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Abstract
Spike camera is a kind of neuromorphic sensor that uses a
novel “integrate-and-fire” mechanism to generate a continu-
ous spike stream to record the dynamic light intensity at ex-
tremely high temporal resolution. However, as a trade-off for
high temporal resolution, its spatial resolution is limited, re-
sulting in inferior reconstruction details. To address this issue,
this paper develops a network (SpikeSR-Net) to super-resolve
a high-resolution image sequence from the low-resolution bi-
nary spike streams. SpikeSR-Net is designed based on the
observation model of spike camera and exploits both the mer-
its of model-based and learning-based methods. To deal with
the limited representation capacity of binary data, a pixel-
adaptive spike encoder is proposed to convert spikes to latent
representation to infer clues on intensity and motion. Then,
a motion-aligned super resolver is employed to exploit long-
term correlation, so that the dense sampling in temporal do-
main can be exploited to enhance the spatial resolution with-
out introducing motion blur. Experimental results show that
SpikeSR-Net is promising in super-resolving higher-quality
images for spike camera.

Introduction
The newly emerged real-time computer vision applications,
such as autonomous driving and unmanned aerial vehicle,
require the machines to record high-speed motion clearly
and response quickly. This makes the inherent limitations
of conventional digital cameras evident. Conventional cam-
eras are mostly based on one-time exposure imaging, which
can produce clear images for still and slow-motion scenes.
However, for dynamic scenes with high-speed motion, a sin-
gle point on a moving object may be projected to different
pixels on the image sensor, resulting in blurry images.

To capture high-motion dynamic scenes clearly, a novel
neuromorphic camera called spike camera was recently in-
vented (Dong, Huang, and Tian 2017; Dong et al. 2019;
Huang et al. 2022). Unlike conventional cameras that com-
pact all the visual information within an exposure inter-
val into a single snapshot, spike camera abandons the con-
cept of exposure window. Instead, it monitors the incoming
light persistently and continuously, and outputs binary spike
streams to record the dynamic scenes at extremely high tem-
poral resolution (40000Hz). Additionally, different from the
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neuromorphic event cameras (Lichtsteiner, Posch, and Del-
bruck 2008b; Brandli et al. 2014b) that use differential sam-
pling model to record the brightness changes, spike cam-
eras fire spikes to record the arrival of a certain amount of
photons. Such an integral sampling model enables the spike
cameras to report per-pixel luminance intensity, providing
more explicit information for recovering texture details.

For spike camera, image reconstruction is an important
topic to bridge the domain gap between binary spikes and
light intensity. This has attracted great attention in the past
few years (Zhu et al. 2019, 2020; Zheng et al. 2021; Zhao
et al. 2021b; Zhu et al. 2021; Zhao et al. 2021a). However,
the previous works usually suffer from noise, blur or unsat-
isfactory details, due to the following issues:

(1) Ultra high-speed motion. Due to the existence of high-
speed motion, the spikes fired by a single sensor pixel
no longer describe the same point on the moving objects.
Thus, special attention needs be paid to avoiding the mix-
ing of lights from different object points.

(2) Undesired noise. Due to the Poisson effect of photon ar-
rivals and the existence of thermal noises, the firing in-
terval of neighboring spikes exhibits a strong fluctuation.
For this reason, the reconstruction tends to be noisy, un-
stable, and spatio-temporally incoherent.

(3) Limited spatial resolution. As a trade-off for high tem-
poral resolution, the spatial resolution of spike camera is
limited, which results in inferior reconstruction details.

To address the above issues, this paper develops an end-
to-end spike camera super-resolution network (SpikeSR-
Net), aiming to super-resolve spike streams to high-quality
high-resolution intensity images. In particular, SpikeSR-Net
is designed based on the observation model of spike cam-
era super-resolution imaging, which takes both the merits
of model-based and learning-based methods. To be specific,
we first propose a pixel-adaptive spike encoder (PASE) to
convert the raw binary spikes to latent intensity represen-
tation. Considering the diversity of scene content, PASE
adaptively exploits local spatio-temporal correlation to cope
with different motion and light conditions. Then, we propose
a motion-aligned super resolver (MASR), which conducts
motion-aligned gradient descent and proximal mapping it-
eratively. MASR exploits long-term temporal correlation to
convert the dense sampling in temporal domain to spatial
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Figure 1: The principle of spike camera super-resolution imaging. Left: Continuous sampling. Due to the object motion, the
spike camera sensor samples at different locations at different moments. Right: Motion-aligned resampling. Benefiting from the
extremely high temporal resolution, the displacements are continuous and sub-pixel information are recorded, which enables
more texture details to be reconstructed.

domain, which super resolves high-resolution images with
fine details, high signal-to-noise ratio (SNR) and less blur.
Experiments on both real-world and synthesized spike data
demonstrate the promising performance of the SpikeSR-Net.

The main contributions of this paper are:

(1) We develop an optimization-inspired network, combin-
ing the merits of model-based and learning-based meth-
ods, to super-resolve binary spike streams to intensity im-
ages with texture details beyond the sensor resolution.

(2) We propose a pixel-adaptive spike encoder to convert bi-
nary spikes to latent representation. The encoder adap-
tively exploits spatio-temporal correlation to cope with
different motion and light conditions. Particularly, it can
be flexibly applied to other spike-camera-based tasks.

(3) We design an unfolding motion-aligned super resolver,
employing gradient descent and proximal mapping itera-
tively, so that the network exploits the long-term tempo-
ral correlation to improve the SNR and texture details.

Related Works
Event camera reconstruction. Event cameras are neuro-
morphic sensors that send asynchronous events to record
light intensity changes at a high temporal resolution (Litzen-
berger et al. 2006; Lichtsteiner, Posch, and Delbruck 2008a;
Posch, Matolin, and Wohlgenannt 2008; Brandli et al.
2014a; Gallego et al. 2019). Recovering intensity images
from events is an active topic. Kim et al. (Kim et al. 2008)
proposed a Extended Kalman Filter to reconstruct gradient
images from events. Bardow et al. (Bardow, Davison, and
Leutenegger 2016) employed primal-dual algorithm to si-
multaneously estimate optical flow and light intensity. Some
other works (Reinbacher, Graber, and Pock 2016; Scheer-
linck, Barnes, and Mahony 2018) reconstructed images with
direct event integration. Recently, many works (Scheerlinck
et al. 2020; Rebecq et al. 2019a,b; Stoffregen et al. 2020;
Wang et al. 2019a; Ahmed et al. 2021; Choi, Yoon et al.
2020; Jiang et al. 2020) explored to use deep convolu-
tional networks for event camera reconstruction. However,
as event cameras only provide relative beightness changes,
these methods can hardly reconstruct texture details. Differ-
ent from the event cameras, spike camera fires spikes to rep-

resent the arrival of a certain amount of photons, which pro-
vides a more explicit input for reconstructing textures.

Spike camera reconstruction. Recently, many spike
camera reconstruction methods have been proposed. With
an analysis of spike data, the work (Zhu et al. 2019) inferred
the light intensity by estimating the spiking frequency of
each pixel. However, there is a trade-off between improving
SNR and removing motion blur. To address this issue, Zhao
et al. (Zhao, Xiong, and Huang 2020) proposed a motion-
aligned temporal filtering to handle the conflict brought by
high-speed motion and noise. In addition, with the develop-
ment of neural networks, some SNN-based (Zhu et al. 2020;
Zheng et al. 2021) and CNN-based (Zhao et al. 2021b; Zhu
et al. 2021) methods have been proposed to achieve high-
quality imaging. However, these methods mainly focused on
removing blur and noise artifacts, ignoring the issue of low
resolution. To improve spatial resolution, Zhao et al. (Zhao
et al. 2021a) develop an MGSR framework to super-resolve
low-resolution (LR) spike streams to high-resolution (HR)
images for the first time. However, MGSR is dependent on
complex optimization and rigorous assumptions (e.g. mo-
tion consistency), which limits its applicability.

Image and video super-resolution. Over the past
decades, many image super-resolution (SR) methods have
been proposed to improve the spatial resolution. The early
works employed interpolation techniques with low compu-
tation complexity. Some other works proposed more com-
plex mapping functions between LR and HR images based
on neighbor embedding (e.g. (Xie, Feris, and Sun 2015)) or
sparse coding (e.g. (Dong et al. 2013)) to recover realistic
textures. Recently, many CNN-based methods (Dong et al.
2014; Haris, Shakhnarovich, and Ukita 2018) have been pro-
posed and made impressive progress. Additionally, based on
the success of image SR methods, many video SR meth-
ods (Caballero et al. 2017; Jo et al. 2018; Kappeler et al.
2016; Liao et al. 2015; Tao et al. 2017) were proposed to
jointly exploit the spatio-temporal correlation. An intuitive
approach to generate HR images for spike camera is to com-
bine the spike camera reconstruction methods with the im-
age/video SR algorithms. However, such pipelined schemes
do not take fully advantage of the spike characteristics.
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Figure 2: Overall pipeline of the proposed SpikeSR-Net. Firstly, the pixel-adaptive spike encoders convert the binary spikes to
latent representations. Then, the motion-aligned super resolver iteratively exploits the long-term temporal correlation among
different representations, aiming to reconstruct the high-quality HR image with fine details.

Problem Formulation
Basics of Spike Camera
Spike camera uses a “integrate-and-fire” mechanism to ac-
cumulate the incoming light I(t) persistently. Whenever the
dispatch threshold θ is reached, a spike is fired and the inte-
grator is reset. Suppose {t1, t2, · · · , tn} are the firing time
of the generated spikes, the “integrate-and-fire” process of
the k−th spike can be formulated as:∫ tk

tk−1

ηI(x)dx = θ. (1)

Here η denotes the photoelectric conversion rate. A pixel on
spike image sensor may fire spikes at arbitrary time, but the
camera can only read out the spikes as a discrete-time binary
signal S(n). To be specific, the k-th spike fired at the time
tk will be read out as S(nk) = 1 with nk = ⌈tk/δ⌉. δ is the
readout interval of spike camera (i.e., 25µs).

Spike Camera Super-resolution Imaging
As shown in Fig. 1, due to the relative motion between the
camera and objects, the spike sensor may sample at differ-
ent locations at different moments. Furthermore, the camera
records the dynamic scene with an extremely high temporal
resolution (40000Hz), which produces sub-pixel displace-
ments and provides sub-pixel coverage for SR.

Suppose Xk is the HR image at time k. Based on the as-
sumption of brightness constancy, the observation model of
spike camera super-resolution (SCSR) imaging can be de-
scribed as:

Yi = DsHiTk→iXk +Ni, i = 1, 2, · · · , n
{S1, S2, · · · , Sn} = Γ ({Y1, Y2, · · · , Yn}, θ)

(2)

Here Hi and Tk→i represent the blur degradation and motion
transform matrix, respectively. Ds denotes downsampling
with scale factor s. Ni is additive noise. {Y1, Y2, · · · , Yn}
are the degraded LR intensity information at different mo-
ments. Γ(·) denotes the “integrate-and-fire” operation of the

spike camera, generating a stream of binary spikes. The goal
of SCSR is to convert the dense sampling in temporal do-
main to spatial domain, and super-resolve LR spike data
{S1, S2, · · · , Sn} to high-quality HR intensity image X̂k.

Method
Overall Pipeline
Inspired by the SCSR observation model, this paper de-
velops an end-to-end trainable SCSR network, dubbed
SpikeSR-Net, to super-resolve the HR images from the LR
spike streams. Fig. 2 shows the overview of SpikeSR-Net.
It takes a set of consecutive spike frames {Sk+i}, i =
±1,±2, · · · around k as input, so that the network can ex-
ploit the temporal correlation to generate the high-quality
HR intensity image X̂k. The network mainly consists of two
components, namely pixel-adaptive spike encoder (PASE)
and motion-aligned super resolver (MASR). Firstly, the in-
put spike stream is split into several overlapping short-term
spike blocks {Bi}, i ∈ {1, 2, · · · , k, · · · , n − 1, n}. The
PASE E(·) adaptively exploits the local spatio-temporal cor-
relation among each binary spike block, producing latent in-
tensity representation {Yi}:

Yi = E(Bi). (3)
Then, the target of the super resolver can be described as:

argmin
Xk

n∑
i=1

ωi · ∥DsHiTk→iXk − Yi∥22 + λΨ(Xk), (4)

where ωi denotes the weight related to the noise Ni. Ψ(Xk)
represents the HR image prior and λ denotes regularization
parameter. The above inverse problem can be solved by iter-
ating between the following update steps:
R

(t)
k = X

(t−1)
k − β

n∑
i=1

ωiT T
k→iHT

i DT
s

(
DsHiTk→iX

(t−1)
k − Yi

)
,

X
(t)
k = argmin

Xk

∥Xk −R
(t)
k ∥22 + λΨ(Xk).

(5)
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Figure 3: Illustration of pixel-adaptive spike encoder
(PASE). The convolution kernels adapt to different motion
and light conditions, aiming to convert the binary spikes to
efficient latent representation.

where β is the update step size.
Inspired by the optimization process, we design an itera-

tive CNN-based super-resolver to further exploit the long-
term temporal correlation and reconstruct the HR image
with fine details. The procedure can be expressed as:

R
(t)
k = G

(
X

(t−1)
k , {Y0, Y1, · · · , Yn}

)
,

X
(t)
k = P

(
R

(t)
k

)
.

(6)

G(·) and P(·) represent gradient decent module (GDM) and
proximal mapping module (PMM), respectively. The details
of E(·), G(·) and P(·) are discussed in the following.

Pixel-adaptive Spike Encoder
In spike camera, the firing of each spike represents the ar-
rival of a certain amount of photons, where the accumulation
process may occur in multiple readout intervals. That is, in-
stead of representing the instantaneous intensity, each spike
implicitly records the visual information, which has limited
representation capacity. To address this issue, we design a
pixel-adaptive spike encoder (PASE) to convert the binary
spike streams into latent intensity representation.

Fig. 3 illustrates the proposed PASE. In order to enhance
the representation capacity, convolutions are employed to
exploit the local spatio-temporal correlation among spike
streams. However, the diversity of scene contents may result
in the diversity of correlation structure, and fixed convolu-
tion kernels can not well handle the various contents. For
example, for the regions with high-speed motion or high-
frequency edges, special attention should be paid to avoid-
ing blur artifacts. Thus, rather than directly extract features
using a fixed convolutional network, PASE uses the convo-
lutional network to analyze the correlation structure among
spike block Bi and generates a group of learnable kernel
features KH×W×LK2

i . H , W and L are the height, width
and length of the input spike block. K is filter size. Then,

the kernel features are reshaped into H × W liner filters
K

′K×K×L
i,j and each filter is applied to corresponding input

spike patches to extract the instantaneous intensity informa-
tion:

Yi(x, y) = K
′

i,j(x, y)⊗ Pi(x, y). (7)

Here K′

i,j(x, y) denotes the j−th kernel for Pi(x, y) and
Pi(x, y) denotes the K×K×L binary spike patch centered
at (x, y). Additionally, to enhance the capacity of PASE, we
use several parallel branches to generate multiple groups of
kernels. In particular, the filter sizes in different groups can
be different, so that the PASE can be with various respec-
tive fields. The output of PASE is a stack of the features
derived from different branches, which can be formulated as
Yi = [Y 1

i , Y
2
i , · · · , Y C

i ]. Here C is the number of branches.
In this paper, the PASE is applied to all the short-term spike
blocks, generating a sequence of latent intensity representa-
tion {Y1, Y2, · · · , Yn}.

Motion-aligned Super Resolver
The target of super resolver is to reconstruct the HR inten-
sity image with fine details. To this end, we propose to fur-
ther exploit the long-term temporal correlation among dif-
ferent moments, so as to convert the dense sampling in tem-
poral domain to spatial domain. In particular, considering
the high-speed motion in the outer scene, special attention
should be paid to avoiding motion blur. Inspired by the op-
timization model, we develop a motion-aligned GDM G(·)
and a PMM P(·) to take advantage of long-term correlation
and refine details iteratively.

Motion-aligned gradient descent module. Fig. 4 illus-
trates the architecture of the motion-aligned GDM G(·). Ac-
cording to Equation (5), we first adopt gradient calculation
units to calculate the gradients based on the latent represen-
tation at different moments. The gradient calculation unit in
the i-th branch is defined as:

alignment: E
(t)
i = Tk→i

([
X

(t−1)
k ,D−1

s (Yi)
])

(8)

scale down: L
(t)
i = Ds

(
Hi

(
E

(t)
i

))
(9)

scale residual up: F (t)
i = H−1

s

(
D−1

i

(
L
(t)
i − Yi

))
(10)

alignment: G
(t)
i = T −1

k→i

([
F

(t)
i , X

(t−1)
k

])
(11)

where [, ] represents concatenation. Ds(·) and D−1
s (·) are the

downsampling and upscaling operations, which are based on
convolution and de-convolution with the stride of s. Hi(·)
and H−1

i (·) are the degradation and refinement operation
based on residual blocks. Tk→i represents the deformable
convolution layers (Dai et al. 2017), that align the features
of time k to the features of time i, and T −1

k→i(·) := Ti→k(·).
In deformable convolution, additional offsets are learned to
augment the spatial sampling locations, which has shown
great transformation modeling capability in low-level com-
puter vision (Wang et al. 2019b; Tian et al. 2020; Xiang et al.
2020; Shim, Park, and Kweon 2020). Here we exploit de-
formable convolution to align the features of different mo-
ments to avoid motion blur.
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Figure 4: Illustration of (t)-th stage in motion-aligned super resolver. The architecture is designed based on Equation (5), where
R

(t)
k is the output of GDM and the input of PMM.

Then, to further exploit the long-term temporal corre-
lation, we introduce a bi-directional ConvGRU-based fea-
ture fusion to aggregate the gradients {G(t)

1 , G
(t)
2 , · · · , G(t)

n }
adaptively. Each ConvGRU (Tokmakov, Alahari, and
Schmid 2017; Shen et al. 2019) consists of a learnable up-
date gate and a learnable reset gate. The forward aggregation
can be formulated as:

Q
(t)
i = tanh

(
Conv

(
[C

(t)
i ⊙Hi−1, G

(t)
i ]

))
,

H
(t)
i = (1− Z

(t)
i )⊙H

(t)
i−1 + Z

(t)
i ⊙Q

(t)
i .

(12)

The update gate Z
(t)
i controls that how much the current in-

formation is incorporated into the new state. The reset gate
C

(t)
i controls that how much the previous state is preserved.

Z
(t)
i and C

(t)
i are calculated based on H

(t)
i−1 and G

(t)
i via

convolution and Sigmoid activation operations. The back-
ward aggregation is similar to the forward one. The output
of GDM at stage t can be formulated as:

R
(t)
k = X

(t−1)
k − Conv

([
H

(t)
k , H

′(t)
k

])
, (13)

where H
(t)
k and H

′(t)
k represent the forward and the back-

ward aggregated gradients, respectively.
Proximal mapping module. Then, a PMM P(·) is pro-

posed to solve the proximal mapping problem in Equation
(5). The target of PMM is to restore R(t)

k closer to the desired
signal. To this end, we adopt concatenated residual blocks to
refine details, generating the output X(t)

k = P
(
R

(t)
k

)
.

Thus, the final reconstruction can be expressed as X̂k =

X
(T )
k , with T representing the stage number.
Initialization. Before applying the iterations, it requires

an initialization for X(0)
k . In this paper, we present a motion-

aligned feature fusion F(·) to initialize X
(0)
k . To be spe-

cific, we first exploit deformable convolution to align each
neighboring representation Yi to Yk. Then, we use the bi-
directional ConvGRU-based feature fusion (depicted above)
to aggregate the aligned feature. Finally, we upscale the ag-
gregated features and derive X

(0)
k .

Implementation
Data Preparation

To train and evaluate the SpikeSR-Net, spike datasets, in-
cluding LR spike streams and corresponding HR images,
are required. However, it is challenging to capture the
high-quality HR images, especially in high-motion dynamic
scenes. To solve this problem, we modify the spike camera
simulator in (Zhao et al. 2021b) to simultaneously generate
LR spike streams and HR ground-truth. In this paper, we
consider two modes, i.e., image-based synthesis and video-
based synthesis. For image-based synthesis, we regard each
selected image as the scene to record and suppose that there
is a global motion between the scene and the sensor. We use
the images from DIV2K(Agustsson and Timofte 2017) and
the videos from REDS (Nah et al. 2020) and ×4K1000FPS
(Sim, Oh, and Kim 2021) as the virtual scenes. The training
dataset consists of 600 spike streams, which are generated
based on all the three datasets to enhance diversity. For the
testing datasets, we build a DIV2K-based spike dataset and
a REDS-based spike dataset. Each testing dataset consists
of 40 spike sequences. Note that there is no overlap between
the testing datasets and the training dataset.

Training Details

In our implementation, four residual blocks are used in ker-
nel predictor. The stage number of super-resolver is set to 4.
The loss function is defined as:

L = λt

T∑
t=1

∥X(t)
k − Ik∥. (14)

Ik is the HR ground-truth at time k. When t < T , λt is set to
0.1. Otherwise, λt is set to 1. We crop the spike frames into
40 × 40 patches and set the batch size to 6. During train-
ing, data augmentation is performed by randomly rotating
90◦, 180◦, 270◦ and horizontally flipping. We use Adam op-
timizer and implement our experiments using PyTorch with
two GTX 1080Ti GPUs. The model is trained for 30 epochs.
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(a) Spike (b) TFP+MISR (c) STP+MISR

(d) Spk2ImgNet+MISR (e) MGSR (f) SpikeSR-Net (Proposed)

Figure 5: ×4 SR results of the high-speed moving train (350km/h).

(a) Spike (b) TFP+MISR (c) STP+MISR

(d) Spk2ImgNet+MISR (e) MGSR (f) SpikeSR-Net (Proposed)

Figure 6: ×4 SR results of the high-speed rotating fan (2600rpm).

Experiments
Comparative Results
To evaluate our SpikeSR-Net, we compare it with the ex-
isting spike SR method, i.e., MGSR (Zhao et al. 2021a).
Additionally, we also combine existing spike camera recon-
struction methods, i.e., TFP (Zhu et al. 2019), STP (Zheng
et al. 2021) and Spk2ImgNet (Zhao et al. 2021b), with the
competitive single image super resolution (SISR)(Luo et al.
2020) and multiple image super resolution (MISR)(Haris,
Shakhnarovich, and Ukita 2019) for better comparison.

Synthesized data. Table 1 shows the PSNR and SSIM re-

sults on synthesized data. The results of STP+# methods are
inferior, which is because that the inherent nonlinear opera-
tion would change the luminance and influence the measure-
ment of PSNR and SSIM. Spk2ImgNet is the SOTA spike
camera reconstruction method and Spk2ImgNet+# meth-
ods also achieve promising performance on spike camera
SR. In particular, the additional MISR, which can exploit
the temporal correlation, achieves better performance than
SISR. MGSR is the first attempt to directly super-resolve
LR spikes to HR intensity images, but the rigorous model as-
sumption limits its effectiveness. Our SpikeSR-Net achieves
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(a) Hybrid system (b) CMOS camera (c) Spike camera

Figure 7: Comparison with conventional camera for a high-speed dynamic scene. Our proposed method can reconstruct the
high-speed moving object with fine details.

Method DIV2K-based Spike Data REDS-based Spike Data
×2 ×4 ×2 ×4

TFP + SISR 20.18/0.3538 20.01/0.4132 23.09/0.5055 23.14/0.5230
TFP + MISR 20.53/0.4168 19.99/0.4087 24.15/0.5810 23.15/0.5180
STP + SISR 14.61/0.3585 14.37/0.3214 14.82/0.4237 14.84/0.4111
STP + MISR 15.03/0.4027 14.46/0.3296 15.44/0.4876 14.97/0.4260
Spk2ImgNet + SISR 24.48/0.7806 24.59/0.7064 25.39/0.8165 25.97/0.7637
Spk2ImgNet + MISR 27.14/0.8197 25.85/0.7253 28.76/0.8687 27.24/0.7881
MGSR 23.96/0.6603 22.93/0.5999 23.63/0.6341 22.73/0.5921
Ours 28.70/0.8413 26.88/0.7451 30.79/0.8883 28.46/0.8012

Table 1: PSNR(dB) and SSIM comparison with the state-of-the-arts.

Setting PNSR/SSIM
W./O. pixel adaptive spike encoder 29.48/0.8585
W./O. gradient decent module 29.71/0.8643
W./O. motion alignment 30.00/0.8744
W./O. proximal mapping module 29.83/0.8663
Our final model 30.79/0.8883

Table 2: Quantitative evaluation results of ablation study on
REDS-based dataset (×2 SR).

the best performance on the both datasets.
Real-world captured data. Fig. 5 and Fig. 6 show the ×4

SR results on real-world captured high-motion scenes. The
TFP-based method and STP-based method suffer blur and
noise, respectively. Moreover, compared to Spk2ImgNet-
based method and MGSR, our SpikeSR-Net reconstructs
clearer textures, achieving the best visual quality.

Ablation Study

To verify the validity of each module, we conduct a series
of ablation studies and show comparisons in Table 2. We
first show the effectiveness of PASE by comparing with a
model without learning the latent representation. Then, we
investigate the effectiveness of GDM and the necessity of
the motion-alignment by removing the whole GDM and re-
moving the alignment, respectively. Finally, we validate the
necessity of PMM. We could tell that without the PMM, the
performance degenerates.

Comparison with Conventional Cameras
We build a hybrid system to compare spike camera with a
conventional CMOS camera as shown in Fig. 7. The con-
ventional camera adopts auto-exposure mode and sets frame
rate to 120 fps. As the conventional CMOS camera ignores
the object motion within the exposure window, the image
of high-speed object is blurry. In contrast, the spike camera
produces a continuous spike stream to record the high-speed
dynamic scene. By properly modeling the spatio-temporal
correlation and motion, our proposed method can recon-
struct the spike stream to a clear image with fine textures.

Conclusion
Spike camera is a novel neuromorphic sensor that outputs
spike streams to record dynamic scenes at extremely high
temporal resolution. In this paper, we present an end-to-
end SpikeSR-Net to super-resolve the dynamic scenes from
the continuous spike streams. By analyzing the observation
model of SCSR, the SpikeSR-Net is designed from an op-
timization perspective, which combines the merits of both
model-based and learning-based methods. Experiments on
both real-world captured and synthesized spike data demon-
strate its promising performance on reconstructing high-
motion dynamic scenes.
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