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Abstract

With rapid development in hardware (sensors and proces-
sors) and AI algorithms, automated driving techniques have
entered the public’s daily life and achieved great success in
supporting human driving performance. However, due to the
high contextual variations and temporal dynamics in pedes-
trian behaviors, the interaction between autonomous-driving
cars and pedestrians remains challenging, impeding the de-
velopment of fully autonomous driving systems. This pa-
per focuses on predicting pedestrian intention with a novel
transformer-based evidential prediction (TrEP) algorithm.
We develop a transformer module towards the temporal cor-
relations among the input features within pedestrian video se-
quences and a deep evidential learning model to capture the
AI uncertainty under scene complexities. Experimental re-
sults on three popular pedestrian intent benchmarks have veri-
fied the effectiveness of our proposed model over the state-of-
the-art. The algorithm performance can be further boosted by
controlling the uncertainty level. We systematically compare
human disagreements with AI uncertainty to further evaluate
AI performance in confusing scenes. The code is released at
https://github.com/zzmonlyyou/TrEP.git.

Introduction
With the rapid progress in AI technologies, the numerous
successes in intelligent transportation systems have made
autonomous driving promising (Liu et al. 2022; Tang et al.
2023; Cui et al. 2022; Liu et al. 2021; Zeng et al. 2021).
These transformative technologies have the potential to fun-
damentally change daily life for everyone and create vast
social and individual benefits (Litman 2017). Mercedes has
recently begun selling their Level 3 self-driving system (de-
fined by SAE International as Conditional Driving Automa-
tion) on their S-Class, marking a significant milestone as
higher-level automated driving techniques enter ordinary
people’s lives. However, while Level 2 and 3 automated sys-
tems can drive autonomously under human supervision and
within the Operational Design Domain (ODD), the main
challenge for fully automated cars to safely and efficiently
drive in urban settings remains interactions with pedestri-
ans (Domeyer, Lee, and Toyoda 2020; Herman et al. 2021;
Zhang, Tian, and Duffy 2023).
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A large number of studies have concentrated on model-
ing and predicting pedestrian behaviors, with various deep
learning techniques and benchmark data sets constructed in
the past few years (Chen and Tian 2021). In general, tra-
jectory prediction represents the majority of pedestrian be-
havior modeling efforts. While traditional algorithms pre-
dict trajectory in a fixed bird eye view from mainly surveil-
lance cameras (Xu, Piao, and Gao 2018; Zhang et al. 2019;
Shi et al. 2021; Ma, Karimpour, and Wu 2020; Liu et al.
2020b,c), many recent studies focus on the moving ego-
centric view in front of the vehicles to better serve the
needs of automated driving (Rasouli et al. 2019; Rasouli,
Rohani, and Luo 2021; Yagi et al. 2018; Chen, Tian, and
Ding 2021). Although recent trajectory prediction algo-
rithms have achieved improved accuracies, inherent limita-
tions prevent satisfying prediction accuracy in longer pre-
diction horizon (Herman et al. 2021), including the behav-
ior temporal dynamics, uncertainty related to the scene com-
plexity, and accumulated position prediction errors over time
steps. Such limitations restrict the common trajectory pre-
diction horizon to about 1-2 seconds.

A Limited trajectory prediction horizon may be sufficient
for automatic braking features focusing on last-second brak-
ing to improve safety, but cannot support efficient motion
planning for higher-level automatic cars to interact with
pedestrians smoothly. Some studies have shown that hu-
man drivers need at least 3 seconds of prediction horizon to
plan driving behaviors during pedestrian interactions (Her-
man et al. 2021; Zhang et al. 2022a, 2021b; Pang, Guo,
and Zhuang 2022), indicating a similar requirement for au-
tomatic driving algorithms. Also, in the case to detect the
out-of-ODD event and start the transition from automatic
control to manual driving, drivers need up to 20 seconds to
fully control the car given a sudden automatic driving failure
(Eriksson and Stanton 2017; Merat et al. 2014), which poses
high requirements of pedestrian behavior prediction horizon
as well to ensure driving safety.

Solutions are needed to address the limitations of pedes-
trian trajectory prediction. Besides some task-specific prob-
abilistic behavior prediction metrics such as In-ROI Sensi-
tivity (IRS) (Herman et al. 2021), many studies started to
focus on pedestrian intention prediction. The goal of inten-
tion prediction is to help identify crossing pedestrians (Fang
and López 2018), anticipating crossing timing (Zhang et al.
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2021a), and improving trajectory and action prediction with
intentions as guidance and boundaries (Rasouli et al. 2019;
Yao et al. 2021; Wang et al. 2022; Jing et al. 2022; Zhang
et al. 2022c; Ding et al. 2018; Zhang et al. 2022b).

Although pedestrian intention prediction appears to be
a promising and vital research direction, there are signifi-
cant challenges of uncertainty that are neglected in the cur-
rent research frontier. Many studies have found uncertainty
and disagreement among human annotators (Wu et al. 2022;
Ji et al. 2021). In human annotations (Rasouli et al. 2019;
Chen et al. 2021), significant disagreements among human
drivers in estimating pedestrian crossing intentions were ob-
served. Given the same driving scenes, two studies reported
that human drivers not only disagreed on pedestrian cross-
ing intentions at the same pre-determined critical frames
but also tended to estimate crossing/non-crossing at dif-
ferent timings. These phenomena reflect the uncertainty of
understanding complex pedestrian-crossing driving scenes,
which are highly dynamic, non-deterministic, and context-
dependent. We argue that without modeling uncertainty in
intention prediction, deep learning algorithms will struggle
to achieve higher accuracies and predictability.
Our Contributions. We propose a transformer-based evi-
dential prediction (TrEP) algorithm for uncertainty-aware
estimation of pedestrian intentions. Taking ego-centric
pedestrian encountering scene videos as input, the algorithm
automatically learns the evidence1 towards different inten-
tion categories from the motion information of the car and
targeted pedestrian. Trained evidence distributions in the
high-dimensional spatial-temporal-mixed feature space are
then employed for intention prediction and uncertainty esti-
mation. The study has achieved four main contributions:

• The proposed TrEP is able to capture more temporal cor-
relation and be aware of pedestrian intention uncertainty
so that it outperforms the state-of-the-art algorithms on
three benchmark datasets with large margins.

• Strong negative relationship has been observed consis-
tently between the uncertainty levels and algorithm pre-
diction accuracies, with the uncertainty-aware prediction
helping to secure high-level accuracy reliably by filtering
out the cases with higher uncertainty levels.

• The uncertainty associated with pedestrian intention es-
timation results improves the predictability and trustwor-
thiness of the algorithm behavior, which can significantly
enhance human-AI coordinated automatic driving.

• Our data-driven pedestrian intention estimation uncer-
tainty learned by the model is comparable with corre-
sponding human disagreements in certain situations, al-
though human annotation disagreement levels are not in-
cluded during the model training.

Related Works
Pedestrian intention prediction received a lot of attention
in recent years to facilitate the interactions between au-
tonomous cars and vulnerable road users. Based on some

1A higher-order coding scheme for scene features following the
Dirichlet distribution, with details described in later sections.

pioneering benchmark datasets on pedestrian intention, like
the JAAD (Rasouli, Kotseruba, and Tsotsos 2017) and PIE
(Rasouli et al. 2019), a lot of pedestrian intention predic-
tion algorithms have been proposed (Rasouli, Kotseruba,
and Tsotsos 2017; Liu et al. 2020a; Kotseruba, Rasouli, and
Tsotsos 2020). One early work used a CNN to extract fea-
tures from a static frame of driving scenes to predict pedes-
trian intention(Rasouli, Kotseruba, and Tsotsos 2017). In an-
other study, Fang et al. used a pre-trained pose estimation
network to estimate pedestrian pose and then predict the
crossing intention (Fang and López 2018). More recently, a
graph convolution network was trained to model the pedes-
trian pose along with visual features for intention prediction
(Chen, Tian, and Ding 2021). Although different deep learn-
ing structures have been implemented in the domain, most
present studies consider the input as a sequence of frames
and the output as a single probability of crossing (Rasouli
et al. 2019; Gujjar and Vaughan 2019; Liu et al. 2020a; Ra-
souli, Kotseruba, and Tsotsos 2020).

In a comparison study (Kotseruba, Rasouli, and Tsotsos
2021), results show that both 3D convolution networks and
two stream networks are capable of dealing with the tempo-
ral visual information (Simonyan and Zisserman 2014; Tran
et al. 2015; Carreira and Zisserman 2017). One proposed a
network fusing the temporal-spatial features from a 3D CNN
along with the bounding box coordinates and vehicle speed
predictions (Kotseruba, Rasouli, and Tsotsos 2021). A re-
cent work utilized the self-attention mechanism to capture
the spatial-temporal feature and fused it with semantic seg-
mented context (Yang et al. 2022). Similarly, (Rasouli et al.
2022) adopted an attention mechanism to fuse the multi-
modal features that achieved state-of-the-art performance.

Most previous studies have utilized the RNN-based
encoder-decoder framework to develop their models. While
RNN-variants, such as LSTM, have incorporated mecha-
nisms to capture the temporal relationships across the frame
series (Qu et al. 2020), the pedestrian intention prediction
domain has not fully explored other modern techniques,
such as transformer-based sequential models. The latter op-
tion has the potential to capture longer temporal patterns.

More importantly, none of the existing algorithms has
adopted pedestrian intention estimation uncertainty as inputs
or outputs of their models. In particular, we want to empha-
size that existing algorithms rely solely on the accuracy or
F1 scores to evaluate intention prediction performance, ig-
noring the facts that the ground-truth labels in benchmark
datasets (Rasouli et al. 2019; Chen et al. 2021) contain in-
herent uncertainties. The disagreement levels among human
annotators shall be considered when developing and evalu-
ating corresponding algorithms.

Our Proposed Method
Preliminary & Motivation
The goal of intention prediction is to determine if the inter-
ested pedestrian is crossing or not given the raw input (Chen
et al. 2021; Rasouli et al. 2019). Thus, it can be formulated
as a binary classification I ∈ {0, 1}, where 1 indicates cross-
ing and vice versa. Given a sequence of ego-centric frames
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{s1, s2, ..sl} with length l, there is a bounding box repre-
sented by a quaternion, bi, in each frame i annotating the
same pedestrian. Each quaternion contains the 2D coordi-
nates for the upper-left and bottom-right points of the bound-
ing box. In addition to the bounding box and visual infor-
mation, each frame comes with an action annotation of the
ego-vehicle, ai, such as speed for PIE and driver action for
JAAD (Rasouli, Kotseruba, and Tsotsos 2017).

However, existing methods ignore the pedestrian intents
to be conflicting in terms of various drivers, defined as
human disagreement. It is intuitive to capture such intent
uncertainty so that AI can mimic human cognition. To
achieve this, evidential learning models second-order prob-
abilities and uncertainty (Sensoy, Kaplan, and Kandemir
2018; Amini et al. 2020; Bao, Yu, and Kong 2021), instead
of modeling the probability assignment of a given sample.
In other words, a Dirichlet distribution parameterized over
evidence represents the density of each such probability as-
signment, where the predicted evidence (parameters of the
Dirichlet distribution) is the model output. In this sense, we
could consider the uncertainty as a variance estimation of
the Dirichlet distribution.

Framework Overview
Compared to (Chen et al. 2021; Rasouli et al. 2019), our
model is more compact. Since our objective is to devise an
intention prediction model using purely tabular data, we dis-
carded the visual information {s1, s2, ..sl}. The input is a
sequence of tabular information including bounding box and
ego-vehicle action. The first type is to simply consider the
quaternion bi a type of feature. The second one is inspired by
the SORT tracking algorithm (Bewley et al. 2016). We first
calculate the center of the bounding box denoted as a tuple
ci and then compute the area and ratio between the length
and width of the bounding box (ai, ri) for each frame i. The
overall structure of our model is shown in Figure 1.

Base Model Firstly, we concatenate all the input fea-
tures bi, ci, ai, ri at each frame i to get the feature xi.
yi is its corresponding ground-truth intent label. RNN-
based encoder-decoder captures the temporal correlation
through model parameters (like memories), transformer-
based model (Vaswani et al. 2017a; Han et al. 2021; Xu
et al. 2021; Yi and Qu 2022; Wu et al. 2023) design attention
modules to capture all the possible relationships. In other
words, for a trained model, the attention mechanism relies
on the data itself explicitly to capture the temporal correla-
tion, while LSTM/RNN memorizes the temporal informa-
tion implicitly through model parameters.

Thus, a shared feed-forward layer is used to extend the
feature dimension for a later transformer layer with multi-
head attention (where the output is fi.) Before the sequence
fusion, we include a positional encoder to add temporal in-
formation gi. The positional encoder injects some informa-
tion about the relative or absolute position of the frames
in the sequence. The positional encodings are summed
with the inputs of the transformer, ki = xi + gi. We
use sine and cosine functions of different frequencies to
encode the temporal order. The later layers until the last
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Figure 1: Overview of the proposed model, where trans-
former module aims to capture temporal correlation explic-
itly from {x1, x2, · · · , xl} while the evidential layer is to
generate the model uncertainty u, providing one metric to
reject the model prediction.

feed-forward layer could be considered a simple version
of the transformer encoder (Vaswani et al. 2017b). The
transformer encoder includes blocks of one residual con-
nected self-attention layer and one fully connected layer
with layer normalization. It transformed each input vector
according to self-attention. Then, we simply flatten the out-
put for each component at frame i to merge the sequence
to get final embeddings f as the following formulation:
f = Flatten(Transformer(k1, k2, . . . , kl)).

After that, we deploy the softmax as the activation func-
tion on concatenated feature f , and apply the cross-entropy
loss function as follows:

L = −
∑N

j=1
yj log

(
Softmax(fj)

)
. (1)

Uncertainty-Aware Evidential Learning In our Base
Model for intent prediction, the softmax function is used to
predict intent assignment probabilities. However, it provides
only a point estimate for the intent probabilities of a sam-
ple and does not provide the associated uncertainty for this
prediction. On the other hand, Dirichlet distributions can be
used to model a probability distribution for the class proba-
bilities (Sensoy, Kaplan, and Kandemir 2018; Sensoy et al.
2020). Therefore, we can use the variance estimates of the
Dirichlet distribution to calculate the model uncertainties.

We replaced our last activation function (softmax) with
a rectified linear unit (ReLU) to ascertain non-negative out-
puts. The outputs are no longer modeled as the probability of
the classes. Instead, they are considered the evidence for the
predicted Dirichlet distribution. In addition, we did not use
the cross-entropy loss, since the training goal is not to maxi-
mize the likelihood of the model parameters given samples.
By decomposing the loss function in Equation (2), the first
part aims to achieve the goals of minimizing the prediction
error while reducing the variance of the Dirichlet experiment
generated by the model, specifically for each sample in the
training set (Sensoy, Kaplan, and Kandemir 2018).

Given any sample i, the evidence ei refers to the output,
and the uncertainty estimation loss is modeled as

Li(Θ) =
∑K

j=1
(yij −E[pij ])

2 +Var(pij), (2)
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where yij is the j-th element of ground-truth label yi, and pij
is the j-th element of the probabilistic prediction pi referring
to a simplex for probability assignments for sample i. E[·],
and Var(·) are the operators for the expectation and vari-
ance over the Dirichlet distribution. Note pi is not the output
of the model but a random vector following the Dirichlet dis-
tribution. To estimate the pj , we use the following equation
E[pij ] =

αij

S , where S =
∑K

j=1 αij =
∑K

j=1(eij + 1).

Var[pij ] =
E[pij ](1−E[pij ])

(S+1) . K indicates the number of
classes and Θ represent the model parameters.

In this sense, the overall objective function integrated with
Kullback–Leibler (KL) divergence is formulated as:

L =
∑N

i=1

(
Li(Θ) + λKL

(
D(pi|αi)||D(pi|1)

))
, (3)

where N indicates the number of samples and D(pi|1)
means a uniform prior if there is no evidence for the assign-
ment. KL(·) denotes the operators for the KL divergence,
which aims to regularize our predictive distribution by pe-
nalizing those divergences from the “I do not know” state
that do not contribute to data fit. the λ is the trade-off pa-
rameter (by default we set it to 10.). The model uncertainty
u is computed as u = K

S .

Experiment
Dataset
In our experiments, three intention/action prediction bench-
marks are explored, which are JAAD (Rasouli, Kotseruba,
and Tsotsos 2017), PIE (Rasouli et al. 2019), and PSI (Chen
et al. 2021). To our best knowledge, those three benchmarks
are the most representative datasets regarding the intent pre-
diction task. Specifically, JAAD and PSI are collected in a
similar sense where both of them consist of recorded dash-
cam video clips. In contrast, PIE is collected in a continuum
fashion, where the entire dataset is from a 4-hour drive in
Toronto downtown. PIE and JAAD have a similar number
of annotated pedestrians (> 1k), while PSI is smaller-scale.

Furthermore, both PIE and JAAD datasets utilized a simi-
lar annotation pipeline, wherein each pedestrian was labeled
with crossing action and crowdsourcing-labeled intention la-
bels, and we used the crossing labels as a substitute for
estimating pedestrian intention. However, the PSI dataset
identified weaknesses in the above-mentioned approach and
adopted an intention segmentation methodology to tackle
the issue of intention dynamics. Specifically, PSI annotated
the crossing intention of each pedestrian for every frame.

Evaluation and Metrics
To compare with the existing works fairly, we applied the
evaluation protocol for both PIE and JAAD datasets (Kot-
seruba, Rasouli, and Tsotsos 2021). In short, we sampled
clips at least one second before the appearance of the cross-
ing action and predict the crossing intention. We set the over-
lap ratio as 0.5 for both datasets. In total, PIE has 3,980
training sequences 995 of which are crossing cases. On the
other hand, JAAD has 3,955 training sequences including
805 crossing cases. For the ego-vehicle action annotation,

JAAD offered the driver’s behaviors while PIE recorded the
speed of the ego-vehicle. We calculated the F1 score, ac-
curacy, the area under the receiver operating characteris-
tic (AUC), and precision to comprehensively evaluate the
model performance.

Because of the different annotations between PSI and
JAAD/PIE, we followed the original PSI for the task set-
up (Chen et al. 2021). We sampled the clips with an overlap
ratio of 0.8 across the whole video as long as the pedestrian
appears. Differently from one intention label for each pedes-
trian in PIE/JAAD, the annotated pedestrians in PSI have a
crossing intention label for each frame. The prediction task
is to assign the crossing intention at the 16th frame given 15
frames as input. Note that PSI does not provide any kind of
ego-vehicle action annotations. There are 6,262 training se-
quences with 3,927 crossing cases. For the convenience of
comparing with the others, we reported accuracy, F1 score,
and balanced accuracy for the models trained on PSI.

Implementation Details
Due to the different annotations and feature engineering for
the model on each dataset, the input dimensions (b× t× fd)
are slightly different (where b refers to batch size (we set
b = 64), t and fd refers to the size of time span and feature
dimension). We projected the input features dimensions fd
to 8 dimensions in the first linear layer. The fully connected
layers in the transformer projected the 8 dimensions to 16.
There is one layer of multi-head attention (2 heads) for PIE
and PSI and two layers for JAAD. The dropout rates are set
to 0.1. All the models are trained by Adam optimizer with a
learning rate of 5e-3 for 2,000 epochs.

Comparison Results
Results on PIE/JAAD The benchmark results for mod-
els trained on PIE and JAAD are shown in Table ??, where
we compare with ATGC (Rasouli, Kotseruba, and Tsot-
sos 2017), I3D (Carreira and Zisserman 2017), MM-LSTM
(Aliakbarian et al. 2018), SF-GRU (Rasouli, Kotseruba,
and Tsotsos 2020), PCPA (Kotseruba, Rasouli, and Tsot-
sos 2021), MMHA (Rasouli et al. 2022), and BiPed (Ra-
souli, Rohani, and Luo 2021). ATGC is the only model
with a static input (one frame of the sequence). I3D is a
well-known 3D convolution network for video action recog-
nition. PCPA, MMHA, and BiPed used multi-modality as
their input, where the main difference is the incorporation
of the fusion methods. Our proposed models outperformed
all the existing models on both benchmark datasets. BiPed
(Rasouli, Rohani, and Luo 2021) performed close to our
proposed model on the PIE dataset, which adopts multi-
modality sources as input. Our model simply used bound-
ing box information along with ego-vehicle actions. How-
ever, our model dominated the others on JAAD datasets for
all metrics. Especially, the AUC score increased by 9%. On
both datasets, the performance of our base and evidential
models are similar, which demonstrates the feasibility of ev-
idential deep learning.

Results on PSI Table ?? listed the performance for all
models trained on the PSI dataset, where we compare with
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PIE JAAD
Model\Metric Accuracy AUC F1 Precision Accuracy AUC F1 Precision

ATGC 0.59 0.55 0.36 0.35 0.64 0.60 0.53 0.50
I3D 0.79 0.75 0.64 0.61 0.82 0.75 0.55 0.49
MM-LSTM 0.84 0.84 0.75 0.68 0.80 0.77 0.58 0.51
SF-GRU 0.86 0.83 0.75 0.73 0.83 0.77 0.58 0.51
PCPA 0.86 0.84 0.76 0.73 0.83 0.77 0.57 0.50
MMHA 0.89 0.88 0.81 0.77 0.84 0.80 0.62 0.54
BiPed 0.91 0.90 0.85 0.82 0.83 0.79 0.60 0.52
Ours 0.91 0.93 0.85 0.84 0.87 0.88 0.63 0.63
Ours (u = 1) 0.92 0.94 0.85 0.88 0.88 0.86 0.61 0.70
Ours (u = 0.6; PIE = 96%, JAAD = 89%) 0.93 0.94 0.87 0.89 0.91 0.86 0.69 0.71

Table 1: Performance of the proposed models and the other existing models on the JAAD and PIE datasets. u refers to the
uncertainty threshold, where we reject the predictions with higher uncertainties. When u = 1, all the samples are included.
When u = 0.6, 96% of the PIE dataset and 89% of the JAAD dataset are included.

Model\Metric Accuracy
Balanced
Accuracy F1

VR-GCN 0.74 0.61 0.64
PIE-Intention 0.69 0.58 0.79
PSI-Intention 0.76 0.67 0.66
Ours 0.83 0.75 0.88
Ours (u = 1) 0.82 0.75 0.87
Ours (u = 0.6; 75%) 0.85 0.77 0.90

Table 2: Performance of the proposed models and the other
existing models on the PSI dataset.u refers to the uncertainty
threshold, where we reject the predictions with higher un-
certainties. When u = 1, all the samples are included. When
u = 0.6, 75% of the PSI dataset is included.

VR-GCN (Chen, Tian, and Ding 2021), PIE-Intention (Ra-
souli et al. 2019) and PSI-Intention (Chen et al. 2021). VR-
GCN used graph neural networks to model the pedestrian
poses, whereas PSI-intention is based on multi-task learning
(reasoning, trajectory, and intention). Similar to the JAAD
and PIE datasets, our proposed model performed better than
the existing works. The F1 scores are boosted by 12%, and
the accuracy is increased by 7%. Again, the evidential and
base models performed comparably on the PSI dataset.

Ablation Study
In the ablation study, all the reported results are based on the
base model, because we did not find any significant differ-
ence between the base and evidential models. We test mod-
els with different combinations of features. Also, we trained
models with and without positional encoder. All the results
are shown in Table 3. Besides the bounding box feature, we
found that the center coordinates of the bounding box are a
very useful feature, which boosted at least 8% of the accu-
racy for all datasets. On the other hand, the ratio between the

PIE JAAD PSI
Model\Metric Acc F1 Acc F1 Acc F1
Bbox+Action 0.80 0.72 0.79 0.58 0.72 0.69
Bbox+Action
+Center 0.91 0.85 0.87 0.63 0.80 0.85

Bbox+Action
+Center+Ratio 0.89 0.81 0.86 0.65 0.83 0.88

No Pos. Encoder 0.90 0.83 0.85 0.61 0.81 0.87

Table 3: Performance for each variation of the base model on
three datasets. “bbox” refers to bounding box coordinates.
“action” refers to ego-vehicle action. ”center” refers to the
coordinates of the bounding box center. “ratio” refers to the
bounding box area and the ratio between length and width.

width and length of the bounding box and the bounding box
area is helpful in PIE while decreasing the performance in
PSI. One reason might be the number of sample sequences.
The sequences sampled from the PSI are nearly twice the se-
quences from PIE. At last, our results proved that the use of a
positional encoder increased the performance in all datasets
because it allows the model to capture the temporal changes.

Uncertainty Analysis
Intuitively, we hypothesize that the samples with higher
uncertainty generated by the evidential model have lower
scores using the metrics because the evidence in our frame-
work is a measure of the amount of support collected from
data in favor of a sample to be classified into a certain class.
In other words, our evidential mode is not confident in the
prediction when having a high uncertainty score.

The test samples were grouped based on predicted un-
certainty, as depicted by the blue bars in Fig. 2, with each
bar representing the proportion of samples falling within the
corresponding uncertainty range. For the top three graphs in
Fig. 2, the uncertainty value refers to the range that the un-
certainty that is less than the value and 0.1 larger than the
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JAAD PIE PSI

Figure 2: AI Uncertainty vs. Metrics on three datasets. The bars in the top three graphs are the proportion of the samples grouped
by the uncertainty score (where 0.1 refers to the samples with uncertainty greater than 0 and less than 0.1). Each colored curve
denotes the performance using a specific metric. The graphs at the bottom are the corresponding cumulative version.

value. For the bottom three graphs, the range is simply less
than the corresponding value. We found that the uncertainty
distributions in JAAD and PIE datasets have long right tails
while the distribution in PSI is right-tailed.

As the uncertainty values increased for all three datasets,
most metrics exhibited a decrease. In JAAD and PSI, the
precision score reached 1 when the uncertainty was 1, as the
model predicted all samples as ”crossing,” resulting in a low
F1 score. In the case of the PIE dataset, it might seem like
the model performs worse when the uncertainty is low, given
the low F1 score and AUC on the left side. However, we ob-
served that the accuracy was very high on the left side, and
the low scores were due to the small number of ”not cross-
ing” samples. The cumulative graphs showed more stabil-
ity and gradual decrease as the uncertainty increased. These
findings support our hypothesis that ”the models perform
better on samples with lower uncertainties”.

Disagreement Analysis
Since the PIE and PSI datasets provide the distribution of
the annotators’ decisions. For example, we know the num-
ber of annotators reporting the given pedestrian is crossing
and vice versa. We use the entropy to measure disagree-
ment among the annotators. When all annotators have the
same intention estimation, the entropy is zero. On the other
hand, entropy is one when the predictions are grouped into
half and half. We present Fig. 3 using a similar fashion with
Fig. 2 while the samples are grouped by the human disagree-
ment scores. In addition, the green bars indicate the average
uncertainty values for the corresponding groups.

Since both figures indicated a trend of decreasing per-
formance with larger human disagreement scores, we con-
cluded that our model performed worse on the human con-

flicting cases. We calculated the correlation coefficient be-
tween human disagreement and model uncertainty to tes-
tify whether the predicted uncertainties represent human dis-
agreements. We found a weak negative correlation (correla-
tion = -0.17, p-value < 0.001) and a strong positive corre-
lation (correlation = 0.60, p-value < 0.001) for the PIE and
PSI datasets, respectively. One possible explanation is that
the intention segmentation (annotation in PSI) gives each
frame a crowd-sourced label delivering more information to
the model and allowing the model to capture patterns similar
to the human. In contrast, PIE provides each pedestrian with
one fixed label across the whole time span might supervise
the model to ignore some discriminative features.

Case Study
In Fig. 4, we select some interesting cases from the test set of
PIE datasets 4 to qualitatively analyze our proposed model.
The qualitative analyses for the other two datasets are in the
supplemental materials. The first two top figures are in the
same scene, where a group of pedestrians were crossing in
front of the ego vehicle to get on the bus. Though the ground-
truth label from PIE was “not crossing” for both pedestrians,
our model predicted “crossing”. Admittedly, the trajectories
of the pedestrians in the first two figures are very like the
crossing case, and those could be considered as “crossing”
in some sense. Moreover, these cases are very rare where
the training set does not have similar cases to supervise the
model’s learning for this specific case. The third figure at
the top and the first figure at the bottom are cases where the
model successfully predicts the crossing intention with low
uncertainty. The prior one is a typical situation for the “not
crossing” case. However, the previous bounding boxes of the
later case demonstrated large lateral movements. The model
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Figure 3: Human disagreement vs. Metrics on PIE and PSI datasets [Left two sub-figures], where blue bars are the proportion of
the samples grouped by the uncertainty score (where 0.1 refers to the samples with uncertainty greater than 0 and less than 0.1)
and green bars are the corresponding average uncertainty values. Each colored curve denotes the performance using a specific
metric. The rightmost sub-figure shows the correlation between AI uncertainty and human disagreement.

U: 0.48; P: 0.76; I: X U: 0.39; P: 0.8; I: X U: 0.1; P: 0.95; I: X

U: 0.15; P: 0.93; I: X U: 1.0; P: 0.5; I: X U: 0.67; P: 0.67; I: X

Figure 4: Case study on PIE dataset, where U denotes the uncertainty, P means probability and I represents the decision (X is
crossing, while the crossed X is not crossing. The red bounding boxes indicate the cases where our model predicts wrongly,
while the green bounding boxes are the correct cases. The yellow bounding boxes are those in the previous 3 frames.

recognized the cause of the large lateral movement as from
the ego vehicle’s turning and predicted it correctly.

The last two figures in fig. 4 are also from the same sce-
nario, where an adult takes a child to cross the street. Our
model is extremely unsure about the crossing intention of
the child (uncertainty = 1) and gave a useless prediction
(“crossing” = “not crossing” = 0.5). It might be because of
the deficiency of the samples of children because the model
predicts the intention of the adult correctly with less uncer-
tainty. Moreover, we examined the video clip and found that
the pedestrians were negotiating with the ego vehicle where
both sides did not carry a firm intention. However, the anno-
tations in the PIE dataset do not show this intention dynam-
ics. Overall, we believe the model performance is limited by
the diversity of the training sample.

Conclusion
In this paper, we proposed a novel transformer-based eviden-
tial prediction (TrEP) algorithm for pedestrian intentions,
aiming to capture the temporal correlation and model the AI
uncertainty. We did comprehensive evaluations using three
popular datasets for both existing and our proposed mod-
els. Our model outperformed all the existing works on all
three datasets. Moreover, we utilized the crowd-sourced an-
notations in PIE and PSI to represent human disagreement
and compared human disagreement with AI uncertainty. We
found that our model shared the same uncertainty pattern
with various human annotators provided in the PSI dataset.
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