018. Probabilistic
Prediction of Vehicle Semantic Intention and Motion. In
2018 IEEE Intelligent Vehicles Symposium (IV), 307–313.
Jin, K.; and Han, X. 2022. Conquering Ghosts: Re-
lation Learning for Information Reliability Representa-
tion and End-to-End Robust Navigation. arXiv preprint
arXiv:2203.09952.
Jin, K.; Wang, J.; Wang, H.; Liang, X.; Guo, Y.; Wang,
M.; and Yi, H. 2022. Soft formation control for un-
manned surface vehicles under environmental disturbance
using multi-task reinforcement learning. Ocean Engineer-
ing, 260: 112035.
Kim, B.; Kang, C. M.; Kim, J.; Lee, S. H.; Chung, C. C.;
and Choi, J. W. 2017. Probabilistic vehicle trajectory predic-
tion over occupancy grid map via recurrent neural network.
In 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 399–404. IEEE.
Kim, K. K.; Cho, S. H.; Kim, H. J.; and Lee, J. Y. 2005. De-
tecting and tracking moving object using an active camera.
In International Conference on Advanced Communication
Technology, volume 2, 817–820.
Lee, N.; Choi, W.; Vernaza, P.; Choy, C. B.; Torr, P. H.; and
Chandraker, M. 2017. Desire: Distant future prediction in
dynamic scenes with interacting agents. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 336–345.

3713



Li, J.; Xu, J.; Zhong, F.; Kong, X.; Qiao, Y.; and Wang, Y.
2020. Pose-Assisted Multi-Camera Collaboration for Active
Object Tracking. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 759–766.
Luo, W.; Sun, P.; Zhong, F.; Liu, W.; Zhang, T.; and Wang,
Y. 2018. End-to-end active object tracking via reinforcement
learning. In International conference on machine learning,
3286–3295. PMLR.
Luo, W.; Sun, P.; Zhong, F.; Liu, W.; Zhang, T.; and Wang,
Y. 2020. End-to-End Active Object Tracking and Its Real-
World Deployment via Reinforcement Learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(6): 1317–1332.
Makansi, O.; Ilg, E.; Cicek, O.; and Brox, T. 2019. Over-
coming Limitations of Mixture Density Networks: A Sam-
pling and Fitting Framework for Multimodal Future Predic-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).
Medsker, L. R.; and Jain, L. 2001. Recurrent neural net-
works. Design and Applications, 5: 64–67.
Mei, X.; and Ling, H. 2009. Robust visual tracking using
L1 minimization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 1436–1443.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Nikhil, N.; and Morris., B. T. 2018. Convolutional neural
network for trajectory prediction. IEEE Conference on Com-
puter Vision and Pattern Recognition.
Pan, X.; Liu, M.; Zhong, F.; Yang, Y.; Zhu, S.-C.; and Wang,
Y. 2022. MATE: Benchmarking Multi-Agent Reinforcement
Learning in Distributed Target Coverage Control. In Thirty-
sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.
Qin, T.; Li, P.; and Shen, S. 2018. Vins-mono: A robust
and versatile monocular visual-inertial state estimator. IEEE
Transactions on Robotics, 34(4): 1004–1020.
Ridel, D.; Deo, N.; Wolf, D.; and Trivedi, M. 2020. Scene
compliant trajectory forecast with agent-centric spatio-
temporal grids. IEEE Robotics and Automation Letters,
5(2): 2816–2823.
Ross, D. A.; Lim, J.; Lin, R.-S.; and Yang, M.-H. 2008. In-
cremental learning for robust visual tracking. International
Journal of Computer Vision, 77(1-3): 125–141.
Sutton, R. S.; and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition. ISBN 0262193981.
Tang, C.; and Salakhutdinov, R. R. 2019. Multiple futures
prediction. Advances in Neural Information Processing Sys-
tems, 32.
Usenko, V.; Von Stumberg, L.; Pangercic, A.; and Cremers,
D. 2017. Real-time trajectory replanning for MAVs us-
ing uniform B-splines and a 3D circular buffer. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 215–222. IEEE.

Wang, M.; Liu, Y.; Su, D.; Liao, Y.; Shi, L.; Xu, J.; and
Miro, J. V. 2018. Accurate and real-time 3-D tracking for
the following robots by fusing vision and ultrasonar infor-
mation. IEEE/ASME Transactions On Mechatronics, 23(3):
997–1006.
Wang, Y.; Zhong, F.; Xu, J.; and Wang, Y. 2022. ToM2C:
Target-oriented Multi-agent Communication and Coopera-
tion with Theory of Mind.
Xi, M.; Zhou, Y.; Chen, Z.; Zhou, W.; and Li, H. 2021. Anti-
distractor active object tracking in 3d environments. IEEE
Transactions on Circuits and Systems for Video Technology,
32(6): 3697–3707.
Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-
K.; and Woo, W.-c. 2015. Convolutional LSTM network: A
machine learning approach for precipitation nowcasting. In
Advances in Neural Information Processing Systems, 802–
810.
Xu, J.; Zhong, F.; and Wang, Y. 2020. Learning Multi-Agent
Coordination for Enhancing Target Coverage in Directional
Sensor Networks. In Advances in Neural Information Pro-
cessing Systems, volume 33, 10053–10064.
Zhang, J.; and Singh, S. 2014. LOAM: Lidar Odometry and
Mapping in Real-time. In Robotics: Science and Systems.
Zhang, J.; and Singh, S. 2015. Visual-lidar odometry and
mapping: Low-drift, robust, and fast. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2174–2181. IEEE.
Zhang, W.; Song, K.; Rong, X.; and Li, Y. 2018. Coarse-to-
fine UAV target tracking with deep reinforcement learning.
IEEE Transactions on Automation Science and Engineering,
16(4): 1522–1530.
Zhao, T.; Xu, Y.; Monfort, M.; Choi, W.; Baker, C.; Zhao,
Y.; Wang, Y.; and Wu, Y. N. 2019. Multi-agent tensor fu-
sion for contextual trajectory prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 12126–12134.
Zhong, F.; Sun, P.; Luo, W.; Yan, T.; and Wang, Y. 2019a.
Ad-vat+: An asymmetric dueling mechanism for learning
and understanding visual active tracking. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 43(5):
1467–1482.
Zhong, F.; Sun, P.; Luo, W.; Yan, T.; and Wang, Y. 2019b.
AD-VAT: An Asymmetric Dueling mechanism for learn-
ing Visual Active Tracking. In International Conference on
Learning Representations.
Zhong, F.; Sun, P.; Luo, W.; Yan, T.; and Wang, Y. 2021.
Towards distraction-robust active visual tracking. In Inter-
national Conference on Machine Learning, 12782–12792.
PMLR.
Zhong, F.; Wang, S.; Zhang, Z.; and Wang, Y. 2018. Detect-
SLAM: Making object detection and SLAM mutually ben-
eficial. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), 1001–1010. IEEE.

3714


