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Abstract

The task of keyword-based diverse image retrieval has
received considerable attention due to its wide demand in
real-world scenarios. Existing methods either rely on a multi-
stage re-ranking strategy based on human design to diversify
results, or extend sub-semantics via an implicit generator,
which either relies on manual labor or lacks explainability.
To learn more diverse and explainable representations, we
capture sub-semantics in an explicit manner by leveraging the
multi-modal knowledge graph (MMKG) that contains richer
entities and relations. However, the huge domain gap between
the off-the-shelf MMKG and retrieval datasets, as well as
the semantic gap between images and texts, make the fusion
of MMKG difficult. In this paper, we pioneer a degree-free
hypergraph solution that models many-to-many relations to
address the challenge of heterogeneous sources and hetero-
geneous modalities. Specifically, a hyperlink-based solution,
Multi-Modal Knowledge Hyper Graph (MKHG) is proposed,
which bridges heterogeneous data via various hyperlinks
to diversify sub-semantics. Among them, a hypergraph
construction module first customizes various hyperedges
to link the heterogeneous MMKG and retrieval databases.
A multi-modal instance bagging module then explicitly
selects instances to diversify the semantics. Meanwhile, a
diverse concept aggregator flexibly adapts key sub-semantics.
Finally, several losses are adopted to optimize the semantic
space. Extensive experiments on two real-world datasets
have well verified the effectiveness and explainability of our
proposed method.

Introduction
Keyword-based image retrieval has been a classic task
in the multimedia field, because in real-world applica-
tions (Ionescu et al. 2021), using keywords as queries is
the most convenient and effective retrieval manner for users.
Due to the relatively broad semantics of keywords, the diver-
sity of retrieval results is particularly important for keyword-
based image retrieval to meet the needs of users. In fact,
keyword-based queries are usually short and semantically
incoherent (e.g. 2.7 words on average in the Div150AdHoc
dataset), which imposes higher diversity requirements than
general retrieval (queries with more than 20 words) (Wang
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Figure 1: Examples of the multi-stage, multi-instance and
our multi-modal knowledge hypergraph solution.

et al. 2017; Cao et al. 2020; Zeng 2022). Therefore, the task
of keyword-based diverse image retrieval, which aims to
diversify the retrieved image results for a given short query,
has attracted much research attention.

Previous works on keyword-based diverse image retrieval
can be roughly divided into two branches: multi-stage
ranking based approaches and multi-semantic representa-
tion based approaches. Multi-stage ranking based methods
follow ”first filter then rank”, where manual strategies are
designed in the ranking stage to adjust the order of retrieved
images (Seddati et al. 2017; Peng et al. 2017). As shown in
Fig. 1(a), such methods rely heavily on human experience
and are prone to cascading errors. On the other hand,
multi-semantic representation based methods directly learn
diverse semantics via multiple instance learning (Song and
Soleymani 2019; Zeng et al. 2022b), i.e. enrich a query with
multiple sub-semantics (or called instances). However, as
shown in Fig. 1(b), these type of approaches are mostly
implicit, which cannot explain what an instance means
(explainability), and how many instances are sufficient
to cover a keyword-based query with broad semantics
(quality). Along the multiple instance learning direction, in
this work, we aim to learn more diverse and better semantic
representations to improve both quality and explainability.
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Figure 2: Strategies of explicitly modeling sub-semantics.

Intuitively, there are several ways to explicitly extend
diverse sub-semantics end-to-end, e.g. adopting semantic
similarity or external knowledge. The strategy of adopting
semantic similarity, such as retrieval in Fig. 2(a), can
capture similar semantic patterns, but it is difficult to cover
long-tailed sub-semantics. Adopting external knowledge,
especially knowledge graph (KG), can naturally expand
sub-semantics via multi-hop graph propagation, as shown
in Fig. 2(b). We argue that multi-modal knowledge graph
(MMKG), which consists of rich multi-modal entities and
relations, and is capable of connecting visual and textual
(Zhu et al. 2022), is a better knowledge source for the diverse
image retrieval task. Therefore, as illustrated in Fig. 1(c), our
motivation stems from replacing sub-semantics in multiple
instance bags with knowledge-aware multi-modal instances,
which enables more diverse representations. However, it
is not trivial to replace due to the heterogeneous aligning
and linking of multi-modal knowledge. In fact, there is
a huge domain gap between the off-the-shelf multi-modal
knowledge graph and retrieval datasets, coupled with the
semantic gap between images and texts. Therefore, how
to link and align heterogeneous sources and heterogeneous
modalities becomes a bottleneck.

To get around the quagmire of heterogeneous linking and
aligning for our task, we propose a novel hyperlink-based
solution to conveniently bridge heterogeneous sources and
modalities, namely, Multi-Modal Knowledge HyperGraph
(MKHG). In fact, the degree-free hypergraph has the ability
to encode more complex many-to-many relations, which
is well suited for broad short queries and multi-semantic
images in diverse retrieval scenarios. In this way, a query
no longer needs to be aligned with an entity in the off-
the-shelf MMKG as in Fig. 2(b), or construct a new local
sub-graph according to relations in the MMKG. Instead, as
shown in Fig. 2(c), a query is only integrated into the graph
via hyperlinks of similar semantic patterns, and then diverse
semantics are found with the help of high-order connectivity.
This simple but effective approach is highly scalable, even
capable of handling out-of-domain queries.

Specifically, our proposed MKHG consists of four key
components as depicted in Fig. 3: knowledge hypergraph
construction, multi-modal instance bagging, diverse concept
aggregator, and semantic space optimizer. Among them, the
hypergraph construction module aims to link the off-the-
shelf MMKG and retrieval database via various types of
hyperedges. Afterwards, the multi-modal instance bagging
module explicitly selects multiple instances to diversify the
semantics. Meanwhile, to guarantee the reliability of the
instances, the diverse concept aggregator flexibly adapts key
sub-semantics. Finally, we design several losses to help the
semantic space optimization, namely graph matching loss,
instance-level loss and knowledge-level loss. Experiments
on two real-world benchmark datasets demonstrate that our
proposed MKHG not only achieves better diverse image
retrieval results, but also has better explainability.

The main contributions are summarized as follows:

• To the best of our knowledge, this is the first work that
introduces a multi-modal knowledge graph to explicitly
solve the task of diverse image retrieval.

• We propose a simple but effective solution to fuse the
off-the-shelf knowledge graph and retrieval database via
hyperlinks. Meanwhile, it has the ability to handle out-of-
domain queries, which sheds some light on the represen-
tation learning for knowledge-enhanced applications.

• Extensive experiments conducted on two real-world
datasets demonstrate the effectiveness and explainability
of our solution.

Related Work
Diverse Image Retrieval
Existing works can be mainly divided into multi-stage
ranking and multi-semantic representation methods. Most
multi-stage models employ a filtering stage and a ranking
stage. The filtering stage applies attribute information to
obtain candidate images, and the ranking stage designs
several strategies to diverse the image order. Seddati et al.
(2017) provide a three-stage scheme in which irrelevant
images are filtered firstly, then DBSCAN is leveraged to
increase diversity in the second stage, and finally re-ranking
is performed. However, such multi-stage methods are com-
plex in design and rely more on human experience. Multi-
semantic representation methods learn multiple features for
short keywords, i.e. one-to-many sub-semantics (Zhao et al.
2017; Song and Soleymani 2019; Zeng et al. 2022a). The
VMIG approach introduces a variational multiple instance
graph, which packs multiple features in one instance bag to
represent sub-semantics (Zeng et al. 2022b). Wu and Ngo
(2020) design an inactive words loss to expand the semantic
concepts, and Su et al. (2021) provide a dynamic intent
graph to balance content and intent.

Multi-Modal Knowledge Graph
Multi-modal knowledge graph (MMKG) is an extension
of plain text knowledge graph, which connects texts and
images to build a more general knowledge system (Zhu
et al. 2022; Zeng et al. 2021). Enriching entities and
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Figure 3: The overall architecture of MKHG for keyword-based diverse image retrieval. The input is a keyword-based query
and images in a dataset, and the matching score is considered as the ranking score during the testing phase.

concepts in the knowledge graph can help solve the long tail
problem, and multi-modal information is adopted for visual
complementation and textual disambiguation. Furthermore,
it can even provide commonsense knowledge to perform
multi-modal reasoning, which has been successful in tasks
such as VQA. Sun et al. (2020) apply the multi-modal
knowledge graph in recommendation system to address cold
start and data sparsity issues. Xu et al. (2021) construct an
e-commerce multi-modal knowledge graph, which has been
launched online in the Taobao app to serve customers. Zhao
et al. (2021) introduce a multi-modal knowledge graph with
external knowledge collected from the web for entity-aware
image captioning task.

Proposed Method
Fig. 3 illustrates the overall framework of our method,
which consists of four key components: 1) knowledge
hypergraph construction; 2) multi-modal instance bagging;
3) diverse concept aggregator; and 4) semantic space opti-
mizer. The hypergraph construction aims to link an off-the-
shelf MMKG and diverse retrieval databases. Among them,
we design various types of hyperedges to cover relevant
sub-semantics comprehensively. The multi-modal instance
bagging module then performs instance selection via higher-
order relations of hyperedges to represent a keyword-
based query. Notably, a mixed instance bag containing both
images and texts makes the multi-semantic representation
more diverse. Furthermore, the concept aggregator balances
noises among the sub-semantics in instance bags. Finally,
we further design multiple losses to constrain the semantic
space optimization.

Knowledge Hypergraph Construction
The motivation of this work stems from modeling sub-
semantics in an explicit manner with the help of MMKG,
which enables more diverse representations. However, when

a heterogeneous entity (e.g. a retrieval query) wants to
extend sub-semantics from an off-the-shelf MMKG, the
strategies of alignment and linking are necessary but labor-
intensive. Furthermore, the semantic relations among visual
and textual entities are often in the form of many-to-many,
which is difficult to be statically captured by the one-to-one
connected graph. Naturally, each entity should be connected
to entities of various semantics and various modalities, and
each other entity should also be associated with multiple
entities. Therefore, these facts inspire us to explore the
hypergraph structure. Unlike simple graphs where all edges
must be of degree two, the hypergraph can utilize their
degree-free hyperedges to encode higher-order semantics.
In this subsection, a multi-modal knowledge hypergraph is
constructed to unleash the power of MMKG.

Hypergraph Construction Firstly, we select the off-the-
shelf MMKG ImageGraph (Wang, Qi, and Zheng 2020) as
a base graph, which contains 15K entities with 55.8 images
per entity. Formally, we define it as G = (X ,R, E), where
X ,R, E refer to the set of mutli-modal entities, relations
(including attributes), and edges respectively. The edges
between entities are one-to-one, connecting a pair of entities
by certain relation, Ei = (Xi1 ,Rk,Xi2).

To bridge the heterogeneous gap between the MMKG
and retrieval datasets, a multi-modal knowledge hypergraph
is constructed via several hyperlinks, i.e. semantic groups,
to capture many-to-many relations. Formally, a hyperedge,
Eh
i = (Xi1 , ...,Xij ) indicates a semantically similar group

among multiple entities. In this work, the off-the-shelf
MMKG will not be modified, and three types of hyperedges
are added to easily and quickly obtain the groups of the same
semantic pattern, i.e. visual hyperedges, textual hyperedges,
and attribute hyperedges. Specifically, we flatten all images
and texts in the knowledge graph G and the diverse retrieval
dataset as visual pool and text pool. Then, the visual pool
and the text pool are clustered separately to capture the same
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semantic patterns, that is, the samples in the same cluster
will share a hyperedge. Meanwhile, samples with the same
attributes should also share an attribute hyperedge (e.g. city),
which can further enrich relations among entities. Finally,
an extended knowledge hypergraph Gh = (X ,R, Eh) is
produced under this simple but efficient manner. In this way,
an out-of-domain query can also be linked into a off-the-
shelf graph easily, and then obtain multiple sub-semantics
via higher-order propagation.

Hypergraph Representation Since higher-order corre-
lations in the hypergraph Gh are complex to learn with
ordinary graph structure methods, we employ a hypergraph
convolutional layer to encode entities (Bai, Zhang, and Torr
2021). Specifically, the hyperedges will be concatenated to
generate a hypergraph adjacency matrix H, which is fed into
a graph convolutional network for encoding along with the
entity features X = {x1,x2 ...,xn},

X(l+1) = σ(D−1/2HOB−1HTD−1/2X(l)P), (1)

where O,D,B,P are the hyperedge weight matrix, vertex
degree matrix, edge degree matrix and the weight matrix
between the (l) layer and (l+1) layer, respectively. Notably,
to narrow the cross-modal semantic gap, we adopt a multi-
modal extractor (Radford et al. 2021) to obtain n features
including visual xv and textual entities xt.

Multi-modal Instance Bagging
As the core of multi-semantic representation, explicitly
selecting diverse instances to represent sub-semantics is
critical for diverse retrieval. In fact, there are many higher-
order relations in the multi-modal hypergraph that capture
comprehensive sub-semantics. To simplify the process of
constructing a multi-modal multi-instance bag, we directly
treat nodes with nearest m higher-order connections as sub-
semantics. As shown in Fig. 3, the input sample is repre-
sented as a mixed instance bag consisting of itself and other
higher-order related entities. Notably, since keyword-based
queries are short, applying a multi-semantic representation
on textual modality is necessary, but optional on images.
Howerver, we consider that when both texts and images
are modeled as multi-semantic representations, the many-to-
many relations will be understood more thoroughly, which
is verified in experiments. A bag of instances is denoted as
Bi = {x1,x2, ...,xm}, where m is the number of instances.

Diverse Concept Aggregator
The concept aggregator is designed to make instances more
reasonable, i.e. diverse concepts are less redundant and
evenly distributed. Since we roughly treat nearest m higher-
order nodes as sub-semantics in an instance bag, it needs to
be further refined. In particular, a small number of instances
may result in insufficient diversity, while an excessive
number may introduce redundancy and noise. Therefore,
following (Zeng et al. 2022b), we employ a multi-instance
graph to learn the relations and remove redundant instances
among concepts. Formally, the local multi-instance graph
is defined as Gx = (X , Ex), where instances are treated
as nodes, and edges are determined by the affinity score

d(a, b) = a·b
||a||||b|| of the two instances. To alleviate the

influence of noisy instances, two nodes are linked only if
the affinity score exceeds the threshold τ . Furthermore, the
message propagation (Hamilton, Ying, and Leskovec 2017)
is executed to aggregate neighbors,

xN (xi) = AGGREGATE(xj , ∀j ∈ N (xi)))), (2)

x̃i = σ(Wx · CONCAT(xi,xN (xi))), (3)

where Wx is a weight matrix, and the “AGGREGATE”
operator is implemented through a max pooling to reduce
redundancy and refine features.

Semantic Space Optimizer
To make the diverse multi-semantic features learn smoothly,
we design several losses, namely graph matching loss Lmat,
instance-level loss Lins and knowledge-level loss Lkno.

Graph Matching Loss The graph matching measures the
semantic scores of textual instance bags Bt

i and visual
instance bags Bv

j . Concretely, the discrepancy between each
instance in the bags is measured by,

S(Bt
i ,Bv

j ) = min
i

m∑
j

aij(x̃
t
i−x̃v

j ) = min
i

(x̃t
i−

m∑
j

aij x̃
v
j ),

(4)

aij =
exp((x̃t

i)
T x̃v

j ))∑
j exp((x̃

t
i)

T x̃v
j ))

. (5)

where S(Bt
i ,Bv

j ) is the matching score, m is the number
of instances. For a textual bag of a query Bt

i , we calculate
the attention score aij of each instance relative to the visual
instance bag. Then graph matching loss Lmat is defined as
the triplet form,

Lmat =
∑
C

|∆+ S(Bt
i ,Bv−

j )− S(Bt
i ,Bv+

j |+, (6)

where ∆ is the margin. The positive pair (Bt
i ,B

v+
j ) is

semantically related, while the unmatched (Bt
i ,B

v−
j ) is a

negative pair in training batches. This loss encourages the
positive pair to have a higher score than negative pairs.

Instance-level Loss The instance-level loss Lins is
adopted to constrain multiple instance learning, which
makes instance bags more distinguishable. Furthermore,
inspired by contrastive self-supervised learning (Gutmann
and Hyvärinen 2010; Chen et al. 2020), a contrastive loss
has the ability to further improve feature representation.
Specifically, the loss is formulated as,

Lins = −log(
ex̃

t
ix̃

v
j

ex̃
t
ix̃

v
j +

∑
(t,v)∈Nins

ex̃
t
ix̃

v
j

), (7)

where Nins is the set of negative pairs randomly sampled
from the training batches. This instance-level loss constrains
the semantic space so that the semantically related entities
are pulled closer and otherwise pushed farther apart.
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Div150Adhoc
Type Method accuracy diversity speed

P@10 P@20 D@10 D@20 A@10 A@20 C@10 C@20 S-qt

multi-stage
DTF 79.54% 77.05% 54.63% 52.79% 28.55% 24.41% 37.57% 51.58% 2.8 s

DESA 76.25% 74.52% 52.24% 51.32% 31.41% 26.52% 35.50% 48.60% 1.0 s
GRAPH4DIV 78.11% 74.82% 54.23% 52.31% 32.22% 27.22% 32.67% 46.56% 1.1 s

multi-semantic

DMIH 76.37% 73.31% 52.89% 50.24% 33.78% 28.49% 30.74% 42.46% 0.4 s
PVSE 77.83% 74.44% 54.02% 52.13% 32.04% 27.30% 31.11% 44.32% 0.4 s

FCA-Net 81.85% 79.57% 55.60% 54.80% 43.79% 37.82% 26.02% 31.55% 0.5 s
VMIG 84.84% 82.12% 60.36% 58.03% 24.35% 20.42% 43.88% 57.64% 0.5 s
Ours 85.55% 84.06% 61.76% 59.71% 23.88% 19.91% 44.46% 58.42% 0.3 s

Table 1: Performance comparison of various state-of-the-art baselines on Div150Adhoc dataset.

Div400
Type Method accuracy diversity speed

P@10 P@20 D@10 D@20 A@10 A@20 C@10 C@20 S-qt

multi-stage
DTF 78.14% 76.20% 53.83% 51.92% 28.55% 24.12% 41.51% 55.27% 2.8 s

DESA 76.50% 73.82% 51.65% 50.52% 30.91% 25.25% 39.47% 52.82% 1.0 s
GRAPH4DIV 77.55% 74.50% 54.33% 52.70% 30.24% 25.91% 35.66% 45.77% 1.1 s

multi-semantic

DMIH 76.55% 73.66% 52.70% 50.31% 31.44% 26.39% 34.66% 44.50% 0.4 s
PVSE 77.29% 74.45% 54.28% 52.56% 32.07% 26.05% 35.10% 45.09% 0.4 s

FCA-Net 79.98% 78.42% 54.88% 53.38% 41.33% 34.61% 29.91% 34.90% 0.5 s
VMIG 81.51% 78.27% 56.75% 55.27% 24.68% 21.34% 46.59% 59.01% 0.5 s
Ours 82.68% 80.66% 57.50% 56.81% 23.63% 20.60% 47.47% 59.89% 0.3 s

Table 2: Performance comparison of various state-of-the-art baselines on Div400 dataset

Knowledge-level Loss Similar to instance-level loss, the
knowledge-level loss Lkno constrains the learning of the
hypergraph, which is formulated as,

Lkno = −log(
ex̃

t
ix̃

v
j

ex̃
t
ix̃

v
j +

∑
(t,v)∈Nkno

ex̃
t
ix̃

v
j

). (8)

We pay more attention to which entities have links, thereby
the negative set Nkno is defined as no link or hyperlink
between the two entities. Finally, the overall loss is defined
as follows,

L = Lmat + λ1Lins + λ2Lkno, (9)

where λ1 and λ2 are balance factors. Notably, to maintain
the stability of training, we perform the knowledge-level loss
Lkno first as a warm-up.

Experiments
Experimental Settings
Datasets Two public datasets, one on daily life and one on
tourist locations, are adopted for evaluation.

Div150AdHoc1 is a dataset for the competition of diverse
social image retrieval (Ionescu et al. 2016), which contains a
variety of keyword-based queries with an average length of
only 2.7 words. In total, there are 134 daily life queries with
39, 474 images. Some extra meta information, such as photo
title, tags, date etc, are also available.

Div4002 is constructed by MediaEval Workshop (Ionescu
et al. 2014), whose queries about tourist locations have
an average length of 3.7 words. This dataset contains

1http://campus.pub.ro/lab7/bionescu/Div150Adhoc.html
2http://multimediaeval.org/mediaeval2014/diverseimages2014

396 queries with 43, 418 images, and also includes meta
information such as GPS coordinates, Wikipedia pages and
URLs in Flickr.

Evaluation Protocol We adopt five evaluation metrics
from accuracy, diversity and speed perspectives. For accu-
racy, the precision and normalized discounted cumulative
gain (NDCG) are utilized to measure top-k ranking per-
formance. Meanwhile, the average diverse rank (ADR) and
cluster recall (CR) are used for diversity measurement, while
S-qt is the inference time per query (Bo and Gao 2019;
Renders and Csurka 2017; Peng et al. 2017). In the rest
of this paper, we denote Precision, NDCG, ADR and CR
as P@k,D@k,A@k,C@k, with top-k results of 10, 20,
respectively. Notably, the higher P@K, D@K and C@K
indicate better accuracy, while the lower value of A@K and
S-qt represents richer image diversity and faster speed.

Implementation Details We implement our solution
based on the Tensorflow framework3. In the feature
representation, textual feature xt and visual feature xv

are both 1, 024-dimensional vectors. For specific hyper-
parameters in our method, the instance numbers m, the
margin ∆, the threshold τ and the balance factors λ1, λ2

are set as (8, 0.4, 0.4, 0.4, 0.3) and (8, 0.4, 0.3, 0.3, 0.3) on
Div150AdHoc and Div400 datasets, respectively.

Overall Performance Comparison
To verify the effectiveness of our proposed MKHG, we
compare it with the following methods: 1) multi-stage
retrieval algorithms: DTF (Bo and Gao 2019), DESA (Qin,
Dou, and Wen 2020) and GRAPH4DIV (Su et al. 2021); 2)

3https://www.tensorflow.org/
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Div150Adhoc
Type Method accuracy diversity

P@10 P@20 D@10 D@20 A@10 A@20 C@10 C@20
Retrieval CLIP 83.46% 81.45% 57.74% 56.25% 39.64% 33.76% 26.35% 31.97%

Knowledge
retrieval-based 75.34% 72.85% 51.45% 50.24% 36.41% 31.50% 28.04% 37.93%

KG-based 79.36% 76.07% 55.42% 53.25% 31.28% 27.40% 36.45% 49.47%
MMKG-based 83.24% 81.63% 58.27% 57.29% 25.75% 23.14% 41.21% 54.24%

Hyperedge
v-hyperedge 84.04% 82.22% 59.54% 58.06% 25.07% 22.03% 42.33% 55.40%
t-hyperedge 84.22% 82.34% 59.64% 58.21% 24.76% 21.41% 42.63% 55.77%
a-hyperedge 84.10% 82.24% 59.48% 58.11% 24.89% 21.75% 42.37% 55.55%

Channel Ours w/o image-diverse 76.67% 74.34% 52.67% 51.33% 34.94% 29.38% 28.65% 39.12%

Optimization
Ours w/o aggregator 79.11% 75.89% 55.21% 53.14% 31.03% 27.29% 33.11% 45.30%

Ours w/o Lins 81.88% 79.21% 56.99% 55.81% 28.58% 26.25% 36.61% 49.48%
Ours w/o Lkno 81.77% 79.32% 57.35% 55.85% 28.61% 26.09% 36.54% 49.32%

ALL Ours 85.55% 84.06% 61.76% 59.71% 23.88% 19.91% 44.46% 58.42%

Table 3: Performance comparison of various component combinations on Div150Adhoc dataset.
Div400

Type Method accuracy diversity
P@10 P@20 D@10 D@20 A@10 A@20 C@10 C@20

Retrieval CLIP 79.76% 79.01% 56.11% 54.97% 39.79% 33.90% 26.05% 31.63%

Knowledge
retrieval-based 75.14% 72.52% 51.16% 49.79% 36.10% 31.33% 27.74% 37.36%

KG-based 78.83% 76.97% 55.14% 53.01% 29.95% 26.20% 42.19% 52.29%
MMKG-based 81.46% 78.86% 56.32% 55.91% 25.45% 23.22% 43.34% 57.35%

Hyperedge
v-hyperedge 81.95% 78.93% 57.01% 56.02% 24.98% 22.76% 44.71% 58.15%
t-hyperedge 81.72% 78.99% 56.81% 56.09% 25.20% 22.96% 44.20% 58.00%
a-hyperedge 82.06% 79.25% 57.03% 56.13% 24.34% 22.60% 44.88% 58.43%

Channel Ours w/o image-diverse 75.40% 73.75% 51.59% 51.17% 36.61% 31.04% 28.63% 38.38%

Optimization
Ours w/o aggregator 78.78% 75.59% 55.01% 52.84% 31.25% 27.54% 32.51% 55.46%

Ours w/o Lins 79.46% 77.11% 55.57% 54.39% 28.18% 25.81% 39.29% 51.13%
Ours w/o Lkno 79.07% 77.72% 55.59% 54.61% 28.21% 25.76% 39.11% 51.80%

ALL Ours 82.68% 80.66% 57.50% 56.81% 23.63% 20.60% 47.47% 59.89%

Table 4: Performance comparison of various component combinations on Div400 dataset.

multi-semantic approaches: DMIH (Zhao et al. 2017), PVSE
(Song and Soleymani 2019), FCA-Net (Han et al. 2021)
and VMIG (Zeng et al. 2022b). Among them, the DTF,
DESA and GRAPH4DIV combine auxiliary information
(e.g. title or subtopic) to perform filtering and ranking.
DMIH and PVSE are the multiple instance learning methods
that capture multi-semantics, while FCA-Net and VMIG are
graph-based retrieval networks to match sub-semantics.

Experimental results are reported in Table 1 and Table
2. 1) The multi-stage diverse retrieval methods DTF, DESA
and GRAPH4DIV rely on auxiliary information to perform
well in accuracy and diversity, but they are slow. Com-
pared with DESA that uses a self-attention mechanism to
capture implicit sub-semantics, both DTF with extending
title and GRAPH4DIV for modeling intent achieve better
performance. This proves that the introduction of external
knowledge is a complement to keyword-based short queries.
2) The multi-semantic approaches take advantage of their
diversity modeling and improve the metrics. Among them,
graph matching-based methods FCN-Net and VMIG out-
perform general multiple instance learning solutions. These
results show that the graph learning among sub-semantics
removes redundant concepts, and makes diverse representa-
tions more reasonable. 3) Our approach achieves the best
performance on both Div150AdHoc and Div400 datasets,
which relates to our explicit multi-semantic modeling by
introducing multi-modal knowledge hypergraph.

Ablation Study
To thoroughly investigate all components of our model, we
carry out ablation studies from the following perspectives: 1)
Advanced retrieval model. The CLIP (Radford et al. 2021),
one of the popular frameworks in cross-modal retrieval,
is directly applied for this diverse task. 2) Knowledge
strategy. To explore how to expand the sub-semantics of
queries, we design variants as in Fig. 2, namely, ‘retrieval-
based’, ‘KG-based’, and ‘MMKG-based’. The ‘retrieval-
based’ variant retrieves items directly from a knowledge
pool as instances, ‘KG-based’ variant introduces plain-
text wikipedia, and ‘MMKG-based’ variant implements
another public multi-modal knowledge graph: richpedia.
3) Hypergraph design. We separately implement visual
hyperedge, text hyperedge and attribute hyperedge based
on the ‘MMKG-based’ variant. 4) Multi-semantic channel.
This variant ‘Ours w/o image-diverse’ only performs textual
multi-semantic representations without diversifying images.
5) Optimization module. The three variants ‘w/o aggrega-
tor’, ‘w/o Lins’, and ‘w/o Lkno’, ablate the instance graph
and two contrastive losses, respectively.

The ablation results are shown in Table 3 and Table 4,
and we have the following observations: 1) CLIP has high
accuracy but low diversity, indicating the single semantic
is insufficient in diverse scenarios. 2) After applying re-
trieval strategy or general knowledge graph for semantic
expansion, the diversity of ‘retrieval-based’ and ‘KG-based’
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Figure 4: The visualization under the query “The Golden Rider” in Div400 and “swan couple” in Div150AdHoc.

is improved, which proves that explicit representation is
effective. Furthermore, the performance of ‘MMKG-based’
is further enhanced, and other off-the-shelf MMKG can
also be borrowed. This shows that graphs with richer
information and more diverse relationships are capable of
capturing more complex relations. 3) The score of three
hyperedges increases, which proves that capturing the same
semantic patterns is simple but effective. 4) The perfor-
mance drops after ablating multi-semantic representations
for images, which means that modeling both text and image
can thoroughly understand many-to-many relations. 5) The
ablation of the instance graph and the two loss functions
degrades scores, which demonstrates that every module in
our model is necessary. Among them, the instance graph
reduces redundant sub-semantics, while the loss functions
help multiple instance learning and hypergraph learning.

Retrieval Visualization
We visualize the details of instance bags and retrieval
results for several methods on two datasets, i.e. the im-
plicit modeled VMIG and the explicit extended retrieval-
based, KG-based and ours. As shown in Fig. 4, the green
boxes represent the correct results, and the red boxes are
the mismatched images. Among them, VMIG has good
performance on diversity, but its captured sub-semantics
are not explainable. Furthermore, the retrieval-based method
can only obtain semantically similar words (e.g. “rider”,
“animal”), while the KG-based method is prone to introduce
noise (e.g. “musical”), resulting in errors. Our method has a
better balance between accuracy and diversity, making full
use of the rich information of the off-the-shelf MMKG and
reasonably controlling the noise.

Robustness Discussion
To explore the robustness and scalability of our method, we
conduct an experiment on out-of-domain queries. Specifi-
cally, the larger MSCOCO dataset4 is adopted for diverse
retrieval, with no training or tuning at all. Although the
MSCOCO is not applied for this task, its supercategory

4https://cocodataset.org/

Method P@10 P@20 C@10 C@20
retireval-based 66.30% 65.99% 19.08% 27.55%

KG-based 65.65% 64.11% 22.07% 29.19%
MMKG-based 66.03% 65.43% 22.54% 29.45%

Ours 75.34% 72.65% 27.03% 33.83%

Table 5: Robustness Discussion on MSCOCO dataset.

labels are in the form of keywords (e.g.“animal”), which are
suitable for diverse retrieval scenarios. Therefore, we treat
the supercategory label as the keyword-based query, and the
subcategory coverage of the result images as the diverse
score C@k for robustness discussion.

As shown in Table 5, the retrieval-based strategies assign
instances to out-of-domain queries via similarity measure, it
has robust accuracy but poor diversity. KG- and MMKG-
based strategies perform simple entity linking via cosine
function and improve the scores. Moreover, our hypergraph-
based method significantly outperforms other strategies on
MSCOCO, which proves that the designed hyperedges are
capable of generalizing to out-of-domain queries.

Conclusions
In this work, we contribute a novel multi-modal knowledge
hypergraph for keyword-based diverse image retrieval to
explicitly extend sub-semantics end-to-end. Specifically, a
hypergraph construction module customizes various hy-
peredges to link the heterogeneous MMKG and retrieval
databases. Then a multi-modal instance bagging and a
diverse concept aggregator is designed to explicitly select
reasonable instances. Finally, several losses optimize the
semantic space. In this way, off-the-shelf MMKGs can be
linked quickly and easily. Experimental results show that our
method achieves superior diversity and explainability.
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