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Abstract

Existing methods of cross-modal domain adaptation for 3D
semantic segmentation predict results only via 2D-3D com-
plementarity that is obtained by cross-modal feature match-
ing. However, as lacking supervision in the target domain,
the complementarity is not always reliable. The results are
not ideal when the domain gap is large. To solve the prob-
lem of lacking supervision, we introduce masked modeling
into this task and propose a method Mx2M, which utilizes
masked cross-modality modeling to reduce the large do-
main gap. Our Mx2M contains two components. One is the
core solution, cross-modal removal and prediction (xMRP),
which makes the Mx2M adapt to various scenarios and pro-
vides cross-modal self-supervision. The other is a new way
of cross-modal feature matching, the dynamic cross-modal
filter (DxMF) that ensures the whole method dynamically
uses more suitable 2D-3D complementarity. Evaluation of
the Mx2M on three DA scenarios, including Day/Night, US-
A/Singapore, and A2D2/SemanticKITTI, brings large im-
provements over previous methods on many metrics.

1 Introduction
3D semantic segmentation methods (Graham, Engelcke, and
Van Der Maaten 2018; Wang et al. 2019; Hu et al. 2021)
often encounter the problem of shift or gap between dif-
ferent but related domains (e.g. day and night). The task
of cross-modal domain adaptation (DA) for 3D segmenta-
tion (Jaritz et al. 2020) is designed to address the problem,
which is inspired by 3D datasets usually containing 2D and
3D modalities. Like most DA tasks, labels here are only
available in the source domain, whereas the target domain
has no segmentation labels. Existing methods, i.e. xMUDA
(Jaritz et al. 2020) and its heirs (Liu et al. 2021a; Peng et al.
2021), extract 2D and 3D features through two networks and
exploit the cross-modal complementarity by feature match-
ing to predict results. However, as lacking supervision in the
target domain, the robustness of this complementarity is not
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good. As shown in the left part of Fig.1, if the domain gap is
large and both networks underperform on the target domain,
these methods appear weak.

The problem of lacking supervision once constricted the
visual pre-training task and has been solved by methods with
masked modeling (He et al. 2022; Bao, Dong, and Wei 2022;
Yu et al. 2022), which has been proved to belong to data
augmentation (Xu et al. 2022). Its core solution is simple:
removing a portion of inputs and learning to predict the re-
moved contents. Models are fitted with sufficient data in this
way, so that learn more inner semantic correspondences and
realize self-supervision (He et al. 2022). For this DA task,
this way of data augmentation and then the self-supervision
can enrich the robustness and reduce the gap. Hence the idea
is natural: if we introduce masked modeling into the task, the
lacking supervision on the target domain and then the large
gap are solved. Nevertheless, two problems are the key to in-
troducing masked modeling. a) The core solution ought to be
re-designed to fit for this task, where there are two modal-
ities. b) For the cross-modal feature matching, we should
explore a new way to suit the joining of masked modeling.

Given these observations, we propose a new method
Mx2M utilizing masked cross-modality modeling to solve
the problem of lacking supervision for the DA of 3D seg-
mentation. Our Mx2M can reduce the large domain gap by
adding two new components to the common backbone for
this task, which correspond to the above two problems. For
the first one, we design the core solution in the Mx2M, cross-
modal removal and prediction (xMRP). As the name im-
plies, we inherit the ’removal-and-prediction’ proceeding in
the core solution of masked single-modality modeling and
improve it with the cross-modal working manner for this
task. During removal, the xMRP has two changes. i) Our
CNN backbone cannot perform well with highly destroyed
object shapes (Geirhos, Meding, and Wichmann 2020), so
the masked portion is less. ii) To guarantee the existence of
full semantics in this segmentation task, we do not mask all
inputs and ensure at least one modality complete in each in-
put. We can obtain the different xMRP by controlling the re-
moval proceeding, which makes the Mx2M adapt to various
DA scenarios. During prediction, to learn more 2D-3D cor-
respondences beneficial to networks (Jaritz et al. 2020), we
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Figure 1: Left: the pipeline of xMUDA and its heirs (the segmentation results are from xMUDA). Right: the pipeline of
our Mx2M. Thanks to masked cross-modality modeling, our method reduces the large domain gap and then achieves better
segmentation results with the same backbone.

mask images/points and predict the full content in points/im-
ages by two new branches. In this way, cross-modal self-
supervision can be provided for the whole method.

As for the second problem, we propose the dynamic
cross-modal filter (DxMF) to dynamically construct the
cross-modal feature matching by locations, which is inspired
by impressive gains when dynamically establishing kernel-
feature correspondences in SOLO V2 (Wang et al. 2020b).
Similarly, in our DxMF, we structure the 2D-3D kernel-
feature correspondences. Kernels for one modality are gen-
erated by features from the other, which then act on features
for this modality and generate the segmentation results by
locations. With the joining of the DxMF, the Mx2M can dy-
namically exploit the complementarity between modalities.
As is shown in the right part of Fig.1, with these two com-
ponents, our Mx2M gains good results even in the scenario
with a large domain gap.

To verify the performance of the proposed Mx2M, we
test it on three DA scenarios in (Jaritz et al. 2020), includ-
ing USA/Singapore, Day/Night, and A2D2/SemanticKITTI.
Our Mx2M attains better results compared with most state-
of-the-art methods, which indicates its effectiveness. In sum-
mary, our main contributions are as follows:
• We innovatively propose a new method Mx2M, which

utilizes masked cross-modality modeling to reduce the
large domain gap for DA of 3D segmentation. To our
knowledge, it is the first time that masked modeling is
introduced into a cross-modal DA task.

• Two components are specially designed for this task, in-
cluding xMRP and DxMF, which ensures the Mx2M ef-
fectively works and deals with various scenarios.

• We achieve high-quality results on three real-to-real DA
scenarios, which makes the Mx2M the new state-of-the-
art method. The good results demonstrate its practicality.

2 Related Work
Domain Adaptation for 3D Segmentation. Most works
pay attention to DA for 2D segmentation (Zhang et al. 2021,

2020; Li, Yuan, and Vasconcelos 2019), which are hard to be
applied to unstructured and unordered 3D point clouds. The
DA methods for 3D segmentation (Qin et al. 2019; Luo et al.
2020; Morerio, Cavazza, and Murino 2018) are relatively
few, but they also do not fully use the datasets that often con-
tain both images and points. Hence, xMUDA (Jaritz et al.
2020) and its heirs (Liu et al. 2021a; Peng et al. 2021) with
cross-modal networks are proposed, which achieve better
adaptation. Our Mx2M also adopts cross-modal networks,
which has the same backbone as xMUDA.

Masked Modeling. The masked modeling was first ap-
plied as masked language modeling (Kenton and Toutanova
2019), which essentially belongs to data augmentation (Xu
et al. 2022). Nowadays, it has been the core operation in self-
supervised learning for many modalities, such as masked
image modeling (Bao, Dong, and Wei 2022; Xie et al. 2022),
masked point modeling (Yu et al. 2022), and masked speech
modeling (Baevski et al. 2020). Their solutions are the same:
removing a portion of the data and learning to predict the re-
moved content. The models are fitted with sufficient data in
this way so that the lacking of supervision is satisfied. Our
Mx2M designs the masked cross-modality modeling for DA
in 3D segmentation that uses point and image.

Cross-modal Learning. Cross-modal learning aims at
taking advantage of data from multiple modalities. For vi-
sual tasks, the most common scene using it is learning the
3D task from images and point clouds (Jing, Zhang, and
Tian 2021; Hu et al. 2021; Genova et al. 2021; Liu et al.
2021b; Xu et al. 2021; Dai and Nießner 2018; Liu, Qi, and
Fu 2021). The detailed learning means are various, including
2D-3D feature matching (Jing, Zhang, and Tian 2021; Dai
and Nießner 2018; Liu, Qi, and Fu 2021; Xu et al. 2021),
2D-3D feature fusion (Hu et al. 2021), 2D-3D cross-modal
supervision (Genova et al. 2021; Liu et al. 2021b), etc. Be-
sides, there are also some works conducting cross-modal
learning on other modalities, such as video and medical im-
age (Carreira and Zisserman 2017; Shan et al. 2018), image
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Figure 2: The architecture of the Mx2M. We introduce masked modeling into the task of DA in 3D segmentation mainly by
xMRP and DxMF. The former is the core solution where we remove (mask) images/points and predict the full content in
points/images. The latter is for 2D-3D feature matching.

and language (Lu et al. 2021; Radford et al. 2021; Fu et al.
2021), as well as video and speech (Gao and Grauman 2021;
Lee et al. 2021; Wu et al. 2022). Cross-modal learning is also
exploited in our M2xM: the core procedure xMRP leverages
the cross-modal supervision, while the DxMF works in the
way of 2D-3D feature matching.

3 Method
Our Mx2M is designed for DA in 3D segmentation assuming
the presence of 2D images and 3D point clouds, which is the
same as xMUDA (Jaritz et al. 2020). For each DA scenario,
we define a source dataset S , each sample of which contains
a 2D image X2D,S, a 3D point cloud X3D,S, and a corre-
sponding 3D segmentation label Y 3D,S. There also exists
a target dataset T lacking annotations, where each sample
only consists of image X2D,T and point cloud X3D,T. The
images and point clouds in S and T are in the same spatial
sizes, i.e. X2D ∈ RH×W×3 and X3D ∈ RN×3. Based on
these definitions, we will showcase our Mx2M.

3.1 Network Architecture
The architecture of the Mx2M is shown in Fig.2. For a fair
comparison with previous methods (Jaritz et al. 2020; Liu
et al. 2021a; Peng et al. 2021), we also use the same back-
bone to extract features: a SparseConvNet (Graham, Engel-
cke, and Van Der Maaten 2018) for the 3D network and a
modified version of U-Net (Ronneberger, Fischer, and Brox
2015) with ResNet-34 (He et al. 2016) pre-trained on Ima-
geNet (Deng et al. 2009) for the 2D one. Their output fea-
tures, H2D and H3D, have the same length N equaling the
number of 3D points, where H2D is gained by projecting the
points into the image and sampling the 2D features at corre-
sponding pixels. H2D and H3D are then sent into two groups
of the same three heads, each group of which is for one
modality. During these heads, the ones that predict masked
2D/3D contents M2D→3D and M3D→2D belong to xMRP.
We will introduce them and the proceeding of masking in-
puts in Sec.3.2. Besides them, the other heads all partici-
pate in feature matching. The heads that predict final seg-

mentation results P 2D and P 3D are our DxMFs (detailed
in Sec.3.3). The heads that mimic the outputs from cross-
modality are the linear layers inherited from xMUDA (Jaritz
et al. 2020), where the outputs are P 2D→3D and P 3D→2D.

As for the information flow, we illustrate it in Fig.3(b).
The whole network is alternately trained on the source and
the target domain. When the models are trained on the
source domain, all six heads work. The heads for xMRP
are respectively self-supervised by the origin image/point.
The two DxMF heads that predict the segmentation results
are both supervised by Y 3D,S. The two mimicking heads are
internally supervised by the outputs from the cross-modal
DxMF heads (e.g. P 3D→2D supervised by P 2D). When the
models are trained on the target domain, the DxMFs heads
cannot be supervised because of lacking annotations. The
other heads normally work as above. The loss functions of
segmentation and mimicking heads are the same as pre-
vious methods (Jaritz et al. 2020; Peng et al. 2021; Liu
et al. 2021a) for convenience, where the positions are like in
Fig.3(b). The CE(·) and KL(·) are loss functions of cross-
entropy and KL divergence, respectively.

3.2 xMRP
The core solution of the Mx2M, xMRP, removes a portion
of the data in one modality and learns to predict the full con-
tent in the other one, which is related but different from the
core solution in masked single-modality modeling. As the
name implies, this procedure is divided into two steps. For
the step of removal, we randomly select some patches of the
image/points and mask them inspired by the way in MAE
(He et al. 2022). Considering that 3D points are hard to mask
by patches, we first project them into the image. We use two
hyper-parameters to control the masking proceeding: the p
indicating the size of each patch, and the mr representing
the masking ratio of the whole image/points (i.e. masking
mr of all patches). The mr cannot be as high as that in (Bao,
Dong, and Wei 2022; He et al. 2022) because the CNN back-
bone in our method cannot perform well if the shape of ob-
jects is highly destroyed (Geirhos, Meding, and Wichmann
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Figure 3: (a) The details of our DxMF. The thick arrow corresponds to the modality in which the features generate dynamic
weights. (b) The supervision of the source and the target domain. Mx2M introduces the cross-modal self-supervision on the
target domain, which non-exists in previous methods.

2020). Besides, due to our segmentation task, the inputs can-
not always be masked and at least one modality is complete
to guarantee the existence of full semantics. Thus we use an-
other two hyper-parameters to define the ratio when mask-
ing each modality: m2D meaning the ratio when masking 2D
and m3D indicating when masking 3D (i.e. masking images
at times of m2D, masking points on times of m3D, and no
masking when (1-m2D-m3D)). We can control the inputs by
(p,mr,m2D,m3D) to make the model adapt to different DA
scenarios. As is shown in Fig.2, X2D and X3D processed by
these hyper-parameters (denoted as the new X2D and X3D)
are sent into the networks as inputs.

The next step is the cross-modal prediction that provides
self-supervision. Inspired by the conclusion in (Wang et al.
2021) about the good effect of MLP on unsupervised tasks,
we use the same MLP heads with middle channels of 4096
for both 2D and 3D to generate the results M2D→3D and
M3D→2D for 3D and 2D, respectively. Motivated by (He
et al. 2022), the losses are correspondingly calculated as fol-
lows:

L2D = L2(X̂
3D||M2D→3D

), and L3D = L2(X̂
2D||M3D→2D

). (1)

The X̂3D means the original 3D point clouds. The X̂2D in-
dicates the sampled pixels when X̂3D projects into the origi-
nal image. L2(·) signs the mean squared error. It is notewor-
thy that we predict the full contents rather than the removed
ones in masked single-modality modeling. The model can
learn more 2D-3D correspondences from non-masked parts
because the masked modality is different from the predicted
one, which is not available in methods of masked single-
modality modeling.

Herein we finish the core proceeding of our Mx2M. The
(p,mr,m2D,m3D) are set as (16, 0.15, 0.2, 0.2), (4, 0.3,
0.1, 0.3), and (4, 0.25, 0.3, 0.1) for scenarios of USA/Sin-
gapore, Day/Night, and A2D2/SemanticKITTI, respectively.
The experiments for USA/Singapore are reported in Sec.4.2.
Our network can learn sufficient 2D-3D correspondences on
different DA scenarios in this way, which fixes the lacking
of supervision and then reduces the domain gap.

3.3 DxMF
The whole network can learn more complementarity be-
tween modalities by feature matching, so it is still impor-

tant for our Mx2M. Inspired by SOLO V2 (Wang et al.
2020b) which gains great progress compared with SOLO
(Wang et al. 2020a) via kernel-feature correspondences by
locations, our DxMF constructs cross-modal kernel-feature
correspondences for feature matching. The pipeline is shown
in Fig.3(a). Compared with simple final linear layers in
xMUDA (Jaritz et al. 2020), we use dynamic filters to seg-
ment the results. We make the procedure of segmenting the
2D results as an example to illustrate our DxMF and so do
on 3D. The kernel weights W 2D ∈ RN×F2D×C of the filter
for 2D segmentation are generated from 3D features H3D

by a linear layer (similarly, W 3D ∈ RN×F3D×C from H2D).
As the 2D features H2D have a spatial size of (N,F2D), the
result of one point is got:

P 2D
i = W 2D

i ∗H2D
i , where i ∈ N. (2)

The ∗ indicates the dynamic convolution. We can get the
segmentation results P 2D after all the P 2D

i joined together.
As we dynamically construct the 2D-3D correspondences
for feature matching, by which the model learns more suit-
able complementarity compared with the ways in previous
methods (Jaritz et al. 2020; Peng et al. 2021). We provide
experiments on this comparison and ones on the scheme of
the dynamic feature matching about other heads, where the
results are shown in Sec.4.2.

4 Experiments
4.1 Implementation Details
Datasets. We follow three real-to-real adaptation scenar-
ios in xMUDA (Jaritz et al. 2020) to implement our method,
the settings of which include country-to-country, day-to-
night, and dataset-to-dataset. The gaps between them raise.
Three autonomous driving datasets are chosen, including
nuScenes (Caesar et al. 2020), A2D2 (Geyer et al. 2019),
and SemanticKITTI (Behley et al. 2019), where LiDAR and
camera are synchronized and calibrated. In this way, we can
compute the projection between a 3D point and the corre-
sponding 2D pixel. We only utilize the 3D annotations for
segmentation. In nuScenes, a point falling into a 3D bound-
ing box is assigned the label corresponding to the object, as
the dataset only contains labels for the 3D box rather than the
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p 4 8 16 32
2D 60.0 60.3 60.4 60.1
3D 53.4 53.6 53.8 53.2

(a) mr, m2D, and m3D are fixed.

mr 0.15 0.20 0.25 0.10
2D 60.4 60.1 60.3 60.0
3D 53.8 53.8 53.0 53.2

(b) p=16, m2D and m3D are fixed.

Head Linear MLP 2 MLPs
2D 61.4 62.0 61.5
3D 56.5 57.6 57.4

(c) (p, mr, m2D, m3D)=(16, 0.15, 0.2, 0.2).

Table 1: Ablation studies for p, mr, and different heads for prediction correspondingly in (a), (b) and (c).

m3D

m2D 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 (60.4, 53.8) (60.9, 54.1) (61.2, 52.4) (61.5, 52.1) (60.5, 52.3) (59.8, 51.6) (59.7, 51.1)
0.2 (60.5, 55.1) (61.4, 56.5) (59.4, 54.3) (59.0, 53.9) (58.9, 54.1) (58.2, 52.9) -
0.3 (60.2, 54.2) (60.0, 57.6) (59.0, 52.7) (58.5, 52.6) (57.7, 51.8) - -
0.4 (59.5, 53.5) (58.6, 54.1) (57.9, 52.8) (56.7, 51.7) - - -
0.5 (58.6, 52.0) (57.3, 51.9) (57.2, 50.6) - - - -
0.6 (58.0, 51.2) (57.5, 51.0) - - - - -
0.7 (57.4, 50.1) - - - - - -

Table 2: Ablation for m2D and m3D with p=16 and mr=0.15. (mIoU 2D, mIoU 3D) correspondingly denote results for 2D and
3D networks, which are balance when m2D=0.2 and m3D=0.2.

segmentation. The nuScenes is leveraged to generate splits
Day/Night and USA/Singapore, which correspond to day-
to-night and country-to-country adaptation. The other two
datasets are used for A2D2/SemanticKITTI ( i.e. dataset-to-
dataset adaptation), where the classes are modified as 10 ac-
cording to the alignments in (Jaritz et al. 2020).

Metrics. Like other segmentation works, the mean inter-
section over union (mIoU) is adopted as the metric for eval-
uating the performance of the models for all datasets. In ad-
dition, we follow the new mIoU calculating way in (Jaritz
et al. 2020), which jointly considers both modalities and is
obtained by taking the mean of the predicted 2D and 3D
probabilities after softmax (denoted as ’Avg mIoU’).

Inputs & Labels. For easily conducting masked model-
ing, we resize images into the sizes that could be divisible by
p. The images in nuScenes (i.e. Day/Night and USA/Singa-
pore) are resized as 400×224, whereas the ones in A2D2 and
SemanticKITTI are reshaped as 480×304. All images are
normalized and then become the inputs/labels of the 2D/3D
network. As for points, a voxel size of 5cm is adopted for
the 3D network, which is small enough and ensures that only
one 3D point lies in a voxel. The coordinates of these voxels
are adopted as the labels for the 2D network.

Training. We use the PyTorch 1.7.1 framework on an
NVIDIA Tesla V100 GPU card with 32GB RAM under
CUDA 11.0 and cuDNN 8.0.5. For nuScenes, the mini-batch
Adam (Kingma and Ba 2015) is configured as the batch size
of 8, β1 of 0.9, and β2 of 0.999. All models are trained for
100k iterations with the initial learning rate of 1e-3, which
is then divided by 10 at the 80k and again at the 90k itera-
tion. For the A2D2/SemanticKITTI, the batch size is set as 4,
while related models are trained for 200k and so do on other
configurations, which is caused by the limited memory. The
models with ’+PL’ share the above proceeding, where seg-
mentation heads are extra supervised with pseudo labels for
the target dataset. As for these pseudo labels, we strictly fol-
low the ways in (Jaritz et al. 2020) to prevent manual super-

vision, i.e. using the last checkpoints of models without PL
to generate them offline.

4.2 Ablation Studies
To define the effectiveness of each component, we conduct
ablation studies on them, respectively. As xMUDA (Jaritz
et al. 2020) is the first method of cross-modal DA in 3D
segmentation and is the baseline of all related methods (Liu
et al. 2021a; Peng et al. 2021), we continue this habit and
choose xMUDA as our baseline. By default, all results are
reported based on the USA/Singapore scenario. For a fair
comparison, we train models with each setting for 100k iter-
ations with a batch size of 8.

Ablation on xMRP As mentioned in Sec.3.2, in xMRP,
we use four hyper-parameters (p,mr,m2D,m3D) to control
the proceeding of masking inputs and two heads of MLP
to predict the cross-modality. To validate the effectiveness
of the masked cross-modality modeling strategy, we insert
simple xMRPs into xMUDA. The (4, 0.15, 0.1, 0.1) are se-
lected as the start point because of the low mask ratio and
the low masking 2D/3D ratio, which are suitable for the
task of segmentation. As for heads, we start from the sim-
plest linear layers. The mIoU for (2D, 3D) in this setting are
(60.0, 53.4), which are better than the segmentation results
of (59.3, 52.0) in xMUDA. The good results demonstrate the
significance of masked cross-modality modeling. We next
explore the effectiveness of detailed settings.

Ablation on Hyper-parameters. To determine the suit-
able input settings for the current scenario, we conduct ab-
lation studies on (p,mr,m2D,m3D), respectively. We start
from (4, 0.15, 0.1, 0.1) and first confirm p with fixed other
numbers, where the mIoU of 2D and 3D are shown in
Tab.1(a). The networks gain the best metrics at p = 16. The
next job is to define mr, the results of which are illustrated
in Tab.1(b). Both metrics decrease with the raising of mr,
but when mr = 0.10 so do results. Hence the models have
the best results when mr = 0.15. Finally, we determine
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Strategy 2D 3D
xMRP 62.0 57.6
2D+3D 59.4 53.3
only 3D 58.9 52.6
only 2D 57.9 51.9

(a) Strategies of removal-prediction.

Setting 2D 3D
- 62.0 57.6

+DxMF 64.1 64.2
+DsCML 58.0 50.6
DsCML† 57.8 50.2
DsCML 61.3 53.3

(b) Settings of cross-modal feature matching.

Setting 2D 3D
on Prediction 64.1 64.2

on Prediction (w/o xMRP) 61.1 53.9
on Mimicking 59.4 52.4

on xMRP 55.4 50.8

(c) DxMF on three output heads.

Table 3: Ablation for removal-prediction and DxMF in (a), (b) and (c). Three heads in (c) are mentioned in Sec.3.1.

Modality Method USA/Singapore Day/Night A2D2/SemanticKITTI
2D 3D Avg 2D 3D Avg 2D 3D Avg

Backbones(source only) 53.4 46.5 61.3 42.2 41.2 47.8 36.0 36.6 41.8
Backbones(on target) 66.4 63.8 71.6 48.6 47.1 55.2 58.3 71.0 73.7

Uni-modal

MinEnt (Vu et al. 2019) 53.4 47.0 59.7 44.9 43.5 51.3 38.8 38.0 42.7
Deep logCORAL 52.6 47.1 59.1 41.4 42.8 51.8 35.8 39.3 40.3
PL (Li, Yuan, and Vasconcelos 2019) 55.5 51.8 61.5 43.7 45.1 48.6 37.4 44.8 47.7
FCNs in the Wild (Hoffman et al. 2016) 53.7 46.8 61.0 42.6 42.3 47.9 37.1 43.5 43.6
CyCADA (Hoffman et al. 2018) 54.9 48.7 61.4 45.7 45.2 49.7 38.2 43.9 43.9
AdaptSegNet (Tsai et al. 2018) 56.3 47.7 61.8 45.3 44.6 49.6 38.8 44.3 44.2
CLAN (Luo et al. 2019) 57.8 51.2 62.5 45.6 43.7 49.2 39.2 44.7 44.5

Cross-modal

xMUDA (Jaritz et al. 2020) 59.3 52.0 62.7 46.2 44.2 50.0 36.8 43.3 42.9
xMUDA+PL (Jaritz et al. 2020) 61.1 54.1 63.2 47.1 46.7 50.8 43.7 48.5 49.1
AUDA (Liu et al. 2021a) 59.8 52.0 63.1 49.0 47.6 54.2 43.0 43.6 46.8
AUDA+PL (Liu et al. 2021a) 61.9 54.8 65.6 50.3 49.7 52.6 46.8 48.1 50.6
DsCML (Peng et al. 2021) 61.3 53.3 63.6 48.0 45.7 51.0 39.6 45.1 44.5
DsCML+CMAL (Peng et al. 2021) 63.4 55.6 64.8 49.5 48.2 52.7 46.3 50.7 51.0
DsCML+CMAL+PL (Peng et al. 2021) 63.9 56.3 65.1 50.1 48.7 53.0 46.8 51.8 52.4
Mx2M 64.1 64.2 64.2 49.7 49.9 49.8 44.6 48.2 47.1
Mx2M+PL 67.4 67.5 67.4 52.4 56.3 54.6 48.6 53.0 51.3

Table 4: Comparison results with both uni-modal and multi-modal adaptation methods for 3D semantic segmentation. Our
Mx2M achieves state-of-the-art performance on most metrics.

the m2D and m3D. As mentioned in Sec.3.2, (1 − m2D-
m3D) > 0 because of keeping the full semantics. We de-
sign plenty of combinations for these two hyper-parameters,
where the details are shown in Tab.2. The metrics are not
good when m2D and m3D are too large, which matches the
fact that our CNN backbones cannot integrate a high mask
ratio like (He et al. 2022). We get results of (61.4, 56.5) with
suitable m2D = 0.2 and m3D = 0.2, and then appropriate
hyper-parameters (16, 0.15, 0.2, 0.2) for the scenario.

Ablation for Removal and Prediction. We obtain the re-
sults of (61.4, 56.5) with the simple linear layer. According
to the conclusion in (Wang et al. 2021), the network per-
forms well when having an MLP layer. Therefore we com-
pare the schemes of linear layer, a single MLP with mid
channels of 4096, and two same MLPs with the 4096 mid
channels. They are used to predict both modalities, where
the results are shown in Tab.1(c). A single MLP also does for
our DA task. Besides, some other removal-prediction strate-
gies are also attempted besides the cross-modal one. We il-
lustrate the segmentation metrics in Tab.3(a). We have tried
respectively removing and predicting the content in single-
modality (denoted as ’2D+3D’), only in 3D point clouds,
and only in 2D images. Here only removed portions are
set as labels. We can see ’2D+3D’ has similar results as
xMUDA (Jaritz et al. 2020), because only rare patches work

and bring about seldom information in this scheme. Simi-
larly, the cross-modal scheme performs well thanks to 2D-
3D correspondences from all contents, which is beneficial to
this task (Peng et al. 2021; Li, Yuan, and Vasconcelos 2019).
Finally, we gain the (+2.0, +4.2) increase with our xMRP for
2D and 3D performance, respectively.

Ablation on DxMF All above experiments are based on
the same way of feature matching as xMUDA (Jaritz et al.
2020), where the segmentation results are got based on two
linear layers. We also conduct experiments on our DxMF,
which achieves cross-modal feature matching and then the
segmentation by dynamically constructing kernel-feature
correspondences. The comparison is shown in the first two
rows of Tab.3(b), our DxMF performs the better 2D-3D
complementarity and especially increases the 3D perfor-
mance. We also try to combine the means of sparse-to-dense
cross-modal feature matching, DsCML (Peng et al. 2021),
with the masked cross-modality modeling, where the met-
rics are illustrated in the last three rows in Tab.3(c). The
results with ’†’ or not denote that they are from the imple-
mentation of the official source code or from the paper. As
our experiments are based on the official source code, we
still gain the increase with the join of xMRP. In all, the good
metrics prove the effectiveness of our DxMF.

We also validate the results for only using DxMF, which

3406



(a) images/labels (b) xMUDA (c) Mx2M

Figure 4: Comparison of visual results on three scenarios. The images/points from the top row to the bottom come from
the A2D2/SemanticKITTI, Day/Night, and USA/Singapore scenarios, respectively. With the joining of masked cross-modality
modeling, errors caused by the domain gap are reduced. Best view it on screen.

is reported in the first two rows of Tab.3(c). Besides, our
Mx2M has three output heads for each modality according
to Sec.3.1. We also conduct experiments on DxMF on them
besides the above experiments on prediction heads. Like
adding DxMF to prediction heads, we add DxMF to other
ones on both modalities. The results are reported in Tab.3(c).
Both mimicking heads and ones for xMRP do not match
the DxMF. We may infer that the former is not involved in
segmentation and the latter is like respective single-modal
prediction in Tab.3(a). Both situations are not suitable for
our DxMF. After all experiments, our Mx2M outperforms
the Baseline xMUDA (+4.8, +12.2) for 2D and 3D in total,
which shows that the Mx2M does work.

4.3 Limitations
Considering previous works (Liu et al. 2021a; Peng et al.
2021) attempt to introduce adversarial learning (AL) into
the DA in 3D semantic segmentation, we also add the ex-
tra heads for AL in both 2D and 3D. We use the simple
AL in AUDA (Liu et al. 2021a) and the CMAL in DsCML
(Peng et al. 2021). The results for 2D and 3D are not ideal,
which are correspondingly (56.26, 51.76) and (49.75, 41.94)
for AL in AUDA and CMAL. Compared with the metrics
of (64.1, 64.2) in the scheme without AL, they decrease so
much. We think it is the limitation in our Mx2M that our
method does not match AL.

4.4 Comparison with The State-of-the-art
We evaluate our Mx2M on the above three real-to-real DA
scenarios and compare the results with some methods. First,
we train the backbones on source only and on target only
(except on the Day/Night, where the batches of 50%/50%
Day/Night are used to prevent overfitting). The two results
can be seen as the upper and lower limit of the DA effective-
ness. Next, some representative uni-modal DA methods are
compared. These uni-modal methods are correspondingly
evaluated on U-Net with ResNet-34 for 2D and SparseCon-
vNet for 3D, which are the same as our backbones. We use

the results from (Peng et al. 2021) for convenience. Finally,
We also compare our method with some cross-modal meth-
ods, including xMUDA (Jaritz et al. 2020), AUDA (Liu et al.
2021a), and DsCML (Peng et al. 2021). These cross-modal
methods and our Mx2M are also trained with the data with
pseudo labels on the target domain, where the proceeding
can be seen in Sec.4.1.

All comparison results for 3D segmentation are reported
in Tab.4. We can see that the Mx2M gains the (2D mIoU,
3D mIoU) on average of (+5.4, +7.6) compared with the
baseline xMUDA, which proves the DA performance of our
method. Specifically, for the USA/Singapore scenario, the
bare Mx2M even surpasses xMUDA with PL. In Day/Night,
though the metric without PL looks normal, the result with
PL shows a surprising increase that is close to the upper
limit. As for the A2D2/SemanticKITTI, the Mx2M outper-
forms all methods on 2D and 3D metrics with a 0.9 less Avg
mIoU compared to the DsCML. In total, our Mx2M gains
state-of-the-art performance on most metrics. We also pro-
vide some visual results, which are shown in Fig.4.

5 Conclusion
In this paper, we propose a method Mx2M for domain adap-
tation in 3D semantic segmentation, which utilizes masked
cross-modality modeling to solve the problem of lacking su-
pervision on the target domain and then reduce the large
gap. The Mx2M includes two components. The core so-
lution xMRP makes the Mx2M adapts to various scenar-
ios and provides cross-modal self-supervision. A new way
of cross-modal feature matching DxMF ensures that the
whole method exploits more suitable 2D-3D complemen-
tarity and then segments results. We achieve state-of-the-
art performance on three DA scenarios, including USA/Sin-
gapore, Day/Night, and A2D2/SemanticKITTI. Specifically,
the Mx2M with PL achieves the mIoU of (2D, 3D, Avg) for
(67.4, 67.5, 67.4), (52.4, 56.3, 54.6), and (48.6, 53.0, 51.3)
for the three scenarios, which demonstrate the effectiveness.
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