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Abstract

Voxel grid representation of 3D scene properties has been
widely used to improve the training or rendering speed of
the Neural Radiance Fields (NeRF) while at the same time
achieving high synthesis quality. However, these methods ac-
celerate the original NeRF at the expense of extra storage
demand, which hinders their applications in many scenar-
ios. To solve this limitation, we present TinyNeRF, a three-
stage pipeline: frequency domain transformation, pruning and
quantization that work together to reduce the storage demand
of the voxel grids with little to no effects on their speed and
synthesis quality. Based on the prior knowledge of visual sig-
nals sparsity in the frequency domain, we convert the origi-
nal voxel grids in the frequency domain via block-wise dis-
crete cosine transformation (DCT). Next, we apply pruning
and quantization to enforce the DCT coefficients to be sparse
and low-bit. Our method can be optimized from scratch in an
end-to-end manner, and can typically compress the original
models by 2 orders of magnitude with minimal sacrifice on
speed and synthesis quality.

1 Introduction
Synthesizing novel views of a 3D object from a sparse set of
calibrated images is an appealing problem. It enhances cus-
tomer experience for online product showcases and Street
View maps (Tancik et al. 2022). Recently, Neural Radiance
Fields (NeRF) (Mildenhall et al. 2020) has made a great
breakthrough in this direction by representing the 3D radi-
ance field implicitly with a coordinate neural network, yield-
ing high quality of synthesized images, and the rendering
quality has been further improved by many followup works
(Zhang et al. 2020; Barron et al. 2021; Tancik et al. 2020;
Sitzmann et al. 2020).

Despite its high synthesis quality, the original NeRF re-
quires a large number of computations during both training
and inference. It needs to query an MLP hundreds of times
for rendering one single pixel, leading to its lengthy training
time and inefficiency in novel view rendering. Thus, many
follow up works have been done to accelerate its training
(Liu et al. 2022; Kangle et al. 2022; Yu et al. 2022; Sun, Sun,
and Chen 2022) or rendering process (Yu et al. 2022; Sun,
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Sun, and Chen 2022; Lindell, Martel, and Wetzstein 2021;
Garbin et al. 2021; Liu et al. 2020; Yu et al. 2021; Reiser
et al. 2021; Hedman et al. 2021; Wizadwongsa, Phongth-
awee, and Yenphraphai 2021), among which the voxel grid
optimization based methods have achieved great success (Yu
et al. 2022; Sun, Sun, and Chen 2022; Liu et al. 2020; Yu
et al. 2021). These methods explicitly store volumetric 3D
scene properties into voxel grids, which enables significant
acceleration by removing empty voxels without scene con-
tents and also yields great synthesis quality. For example,
without the requirement of any generalizable pre-training or
depth information, Plenoxels (Yu et al. 2022) and DVGO
(Sun, Sun, and Chen 2022) can converge in less than 10
minutes on one single GPU, compared to days for the origi-
nal NeRF (Mildenhall et al. 2020). However, their methods
accelerate the training and rendering process at the cost of
the large model size. For example, DVGO (Sun, Sun, and
Chen 2022) needs to store two 3D grids with sizes 1× 1603

and 12× 1603, respectively, resulting in more than 200MB
storage demand for one single scene, which is 40× larger
than the original NeRF model. This limitation hinders its
applications in scenarios where online model transfer is fre-
quently needed and storage resources are limited. Although
the model size of these methods can be reduced by voxel
pruning (Liu et al. 2020) and efficient data structures can
be used to store the sparse voxels (Laine and Karras 2010;
Lefebvre and Hoppe 2006; Niebner et al. 2013), the com-
pression is still limited, and significant voxel pruning typi-
cally results in unacceptable quality degradation in render-
ing, as shown in Fig. 1.

Our goal in this paper is to reduce the storage demand for
voxel grid optimization based NeRF methods, while at the
same time maintaining their advantages in training/inference
speed and synthesis quality. To this end, we present TinyN-
eRF. We take inspiration from the fact that most visual sig-
nals in the real-life are smooth in the spatial domain, so they
should be sparse in the frequency domain. In other words,
when decomposing these signals into different frequencies,
most information will be centralized in the low-frequency
region as shown in Fig. 4. Taking the advantage of this prop-
erty, we compress the voxel grids in the frequency domain.
Specifically, we first transform the voxel grid values in the
frequency domain via block-wise discrete cosine transfor-
mation (DCT). After that, we apply pruning to the trans-
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(a) DVGO (Sun, Sun, and Chen 2022)
203 MB, 3 mins

(b) DVGO+VP∗

10 MB, 5 mins
(c) DVGO+VP∗

1 MB, 5 mins
(d) Ours

1 MB, 6.5 mins
(e) Ours

1 MB, 6.5 mins

Figure 1: Comparison of model size and convergence time between our method and other variants, the training time is measured
on one single NVIDIA A100 GPU. VP denotes voxel pruning (Liu et al. 2020) reimplemented based on DVGO, which removes
low-density voxels. Significant voxel pruning (c) typically leads to unacceptable degradation in synthesizing quality. In contrast,
our method (d), (e) can largely reduce the model size with minimal influence on synthesizing quality and training/inference
speed.

formed grids by removing redundant DCT coefficients and
retaining only the most informative coefficients. Next, we
quantize the previously pruned coefficients by representing
the non-zero floating-point values with low-bit integers mul-
tiplied by a single floating-point scalar. As a result, the re-
quired storage of the model is largely reduced. During infer-
ence, we recover the original grids with inverse discrete co-
sine transformation (IDCT) and apply the common volume
rendering. We empirically show that the additional IDCT has
only little effect on the rendering speed.

Our method can compress the voxel grids by more than
100× with minimal sacrifice on rendering quality and speed.
For example, we build our codes based on the recent state-
of-the-art voxel grid based NeRF implementation DVGO
(Sun, Sun, and Chen 2022)1, the model size can be signif-
icantly reduced from 200MB to 2MB, while the training
time only grows from 3 minutes to 6.5 minutes on a single
NVIDIA A100 GPU with only 0.2 degradation in PSNR and
0.003 degradation in SSIM on the synthetic nerf dataset.

2 Preliminaries
Neural radiance fields. To synthesize the image of a 3D
object in novel views, NeRF represents the properties of the
3D scene implicitly into an MLP, which takes the location
coordinate p ∈ R3 and the viewing direction d ∈ R2 as
inputs, and outputs the corresponding density values σ ∈ R
and colors c ∈ R3:

{σ(p),ν(p)} = fθ(p), c(p,d) = gϕ(ν(p),d) (1)

where θ and ϕ are the parameters of the MLP. The rendered
pixel value Ĉ(r) of the camera ray r = (p0,d) can be com-
puted using the principles of the traditional volume render-
ing (Kajiya and Hersen 1984):

Ĉ(r) =

∫ +∞

0

T (t)σ(p(t))c(p(t),d)dt (2)

where p0 and d are the origin and the direction of the
camera ray, respectively, p(t) = p0 + td2, and T (t) =

1https://github.com/sunset1995/DirectVoxGO
2In practice, the direction d is often represented by a unit 3-d

vector

Figure 2: The comparison between the original NeRF (left)
and the voxel grid optimization based NeRF (right). In the
original NeRF, to render the pixel value of a camera ray
r = (p0,d), the model must apply the expensive forward
computation of an MLP on hundreds of sampled points
along the ray to get their density values and colors. The
voxel grid optimization-based methods explicitly store the
position-dependent density values and scene feature embed-
dings into voxel grids. This design allows the model to skip
the low-density points by efficiently querying the density
grid with trilinear interpolation, leading to significant accel-
eration in training and rendering.

exp
[
−
∫ t

0
σ(p(s))ds

]
is the probability that a beam of light

emitting from the origin p0 along the direction d hits the
point p(t). Note that the volume density σ is restricted to be
only dependent on the location p to encourage the scene rep-
resentation to be multiview consistent, while the color c is
dependent on both location p and direction d to model view-
dependent scene. In practice, the intractable integral in Eq.
(2) can be approximated by aggregating the densities and
colors of densely sampled points along the ray (Max 1995;
Mildenhall et al. 2020):

Ĉ(r) ≈
N∑
i=1

Tiαici (3)

where αi = 1 − exp(−σiδi), Ti =
∏i−1

j=1(1 − αi). σi

and ci are the density and color of the ith sampled point,
respectively, and δi is the distance between the ith sampled
point and the next sampled point.

The rendering process of Eq. 3 is fully differentiable, so
the parameters of the network can be optimized end-to-end
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by minimizing the following loss function:

L =
1

|R|
∑
r∈R

∥Ĉ(r)−C(r)∥2 (4)

where R is the set of camera rays sampled in a mini batch,
and C(r) is the true pixel value corresponding to the camera
ray r.
Voxel grid optimization. Despite its high rendering quality,
the original NeRF requires heavy computation cost, because
Eq. (3) typically needs to perform the forward of an MLP
hundreds of times to render a single pixel. Voxel grid opti-
mization based methods solve this problem by storing and
optimizing position-dependent modalities of interest (e.g.
density σ(p), features ν(p) in Eq. (1)) explicitly into voxel
grid cells, and query their value at any position p via inter-
polation:

σ(p) = a(interp(p,V(σ))), ν(p) = interp(p,V(ν)) (5)

where p is the queried location, and V(σ) ∈ R1×Nx×Ny×Nz

and V(ν) ∈ RC×Nx×Ny×Nz are the voxel grids correspond-
ing to the density and features, respectively. C is the di-
mension of the position-dependent feature, and Nx, Ny, Nz

are the number of voxels along the three dimensions. a(·) is
the density activation function such as shifted softplus (Sun,
Sun, and Chen 2022). Note that the interpolation operation
in Eq. (5) can be performed efficiently, which allows the
model to directly skip low-density or occluded points dur-
ing rendering:

Ĉ(r) ≈
∑

i∈Ω(r)

Tiαici (6)

where Ω(r) = {i : αi > τ1, Ti > τ2}. τ1 and τ2 are two
user defined thresholds. Ti, αi, ci are all the same as defined
in Eqs. (1,3). In this way, the required number of MLP for-
ward is largely reduced, resulting in significant acceleration.
A graphical illustration of this process is shown in the right
of Fig. 2.
Limitations of existing methods. The voxel grid optimiza-
tion based methods accelerate the original NeRF by prevent-
ing the rendering of points without scene content. However,
these methods achieve the acceleration at the expense of
extra storage demand. The key components of these meth-
ods are the two pre-stored 3D grids which allow efficient
querying via trilinear interpolation while requiring a large
number of storage resources. Our main insight is that most
visual signals in our real life are smooth in the spatial do-
main, which makes them tend to be sparse in the frequency
domain. Thus, we transform the original voxel grids from
spatial domain to the frequency domain with DCT and ap-
ply pruning and quantization to their DCT coefficients to re-
duce the storage demand. Although previous methods such
as NSVF (Liu et al. 2020), Plenoxels (Yu et al. 2022) and
DVGO (Sun, Sun, and Chen 2022) all prune empty voxels
with no scene contents, while the pruning rate is still limited
because of the large foreground-background ratio. Besides,
the training time of NSVF is still too long because of the
deep MLP in its scene representation.

3 Method
In this section, we introduce the proposed TinyNeRF. Be-
fore going into more details, we give a brief overview of our
pipeline, which is illustrated in Fig. 3. We first transform
the original voxel grid values to the frequency domain by
expressing them with the combination of cosine basis wave
functions oscillating at different frequencies via block-wise
discrete cosine transformation (DCT) (the top left of the fig-
ure, Sec. 3.1). After the transformation, most of the signals
information will be centralized in the low-frequency region.
We next apply pruning (middle left at the top of the figure,
Sec. 3.2) and quantization (middle right at the top of the fig-
ure, Sec. 3.3) to the transformed grids by removing less in-
formative coefficients with lower magnitudes and represent-
ing the remained values with low-bit integers. In this way,
we generate a rather sparse and low-bit model which can be
stored in the disk or transferred online with little storage and
network flow. The original grid values can be efficiently re-
covered from the compressed coefficients via block-wise in-
verse discrete cosine transformation (IDCT) to perform the
following rendering (the bottom of the figure). The whole
framework can be optimized in an end-to-end manner, and
can be easily implemented with only little modification to
the existing voxel grid optimization-based implementations.

3.1 Voxel Grids with Cosine Basis
Discrete Cosine Transformation. The first step of our
method is to transform the original voxel grids to the fre-
quency domain. Here we utilize the discrete cosine transfor-
mation (DCT) which is a Fourier-related transformation and
has been widely used in image and video compression (Wal-
lace 1992; Wiegand et al. 2003) because of its high degree
of spectral compaction. For a 3D grid V ∈ RC×Bx×By×Bz ,
where C is the dimension of the feature stored in each voxel,
and Bx×By×Bz the shape of the grid. The discrete cosine
transformation (DCT) and inverse discrete cosine transfor-
mation (IDCT) can be defined by:

V̄c,i,j,k =
∑
x,y,z

uiujuk√
BxByBz

Vc,i,j,k×

cos(
π

Bx
i(x+

1

2
)) cos(

π

By
j(y +

1

2
)) cos(

π

Bz
k(z +

1

2
))

Vc,x,y,z =
∑
i,j,k

uiujuk√
BxByBz

V̄c,i,j,k×

cos(
π

Bx
i(x+

1

2
)) cos(

π

By
j(y +

1

2
)) cos(

π

Bz
k(z +

1

2
))

(7)

where x, y, z and i, j, k span from [1, 1, 1] to [Bx, By, Bz],
and ui is 1 at i = 0 and

√
2 otherwise. V̄ ∈ RC×Bx×By×Bz

is the transformed coefficients grid. In the remaining of this
paper, we use the symbols with overbar to denote the DCT
coefficients of the corresponding grids.
Signals Sparsity in the DCT Domain. In the view of sig-
nal decomposition, the transformation defined in Eq. (7) can
be seen as factorizing the original grid V with cosine ba-
sis functions, where V̄ are the magnitudes corresponding to
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Figure 3: The overview framework of our method. Our method is inspired by the fact that most 3D scenes in our true life are
smooth in the spatial field, so they tend to be sparse in the frequency field. We apply pruning and quantization to the DCT
coefficients of the learnable scene properties stored in the 3D voxel grids, resulting in a rather sparse and low-bit model which
requires little storage demand.

Figure 4: A toy example for the illustration of signals spar-
sity in the frequency domain. The running speed is measured
on a single Intel Core i7-8700 CPU.

different frequencies. The high-frequency components are
related to part of the original signals oscillating wildly in
the spatial domain, such as edges. However, for most visual
signals in the real life, edges are very sparse and nearby lo-
cations often share similar properties. Thus, after transfor-
mation, most information will be concentrated in the low-
frequency region. As a result, the transformed coefficients
V̄ will be rather sparse and can be roughly compressed with
negligible information loss.

In Fig. 4 we further illustrate this with a toy example,
where we randomly collect 100 images and report the dis-
tribution of their DCT coefficients. We find that most of the
coefficients are centralized to zero after transformation. The
left of the figure shows that the original image can be recov-
ered with high quality even when 98% of the DCT coeffi-
cients are removed.
Block-wise DCT. In practice, during transformation, instead

of applying DCT to the whole grid, we divide the voxels
into blocks and apply block-wise DCT. Specifically, for a
3D grid V ∈ RC×Nx×Ny×Nz we first divide the grid into
Nx

Bx
× Ny

By
× Nz

Bz
blocks of sub-grids, each with size C ×

Bx × By × Bz , where Bx, By, Bz are the block size along
the three dimensions, and apply the DCT transformation to
each of these blocks independently.

Several advantages motivate us to apply block-wise trans-
formation. First, block-wise transformation requires less
computation and thus is faster as shown in the left of Fig.
4. We show in the appendix that the number of required
multiply-accumulate operations grows with the block-size.
Second, block-wise transformation leads to less numerical
errors as shown in the bottom right of the Fig. 4. Theoret-
ically, the transformation defined in Eq. (7) is strictly ac-
curate, while in practice, its computation suffers truncation
errors because of the limited floating point precision in com-
puters. As the block size grows, the required number of float-
ing point operations grows, and so do the numerical errors.
Third, the block-wise transformed coefficients are also con-
centrated around zero as shown in the top right of Fig. 4.

3.2 Pruning
After transformation, most of the signals information will
be centralized on the low-frequency region as shown in the
middle left at the top of Fig. 3. We then prune the trans-
formed coefficients by enforcing the low-magnitude coeffi-
cients to be zero and only retaining the more informative
ones. In other words, we sort the coefficients in descending
order according to their absolute values and only retain the
top K coefficients, where K is the expected number of re-
tained coefficients.

We denote V̄P the pruned DCT coefficients. During the
pruning aware training, we apply the volume rendering with
the approximately recovered grid VP = IDCT(V̄P ) and
compute the gradients w.r.t. the learnable grid with straight
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through estimator (STE) (Bengio, Leonard, and Courville
2013), which can be formulated by the following equation:

∂L
∂V

≈ ∂L
∂VP

where VP = IDCT(V̄P ) (8)

3.3 Quantization
After applying pruning aware training for several iterations,
we quantize the pruned coefficients to further improve the
compression by reducing the number of bits required to store
each non-zero value. Specifically, let V̄P be the DCT coef-
ficients after pruning, we quantize the retained values in V̄P

by approximating them with low-bit integers multiplied by
a single floating point scalar: V̄P ≈ αV̄Q, where α ∈ R, V̄Q

is the quantized coefficients, in which each value is repre-
sented by a low bit integer. At the initialization of the quanti-
zation aware training, the values of α and V̄Q can be approx-
imated by iterating the following two equations alternatively
(Choukroun et al. 2019; Wang et al. 2019):

V̄Q = clip([
V̄P

α
], Qmin, Qmax) (9a)

α =
< V̄P , V̄Q >

< V̄Q, V̄Q >
(9b)

where [·] is the round operator, Qmin and Qmax are the
minimum and maximum quantized values. For example,
for b-bit quantization, they can be computed by: Qmin =
−2b−1, Qmax = 2b−1 − 1. < ·, · > denotes the inner prod-
uct operator defined by summing up all the values in the
element-wise multiplication of the two grids. Please refer to
the Appendix for a detailed derivation of the above alternat-
ing optimization algorithm.

After the above initialization, we freeze the α and fur-
ther refine the learnable voxels V . We call this process the
quantization aware training. Similarly, during the quantiza-
tion aware training, we compute V̄Q with Eq. (9a), render
the sampled camera rays with the recovered grid VQ =
IDCT(αV̄Q), and the gradients w.r.t. the original learnable
voxel grids V are approximated with STE (Bengio, Leonard,
and Courville 2013):

∂L
∂V

≈ ∂L
∂VQ

, where VQ = IDCT(αV̄Q) (10)

In this way, the whole framework can be optimized in an
end-to-end manner.

4 Experimental Results
4.1 Experimental Setup
We implement our method in PyTorch with the block-wise
DCT implemented in CUDA. The codes are built based on
the recent state-of-the-art voxel grid based NeRF implemen-
tation DVGO (Sun, Sun, and Chen 2022)3. By default, the
block size for the block-wise DCT is set to 4 × 4 × 4 be-
cause we find it achieves good trade-off between compres-
sion, synthesizing quality and training speed. We keep all

3https://github.com/sunset1995/DirectVoxGO

Model
size

Density Feature
Ratio Bit-width Ratio Bit-width

10MB 0.4 24 0.1 8
4MB 0.3 10 0.07 6
2MB 0.3 8 0.03 4
1.3MB 0.09 8 0.03 4
1MB 0.08 8 0.03 4

Table 1: Pruning ratios and quantization bit-widths for dif-
ferrent model sizes.

Figure 5: Comparison of model size & PSNR between
TinyNeRF and state-of-the-art baseline NeRF methods. The
size of each dot indicates the training time.

the hyper parameters the same with DVGO (Sun, Sun, and
Chen 2022) for fair comparison. The grid resolutions for all
the scenes are set to 1603. The pruning and quantization are
only enabled during the fine-stage training. We keep the total
optimization iterations to be 20000 with 8192 camera rays
per batch, where the pruning aware training is enabled af-
ter 5000 iterations of common training, and the quantization
aware training is further enabled after 12000 iterations. The
whole training process typically finishes in less than 10 min-
utes. The detailed pruning ratios and quantization bit widths
for different target model sizes are shown in Tab. 1.

4.2 Comparisons
We evaluate our method on five inward-facing datasets, in-
cluding Synthetic-NeRF (Mildenhall et al. 2020) which con-
tains 8 objects with relistic images, Synthetic-NSVF (Liu
et al. 2020) which contains 8 objects synthesized by NSVF,
BlendedMVS (Yao et al. 2020) with realistic ambient light-
ing from real image blending, DeepVoxels (Sitzmann et al.
2019) with 4 Lambertian objects, and a real world data set
Tanks&Temples (Knapitsch et al. 2017). Quantitative results
are shown in Tab. 2, and the results on the NeRF Synthetic
data set are plotted in Fig. 5. The actual training time of each
methods are also shown in the figure. Comparing the dots
in Fig. 5, our method achieves a better trade-off between
model size and rendering quality. Comparing the sizes of the
dots in the figure, our method has only little influence on the
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Methods Synthetic NeRF Synthetic-NSVF Blended MVS T&T

PSNR↑ SSIM↑ #params
(MB)↓ PSNR↑ SSIM↑ #params

(MB)↓ PSNR↑ SSIM↑ #params
(MB)↓ PSNR↑ SSIM↑ #params

(MB)↓
Methods taking hours to days to train
NeRF 31.01 0.947 5 30.81 0.952 5 24.15 0.828 5 25.78 0.864 5
PlenOctree 31.71 0.958 1976 - - - - - - 27.99 0.917 1976
SNeRG 30.38 0.95 87 - - - - - - - - -
FastNeRF 29.97 0.941 - - - - - - - - - -
AutoInt 25.55 0.91 - - - - - - - - - -
NSVF 31.75 0.953 3.2∼16 35.18 0.979 3.2∼16 26.89 0.898 3.2∼16 28.48 0.901 3.2∼16
KiloNeRF 31.00 0.95 ∼100 33.37 0.97 ∼100 27.39 0.92 ∼100 28.41 0.91 ∼100
Methods taking minutes to train
Plenoxels 31.71 0.958 143 - - - - - - 20.40 0.696 143
DVGO 31.95 0.957 203 35.08 0.975 203 28.02 0.922 203 28.41 0.911 203
TinyNeRF(10MB) 31.93 0.956 10 34.95 0.975 10 28.15 0.922 10 28.33 0.911 10
TinyNeRF(4MB) 31.90 0.956 4 34.88 0.975 4 28.11 0.922 4 28.32 0.91 4
TinyNeRF(2MB) 31.72 0.954 2 34.62 0.968 2 28.02 0.919 2 28.19 0.908 2

Table 2: Comparisons on model size, training time and synthesizing quality with state-of-the-art NeRF methods.

training time, typically converging in less than 8 minutes.
We refer the readers to the Appendix for detailed per-scene
comparisons and the results on the DeepVoxels dataset.

4.3 Ablation Study
In this section, we study the influence of different com-
ponents in our method, including compression in the fre-
quency domain, utilizing block-wise transformation. We fur-
ther study the sensitivity of our method to different choices
of hyper parameters, including transformation block sizes,
pruning ratios and quantization bit widths. To this end, we
implement different variants of our method and compare
them on the synthetic nerf data set. We report the main re-
sults in Fig. 6 and Tab. 3, and detailed quantitative results
are given in the Appendix.
Pruning in the Spatial v.s. Frequency Domain. To study
the influence of frequency domain compression, we imple-
ment a variant of TinyNeRF which applies pruning and
quantization in the spatial domain, named TinyNeRF-S.
Specifically, for the density grid, we prune the voxels with
low density, and for the feature grid, we enforce the low-
magnitude feature values to be zero. Besides, we also quan-
tize the retained density and features with the same method
described in Sec. 3.3. We keep all the other hyper parame-
ters the same with our TinyNeRF. Results are shown in Fig.
6.

Our TinyNeRF (the red dots) consistently outperforms
TinyNeRF-S by a large margin. For example, when com-
pressing the original model to 2MB, TinyNeRF achieves
0.5 higher PSNR than TinyNeRF-S. The improvements
are even near or more than 2db under the model size of
1MB and 1.3MB, respectively. In general, the advantages of
frequency-domain compression are more obvious on smaller
model sizes. These results support that it is better to com-
press the voxel grids in their frequency domain.
Influence of Block-wise DCT. Another key design of our
method is to apply compression to the block-wise transfor-
mation of the original grids. To study the influence of block-

Figure 6: Comparison of model size & PSNR between
TinyNeRF and its other variants. The size of each dot in-
dicates the training time. Here, the text TinyNerf-[x, y, z]
means TinyNeRF with the DCT block size of x × y ×
z. TinyNeRF-w/o block means applying the DCT to the
whole grids without any blocking. TinyNeRF-w/o fine-
tuning means directly transforming, pruning and quantiz-
ing the grid coefficients without any retraining. TinyNeRF-S
means pruning and quantizing the grid values in the spatial
domain instead of frequency domain.

wise DCT, we further implement a variant of TinyNeRF
which performs DCT to the whole voxel grids while keep-
ing all the other components the same with our method. The
results are shown in Fig. 6 labeled by TinyNeRF-w/o block.

We see from the figure that (1) Without block-wise DCT,
compression in the frequency domain performs even worse
than compressing in the spatial domain. This result implies
that naively applying the compression in the frequency do-
main doesn’t result in satisfactory results. (2) With block-
wise DCT, TinyNeRF achieves much better trade-off be-
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Density
grid

Ratio 0.3 0.15 0.3 0.15
Bit width 8 16 8 16

Feature
grid

Ratio 0.03 0.03 0.015 0.015
Bit width 4 4 8 8

PSNR 31.72 31.59 31.59 31.54

Table 3: Ablation on the sensitivity to hyper parameters on
the synthetic nerf data set. Ratio denotes the ratio of non-
zero elements for pruning.

tween model size and synthesizing quality. (3) By compar-
ing the sizes of the dots, we conclude that TinyNeRF with
smaller block-size converge faster than TinyNeRF without
block-wise DCT. All these results support that block-wise
DCT requires fewer multiply-accumulate operations, and
thus can be computed faster and suffers fewer truncation er-
rors caused by the limited precision in computers.
Sensitivity to Hyper-parameters. There are some hyper
parameters that may affect the effectiveness of our method,
such as block sizes, pruning ratios, and quantization bit
widths. To study their influences, we compare TinyNeRF
with 1) different block sizes which is shown in Fig. 6, and 2)
different pruning ratios and quantization bit widths which is
shown in Tab. 3.

From Fig. 6, we see that the performance gaps between
TinyNeRF with different DCT block-sizes are rather small.
These results support that our method is not sensitive to the
choice of DCT block size, as long as the block size is rela-
tively small.

To study the sensitivity of our method to different con-
figurations of pruning ratios and quantization bit widths, we
adjust the pruning ratios and quantization bit widths of both
the density grid and feature grid to compress the model to 2
MB. The detailed configurations and results on the synthetic
nerf data set are shown in Tab. 3. We see from the table that
TinyNeRF with different compression configurations per-
form very similarly, which indicates that our method is also
not sensitive to different pruning ratios and quantization bit
widths.
Compression without Fine-tuning. Interestingly, our
method can also be used to compress a trained voxel grid
based NeRF model without any fine tuning. Specifically, for
a pre-trained NeRF model with voxel grids, we can directly
transform the grids with block-wise DCT and apply pruning
and quantization to the transformed coefficients without re-
fining the compressed grids. Note that once the NeRF model
is trained, this compression process can complete in seconds
(most of the time is spared on the iterative algorithm to com-
pute the scaling factor for quantization), thus the required
time of this method is dominated by the pre-training pro-
cess. To illustrate this, we compress the pre-trained DVGO
(Sun, Sun, and Chen 2022) models on 8 scenes of the syn-
thetic nerf data set, and the results are shown in Fig. 6 labled
by ”TinyNeRF-w/o fine tuning”. The DVGO can converge
in 3 minutes per scene, and original model size is 203 MB.
We see from the figure that even without fine-tuning, our
method can still compress the original model by 50× with
little sacrifice on PSNR (31.95 → 31.68).

Timing Analysis. Our method requires additional computa-
tions such as DCT, IDCT, pruning, quantization, dequanti-
zation during both training and inference. A common con-
cern about our method may be: How do these additional pro-
cesses affect the training and inference time of the original
models? To investigate this, we plot in the following figure
the proportion of time spent on the additional computations
during both training and inference. The time of all the pro-
cesses are normalized to the total run time, and the detailed
numerical results are shown in the Appendix.

Figure 7: Timing analysis for TinyNeRF.

In the figure, the blue bars denote the run time of the addi-
tional computations, and the orange bars denote the run time
of the original models. We see from the figure that the ad-
ditional computations contribute very little to the inference
time (5 ms / 209 ms). Interestingly, we find the during train-
ing, almost all of the additional run time are consumed in
the pruning process (3.97 min. / 4.96 min.). Fortunately, this
expensive operation is not required in the inference process.
As a result, the additional run time of the inference time is
far less than that of the training time.

5 Discussions and Limitations
In this paper, we present TinyNeRF, a method with three-
step pipeline: frequency domain transformation, pruning and
quantization that work together to reduce the disk storage
demand for voxel radiance fields. Thanks to the priori of
signals sparsity in the frequency domain, our method can
typically compress the voxel grids by 2 orders of magnitude
with little effect on synthesizing quality.

Although achieving high compression, there are still some
limitations in our method that may potentially be very inter-
esting future directions. First, our method needs to recover
the original voxel grids during rendering. Thus, the runtime
computation and memory requirements are not reduced. An
interesting improvement is to avoid the runtime grid recov-
ering to further reduce its memory demands during infer-
ence. Second, in this paper, we only show the usage of our
method in voxel grid based NeRF. It is interesting to con-
sider whether it is also applicable in grid-based solutions
to other problems such as 3D surface reconstruction. Third,
there are some other transformations that also lead to sparse
coefficients. It is worth considering that are there any other
choices of frequency domain transformations that are more
suitable to voxel grids compression.
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