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Abstract

In this work, we propose a semantic flow-guided two-stage
framework for shape-aware face swapping, namely Flow-
Face. Unlike most previous methods that focus on transfer-
ring the source inner facial features but neglect facial con-
tours, our FlowFace can transfer both of them to a target face,
thus leading to more realistic face swapping. Concretely, our
FlowFace consists of a face reshaping network and a face
swapping network. The face reshaping network addresses the
shape outline differences between the source and target faces.
It first estimates a semantic flow (i.e., face shape differences)
between the source and the target face, and then explicitly
warps the target face shape with the estimated semantic flow.
After reshaping, the face swapping network generates inner
facial features that exhibit the identity of the source face.
We employ a pre-trained face masked autoencoder (MAE)
to extract facial features from both the source face and the
target face. In contrast to previous methods that use identity
embedding to preserve identity information, the features ex-
tracted by our encoder can better capture facial appearances
and identity information. Then, we develop a cross-attention
fusion module to adaptively fuse inner facial features from
the source face with the target facial attributes, thus leading to
better identity preservation. Extensive quantitative and qual-
itative experiments on in-the-wild faces demonstrate that our
FlowFace outperforms the state-of-the-art significantly.

Introduction
Face swapping refers to transferring the identity informa-
tion of a source face to a target face while maintaining the
attributes (e.g., expression, pose, hair, lighting, and back-
ground) of the target. It has attracted many interests due to
its wide applications, such as portrait reenactment, film pro-
duction, and virtual reality.

Recent works (Li et al. 2019; Chen et al. 2020; Xu et al.
2021; Li et al. 2021) have made great efforts to achieve
promising face swapping results. However, these methods
often focus on inner facial feature transferring but neglect
facial contour reshaping. We observe that facial contours
also carry the identity information of a person, but few ef-
forts (Wang et al. 2021) have been made on facial contours
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transferring. Facial shape transferring is still a challenge for
authentic face swapping.

To solve the shape transferring problem, we propose a
semantic flow-guided two-stage framework, dubbed Flow-
Face. Unlike existing methods, FlowFace is a shape-aware
face swapping network. In a nutshell, we first present a face
reshaping network to warp the target face referring to the
source face shape at the first stage. Then, we employ a face
swapping network to transfer the inner facial features to the
reshaped target face.

Our face reshaping network addresses the shape outline
discrepancy between the source face and the target face.
Specifically, we use a 3D face reconstruction model (i.e.,
3DMM (Blanz and Vetter 1999)) to obtain shape coefficients
of the source and target faces and then project the obtained
3D shapes to 2D facial landmarks. To accurately warp the
target face, we need to obtain dense motion between the
source and the target faces. Subsequently, we design a se-
mantic guided generator to transform the sparse 2D facial
landmarks into the dense flow. The estimated flow, called se-
mantic flow, will be exploited to warp the target face shape
explicitly in a pixel-wise manner. In addition, we propose a
semantic-guided discriminator to enforce our face reshaping
network to produce accurate semantic flow.

After reshaping the target face, we introduce a face swap-
ping network for transferring the inner facial features of the
source face to the target ones. Prior works usually use a face
recognition model to extract the identity embedding of the
source face and then transfer it to the target face. We argue
this would lose some personalized appearances during trans-
ferring because the identity embedding is often trained under
discriminative tasks and thus may ignore intra-class varia-
tions (Kim, Lee, and Zhang 2022). Thus, we opt to employ
a pre-trained masked autoencoder (MAE) (He et al. 2022)
to extract facial features that better capture facial appear-
ances and identity information. Moreover, unlike prior arts
that widely employ AdaIN (Liu et al. 2017b) to infuse the
source identity embedding to the target face, we develop a
cross-attention fusion module to adaptively fuse the source
and target features. In doing so, we achieve better face swap-
ping performance.

Extensive quantitative and qualitative experiments vali-
date the effectiveness of our FlowFace on in-the-wild faces
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and our FlowFace outperforms the state-of-the-art. Overall,
our contributions are summerized as follows:
• We propose a two-stage framework for shape-aware face

swapping, namely FlowFace. It can effectively transfer
both the inner facial features and the facial outline to a
target face, thus achieving authentic face swapping re-
sults.

• We design a semantic flow-guided face reshaping net-
work and validate its effectiveness in transferring the
source face shapes to the target ones. The reshaped target
faces are more similar to the source faces in terms of face
contours.

• We design a pre-trained face masked autoencoder based
face swapping network. The encoder captures not only
identity information but also facial appearance, thus al-
lowing us to transfer richer information from the source
face to the target and achieve identity similarity.

• We design a cross-attention fusion module to adaptively
fuse the source and target features. To the best of our
knowledge, we are the first to perform face swapping in
the latent space of the pre-trained masked autoencoder.

Related Work
The previous face swapping methods can be classified as the
target attribute-guided and source identity-guided methods.

Target attribute-guided methods edit the source face
first and then blend it to the target background. Early meth-
ods (Bitouk et al. 2008; Chen et al. 2019; Lin et al. 2012)
directly warp the source face according to the target facial
landmarks, thus failing to address large posture differences
and expression differences. 3DMM-based methods (Blanz
et al. 2004; Thies et al. 2016; MarekKowalski 2021; Nirkin
et al. 2018) swap faces by 3D-fitting and re-rendering. How-
ever, these methods often cannot handle skin color or light-
ing differences and suffer from poor fidelity. Later, GAN-
based methods improve the fidelity of the generated faces.
Deepfakes (DeepFakes 2019) transfers the target attributes
to the source face by an encoder-decoder structure while be-
ing constrained by two specific identities. FSGAN(Nirkin,
Keller, and Hassner 2019) employs the target facial land-
marks to animate the source face and proposes a blending
network to fuse the generated source face to the target back-
ground. However, it fails to tackle drastic skin color dif-
ferences. Later, AOT (Zhu et al. 2020) focuses on swap-
ping faces with large differences in skin color and lighting
by formulating appearance mapping as an optimal transport
problem. These methods always need a facial mask to blend
the generated face with the target background. However, the
mask-guided blending restricts the face shape change.

Source identity-guided methods usually adopt the iden-
tity embedding or the latent representation of Style-
GAN2 (Karras et al. 2020) to represent the source iden-
tity and inject in into the target face. FaceShifter (Li et al.
2019) designs an adaptive attentional denormalization gen-
erator to integrate the source identity embedding and the tar-
get features. SimSwap (Chen et al. 2020) introduces a weak
feature matching loss to help preserve the target attributes.
MegaFS (Zhu et al. 2021), RAFSwap (Xu et al. 2022a) and

HighRes (Xu et al. 2022b) utilize the pre-trained StyleGAN2
to swap faces and can achieve high-resolution face swap-
ping. FaceController (Xu et al. 2021) exploits the identity
embedding with 3D priors to represent the source identity
and design a unified framework for identity swapping and
attribute editing. InfoSwap (Gao et al. 2021) leverages the
information bottleneck principle to disentangle the identity
and identity-irrelevant information. FaceInpainter (Li et al.
2021) also utilizes the identity embedding with 3D priors
to implement controllable face in-painting under heteroge-
neous domains. Smooth-Swap (Kim, Lee, and Zhang 2022)
builds smooth identity embedding that makes the training of
face swapping fast and stable.

However, most of these methods neglect the facial out-
lines during face swapping. Recently, HifiFace (Wang et al.
2021) can control the face shape using a 3D shape-aware
identity. However, it injects the shape representation into the
latent feature space, making it hard for the model to cor-
rectly decode the face shape. Moreover, these methods al-
ways need a pre-trained face recognition model during the
inference time, which is not friendly to deployment.

Proposed Method
The face swapping task aims to generate a face with the
identity of the source face and the attributes of the target
face. This paper proposes a semantic flow-guided two-stage
framework for shape-aware face swapping, namely Flow-
Face. As shown in Figure 1, FlowFace consists of a face
reshaping network F res and a face swapping network F swa.
Let Is be the source face and It be the target face. F res first
transfers the shape of Is to the target face It. The reshaped
image is denoted as Irest . Then F swa generates the inner
face of Irest and outputs the result image Io.

Face Reshaping Network
We design the face reshaping network, F res, to address the
shape discrepancy between the source and target faces. It
warps the target face shape explicitly pixel-wise with an es-
timated semantic flow. To achieve this goal, F res requires a
face shape representation that models the shape differences
between the source and target faces. Then it estimates a se-
mantic flow according to the above shape differences. Fi-
nally, the semantic flow is used to warp the target face shape.

Face Shape Representation. Since our face reshaping
network needs to warp the face shape pixel-wisely, we
choose the explicit facial landmarks as the shape representa-
tion. We use a 3D face reconstruction model to obtain facial
landmarks. As shown in Figure 1, the 3D face reconstruction
model E3D extracts 3D coefficients of the source and target:

(β∗, θ∗, ψ∗, c∗) = E3D(I∗), (1)

where β∗, θ∗, ψ∗, c∗ are the FLAME coefficients (Li et al.
2017) representing the face shape, pose, expression, and
camera, respectively. ∗ is s or t, representing the source or
the target, respectively. With these coefficients, the target
face can be modeled as:

Mt(βt, θt, ψt) =W (TP (βt, θt, ψt),J(βt), θt,W) , (2)
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Figure 1: Overview of our two-stage FlowFace. In the first stage, the face reshaping network (F res) transfers the shape of the
source face Is to the target face It by warping It explicitly with an estimated semantic flow Vt. In the second stage, the face
swapping network (F swa) generates the inner facial details by manipulating the latent face representation es and et using our
designed cross-attention fusion module. It should be noted that c⃝ in the figure represents the concatenation operation.

where Mt represents the 3D face mesh of the target face.
W is a linear blend skinning (LBS) function that is applied
to rotate the vertices of TP around joint J . W is the blend
weights. TP denotes the template mesh T with shape, pose,
and expression offsets (Li et al. 2017).

Then, we reconstruct the source face similarly, except that
the source pose and expression coefficients are replaced with
the target ones. The obtained 3D face mesh is denoted as
Ms2t. Finally, we sample 3D facial landmarks from Mt and
Ms2t and project these 3D points to 2D facial landmarks
with the target camera parameter ct:

Pt = sΠ
(
M i

t

)
+ t,

Ps2t = sΠ
(
M i

s2t

)
+ t,

(3)

where M i
∗ is a vertex in M∗, Π is an orthographic 3D-2D

projection matrix, and s and t are parameters in ct, indicat-
ing isotropic scale and 2D translation. P∗ denotes the 2D fa-
cial landmarks. It should be noted that we only use the land-
marks at the facial contours as the shape representation since
inner facial landmarks contain identity information that may
influence the reshaping result.

Semantic Flow Estimation. The relative displacement
between Pt and Ps2t only describes sparse movement. To
accurately warp the target face, we need to obtain dense
motion between the source and the target faces. Therefore,
we propose the semantic flow, which models the semantic
correspondences between two faces, to achieve pixel-wised
movement. We design a semantic guided generator Gres to
estimate the semantic flow. Specifically, Gres requires three
inputs: Ps2t, Pt and St, where Ps2t and Pt are the 2D facial
landmarks obtained above. St is the target face segmentation
map that complements the semantic information lost in fa-
cial landmarks. The output ofGres is the estimated semantic
flow Vt, the formulation is:

Vt = Gres(Ps2t, Pt, St). (4)

Then, a warping module is introduced to generate the
warped faces using Vt. We find that an inaccurate flow is
likely to produce unnatural images, and therefore, we design

a semantic guided discriminator Dres that ensures Gres to
produce a more accurate flow. Specifically, the warping op-
eration is conducted on both It and St:

(Irest , Sres
t ) = F (Vt, It, St), (5)

where F is the warping function in the warping module.
We feed the concatenation of the warped face Irest and the
warped segmentation map Sres

t to Dres. Thus, Dres is able
to discriminate whether the input is real or fake from the se-
mantic level and the image level. It should be noted that Sres

t
and Dres are only used during training.

Training Loss. We employ three loss functions for F res:
Lres = Ladv + λrecLrec + λldmkLldmk, (6)

where λldmk and λrec are hyperparameters for each term. In
our experiments, we set λldmk=800 and λrec=10.

Adversarial Loss. To make the resultant images more re-
alistic, we adopt the hinge version adversarial loss(Lim and
Ye 2017) for training, denoted by Ladv:

Ladv = −E[Dres([Irest , Sres
t ])], (7)

where Dres is the discriminator which is trained with:
LD = E[max(0, 1−D([It, St]))]

+E[max(0, 1 +D([Irest , Sres
t ])].

(8)

Reconstruction Loss. Since there is no ground-truth for
face reshaping results, we enforce Is = It with a certain
probability when trainingGres. Then the face reshaping task
becomes a reconstruction task, and we introduce a pixel-
wise reconstruction loss:

Lrec = ∥Irest − It∥2 , (9)
where ∥∗∥2 denotes the euclidean distance.

Landmark Loss. Since there is not pixel-wised ground
truth for Irest , we exploit the 2D facial landmarks Ps2t to
constrain the shape of Irest . Specifically, we first use a pre-
trained facial landmark detector (Sun et al. 2019) to predict
the the facial landmarks of Irest , denoted as P res

t . Then the
loss is computed as:

Lldmk = ∥P res
t − Ps2t∥2 . (10)

At this point, our designed face reshaping network is able
to transfer the face shape of the source to the target face.
However, the inner facial features are still unchanged.
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Face Swapping Network
The face swapping network F swa is used to generate the
inner face of Irest (It). As shown in Figure 1, we first uti-
lize a shared face encoder Ef to map both Is and Irest into
patch embeddings es nad et. Then a cross-attention fusion
module is designed to adaptively fuse the identity informa-
tion of the source face and the attribute information of the
target. Finally, the facial decoder, fed with the manipulated
embeddings eo, outputs the final face swapping result Io.

Shared Face Encoder. Most previous face swapping
methods map the source face into an ID embedding with a
pre-trained face recognition model and extract the target face
attributes with another face encoder. However, we argue that
using two different encoders is unnecessary and even makes
deploying more complex. Moreover, the ID embedding is
trained on purely discriminative tasks and may lose some
personalized appearances during transferring.

Therefore, we employ a shared encoder to project both
the source face and the target face into a common latent rep-
resentation. The encoder is designed following MAE (He
et al. 2022) and pre-trained on a large-scale face dataset us-
ing the masked training strategy. Compared to the compact
latent code of StyleGAN2 (Karras et al. 2020) and the iden-
tity embedding, the latent space of MAE can better capture
facial appearances and identity information, because masked
training requires reconstructing masked image patches from
visible neighboring patches, thus ensuring each patch em-
bedding contains rich topology and semantic information.

Based on the pre-trained encoder Ef , we can project a
facial image I∗ into a latent representation, also known as
patch embeddings:

e∗ = Ef (I∗), (11)

where e∗ ∈ RN∗L. N and L denote the number of patches
and the dimension of each embedding, respectively.

Cross-Attention Fusion Module. The shared face en-
coder projects the source face and the target face into a
representative latent space. The subsequent operation is to
fuse the source identity information with the target attribute
in this latent space. Intuitively, identity information should
be transferred between related patches (e.g., nose to nose,
etc.). Therefore, we design a cross-attention fusion module
(CAFM) to adaptively aggregate identity information from
the source and fuse it into the target.

As shown in Figure 1, our CAFM consists of a cross-
attention block and two standard transformer blocks (Doso-
vitskiy et al. 2020). Given the source patch embeddings
es and the target patch embeddings et, we first compute
Q,K, V for each patch embedding in es and et. Then the
cross attention is computed by:

CA(Qt,Ks) = softmax

(
QtK

T
s√

dk

)
, (12)

where CA represents Cross Attention, Q∗,K∗, V∗ are pre-
dicted by attention heads, and dk is the dimension of K∗.
The cross attention describes the relation between each tar-
get patch and the source patches. Next, the source identity

information is aggregated based on the computed CA and
fused to the target values via addition:

Vfu = CA ∗Vs + Vt. (13)

Then, Vfu are normalized by a layer normalization (LN) and
processed by multi-layer perceptrons (MLP). The Cross At-
tention and MLP are along with skip connections. The fused
embeddings efu are further fed into two transformer blocks
to obtain the final output eo.

Finally, we utilize a a convolutional decoder to generate
the final swapped face image Io from eo. In contrast to the
ViT decoder in MAE, we find the convolutional decoder
achieves more realistic results.

Training Loss. We employ six loss functions to train our
face swapping network F swa:

Lswa = Ladv + λrecLrec + λidLid + λexpLexp

+λldmkLldmk + λpercLperc
, (14)

where λrec, λid, λexp, λldmk, λattr are hyperparameters
for each term. In our experiment, we set λrec=10, λid=5,
λexp=10, λldmk=5000 and λattr=2.

As in the face reshaping stage, the adversarial loss is
used to make the resultant images more realistic, and the
reconstruction loss between Io and Irest is used for self-
supervision since there is also no ground-truth for face swap-
ping results.

Identity Loss. The identity loss is used to improve the
identity similarity between Is and Io:

Lid = 1− cos(Eid(Io), Eid(Is)), (15)

where Eid denotes a face recognition model (Deng et al.
2019) and cos denotes the cosine similarity.

Posture Loss. We adopt the landmark loss to constrain
the face posture during face swapping:

Lldmk = ∥P res
t − Po∥2 , (16)

where Po represents the landmarks of Io.
Perceptual Loss. Since high-level feature maps contain

semantic information, we employ the feature maps from the
last two convolutional layers of pre-trained VGG as the fa-
cial attribute representation. The loss is formulated as:

Lperc = ∥V GG(Irest )− V GG(Io)∥2 . (17)

Expression Loss. We utilize a novel fine-grained expres-
sion loss (Zhang et al. 2021) that penalizes the L2 distance
of two expression embeddings:

Lexp = ∥Eexp(Io)− Eexp(It)∥2 . (18)

Experiments
Our method is validated through qualitative and quantita-
tive comparisons with state-of-the-art ones and a user study.
Moreover, several ablation experiments are also reported to
validate our design of FlowFace.
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Source Target Ours HifiFace SS+𝐹𝑟𝑒𝑠 SS FaceShifter FSGAN FaceSwap Deepfakes

Figure 2: Qualitative comparisons with Deepfakes, FaceSwap, FSGAN, FaceShifter, SimSwap (SS) and HifiFace on FF++. Our
FlowFace outperforms the other methods significantly, especially in preserving face shapes, identities, and expressions.

Methods ID Acc(%) ↑ Shape↓ Expr.↓ Pose.↓CF SF Avg
Deepfakes 83.55 86.60 85.08 1.78 0.54 4.05
FaceSwap 70.95 76.77 73.86 1.85 0.40 2.21
FSGAN 48.86 53.85 51.36 2.18 0.27 2.20

FaceShifter 97.38† 80.64 89.01 1.68 0.33 2.28
SS 93.63 96.22 94.43 1.74 0.26 1.40

SS+F res 94.31 96.82 95.56 1.67 0.27 2.27
HifiFace 98.48† 90.76 94.62 1.62 0.30 2.29
F swa 99.18 98.23 98.70 1.43 0.21 1.99
Ours 99.26 98.40 98.83 1.17 0.22 2.66

Table 1: Quantitative comparisons with other methods on
FF++. ”†” means the results are from their papers.

Implementation Details
Dataset. The training dataset is collected from three
commonly-used face datasets: CelebA-HQ (Karras et al.
2017), FFHQ (Karras, Laine, and Aila 2019), and VG-
GFace2 (Cao et al. 2018). Faces are aligned and cropped
to 256 × 256. Particularly, low-quality faces are removed
to ensure high-quality training. The final dataset contains
350K face images, and 10K images are randomly sam-
pled as the validation dataset. For the comparison exper-
iments, we construct the test set by sampling FaceForen-
sics++(FF++) (Rössler et al. 2019), following (Li et al.
2019). Specifically, FF++ consists of 1000 video clips, and
the test set is collected by sampling ten frames from each
clip of FF++, in a total of 10000 images.
Training. Our FlowFace is trained in a two-stage manner.
Specifically, F res is first trained for 32K steps with a batch
size of eight. As for F swa, we first pre-trained the face en-
coder following the training strategy of MAE on our face
dataset. Then we fix the encoder and train other compo-
nents of F swa for 640K steps with a batch size of eight. We
adopt Adam (Kingma and Ba 2014) optimizer with β1=0
and β2=0.99 and the learning rate is set to 0.0001. More de-
tails are in the supplementary materials and our codes will
be made publicly available upon publication of the paper.
Metrics. The quantitative evaluations are performed in
terms of four metrics: identity retrieval accuracy (ID Acc),

shape error, expression error (Expr Error), and pose error.
We follow the same test protocol in (Li et al. 2019; Wang
et al. 2021). However, since some pre-trained models used in
their testing are not available, we leverage different ones. For
ID Acc, we employ two face recognition models, including
CosFace (CF) (Wang et al. 2018) and SphereFace (SF) (Liu
et al. 2017a), to perform identity retrieval for a more com-
prehensive comparison. For expression error, we adopt a dif-
ferent expression embedding model (Vemulapalli and Agar-
wala 2019) to compute the euclidean distance of expression
embeddings between the target and swapped faces.

Comparisons with the State-of-the-art
Quantitative Comparisons. Our method is compared
with six methods including Deepfakes (DeepFakes 2019),
FaceSwap (MarekKowalski 2021), FSGAN (Nirkin, Keller,
and Hassner 2019), FaceShifter (Li et al. 2019), Sim-
Swap (Chen et al. 2020), and HifiFace (Wang et al. 2021).
For Deepfakes, FaceSwap, FaceShifter, and HifiFace, we use
their released face swapping results of the sampled 10,000
images. For FSGAN and SimSwap (SS), the face swapping
results are generated with their released codes.

Table 1 shows that our method achieves the best scores
under most evaluation metrics, including ID Acc, shape er-
ror, and Expr Error. These results validate the superiority of
our FlowFace. We obtain a slightly worse result than other
methods for the pose error, which can be attributed to our
FlowFace changing the face shape while the employed head
pose estimator is sensitive to face shapes.

Qualitative Comparisons. The qualitative comparisons
are conducted on the same FF++ test set collected in the
quantitative comparisons. As shown in Figure 2, our Flow-
Face maintains the best face shape consistency. Note that
most methods do nothing to transfer the face shape, so their
resulting face shapes are similar to the target ones.

Although HifiFace is specifically designed to change the
face shape, our method still obtains better results. As ob-
served in Figure 2, our generated face shapes are more sim-
ilar to the source ones than HifiFace. Since HifiFace in-
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Source Target OursMegaFS Source Target OursFaceInpainter Source Target OursHighRes Source Target OursSmoothSwap

Figure 3: Qualitative comparisons with more methods including MegaFS (Zhu et al. 2021), FaceInpainter (Li et al. 2021),
HighRes (Xu et al. 2022b) and SmoothSwap (Kim, Lee, and Zhang 2022). The shown images of the compared methods are
cropped from their original papers or their released results.

Source Target OursOnly 𝐹𝑠𝑤𝑎Only 𝐹𝑟𝑒𝑠

Figure 4: Qualitative ablation results of FlowFace.

Method Shape. (%)↑ ID. (%)↑ Exp. (%)↑ Realism (%)↑
SimSwap 20.67 27.78 34.44 14.67
HifiFace 35.11 34.67 30.45 41.78
Ours 44.22 37.55 35.11 43.55

Table 2: Subjective comparisons with SimSwap and Hifi-
Face on FF++.

jects the shape representation into the latent feature space,
it is harder to accurately decode the face shape from the la-
tent feature than our explicit semantic flow. Meanwhile, our
method can better preserve the fine-grained target expres-
sions (marked with red boxes in rows 1,3).

We further compare our methods with four more SOTA
face swapping methods: (Zhu et al. 2021), FaceInpainter (Li
et al. 2021), HighRes (Xu et al. 2022b) and Smooth-
Swap (Kim, Lee, and Zhang 2022). Among them, MegaFS
and HighRes are based-on the latent space of StyleGAN2.
As shown in Figure 3, our method can better transfer the
shape of the source to the target than all other methods. Al-
though SmoothSwap can change the face shape, it destroys
the target attributes (e.g., hairstyle and hair color). Besides,
our results are also more similar to the source face in terms
of inner facial features (e.g., beard), validating that our face
encoder can better capture facial appearances than the iden-
tity embedding or the latent code of StyleGAN2. Moreover,
our method also preserves the target attributes (e.g., skin
color, lighting, and expression) better than other methods.

User Study. To further validate our FlowFace, we con-
duct a subjective comparison with SimSwap and HifiFace,
two SOTA methods that release their codes or results. Fif-
teen participants are instructed to choose the best result in
terms of shape consistency, identity consistency, expression
consistency, or image realism, involving comparisons of 30

swapped faces by three methods. Table 2 shows that our
method outperforms the two baselines in terms of all four
metrics, validating the superiority of our method.

Analysis of FlowFace
Three ablation studies are conducted to validate our two-
stage FlowFace framework and several components used in
F res and F swa, respectively.

Ablation Study on FlowFace. We conduct ablation ex-
periments to validate the design of our two-stage frame-
work. Figure 4 shows the swapped images by only F res,
only F swa and the full model (FlowFace). It can be seen
that F res transforms the face shape naturally according to
the source, while F swa is good at capturing the identity of
the source inner face and other facial attributes of the tar-
get. Benefiting from the strengths of both F res and F swa,
our FlowFace is able to create results with accurate identity
and consistent facial attributes. Table 1 records the quanti-
tative results, which further illustrates the effectiveness of
our two-stage framework. The above observation validates
the effectiveness of F res and confirms that face shapes are
essential for identifying a person.

To further validate our F res, we plug it into the open-
sourced SimSwap (SS). As shown in Figure 2 and Table 1,
after reshaping by F res, the face swapping result of Sim-
Swap is more similar to the source face in terms of face con-
tours. The ID Acc. also rises from 93.63% to 94.31%. The
results demonstrate the effectiveness of our F res and also
reveal that the face shape carries the identity information,
thus improving identity similarity.

Ablation study on F res. We first conduct an ablation ex-
periment to validate our proposed semantic guided generator
Gres. Specifically, we remove the semantic input St of Gres

(Gres w/o Seg). It can be seen from Figure 5 that some in-
accurate flow occurs in the generated face, which implies
that only facial landmarks cannot guide Gres to produce ac-
curate dense flow due to the lack of semantic information.
The results also demonstrate that the semantic information
is beneficial for accurate flow estimation and validatesGres.

Then, we conduct two ablation experiments to validate
Dres: (1) removing the semantic inputs (St and Sres

t ) of
Dres (Dres w/o Seg). Compared with F res, the generated
faces suffer from unnaturalness, like the eyes are stretched,
as observed in Figure 5. It implies that structured informa-
tion in the semantic inputs can provide more fine-grained
discriminative signals, thus enforcing Gres to produce a
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Figure 5: Qualitative ablation results of each component in F res.

Source Target Add AdaIN ID Embed. ViT 𝐹𝑠𝑤𝑎

Figure 6: Qualitative ablation study of F swa.

Source Target

Result Attention

Figure 7: Visualize the cross-attention of different facial
parts. For each part in the target, our CAFM can accurately
focus on the corresponding parts in the source.

more accurate flow. (2) removing Dres (w/o Dres). As ob-
served in Figure 5, compared with F res, there are many ar-
tifacts in the generated images, and the estimated flow also
contains many noises. The above observation validates the
effectiveness of our proposed Dres.

Ablation study on F swa. Three ablation experiments are
conducted to evaluate the design of F swa:

(1) Choices on CAFM, Addition and AdaIN. To verify the
effectiveness of CAFM, we compare with two other meth-
ods: Addition that directly adds the source values to the tar-
get values; AdaIN that first averages source patch embed-
dings and then injects it into the target feature map using
AdaIN residual blocks. As shown in Figure 6 and Table 3,
Addition simply brings all information of the source face to
the target face, thus leading to severe pose and expression
mismatch. AdaIN impacts the non-face parts (e.g., hair) due
to its global modulation. In contrast, F res with CAFM ob-
tains a high ID Acc and preserves the target attribute well,
which proves that CAFM can accurately extract identity in-
formation from the source face and adaptively infuse it into

Methods ID Acc Expr PoseCosFace SphereFace Avg
Addition 99.38 99.44 99.41 0.43 4.90
AdaIN 97.31 97.15 97.23 0.33 3.27
Id Embed. 97.10 96.90 97.00 0.22 2.10
Vit 98.44 97.73 98.09 0.23 2.80
F swa 99.18 98.23 98.71 0.21 1.99

Table 3: Quantitative ablation study of F swa on FF++.

the target counterpart.
To further validate the effectiveness of our CAFM, we vi-

sualize the cross attention computed by CAFM. As shown in
Figure 7, given a specific part (marked by red boxes) of the
target face, CAFM accurately focuses on the corresponding
parts of the source face, validating our CAFM can adaptively
transfer the identity information from the source patches to
corresponding target patches.

(2) Latent Representation vs. ID Embedding (ID Embed.).
To verify the superiority of using the latent representation of
MAE, we train a new model which adopts the identity em-
bedding as the identity representation and employs AdaIN
as the injection method. As can be seen from Figure 6, ID
Embed. misses some fine-grained face appearances, such as
eyes color, beard. In contrast, F swa contains richer identity
information and achieves higher ID Acc, as shown in Tab 3.

(3) Convolutional Decoder vs. ViT Decoder (ViT). We try
two different decoders to find out the better one. As shown
in Figure 6, the results of ViT Decoder contains a lot of arti-
facts. In contrast, Convolutional Decoder achieves realistic
results with high fidelity.

Conclusion
This work proposes a semantic flow-guided two-stage
framework, FlowFace, for shape-aware face swapping. In
the first stage, the face reshaping network transfers the shape
of the source face to the target face by warping the face
pixel-wisely using semantic flow. In the second stage, we
employ a pre-trained masked autoencoder to extract facial
features that better capture facial appearances and identity
information. Then, we design a cross-attention fusion mod-
ule to better fuse the source and the target features, thus lead-
ing to better identity preservation. Extensive quantitative and
qualitative experiments are conducted on in-the-wild faces,
demonstrating that our FlowFace outperforms the state-of-
the-art significantly.

3373



Acknowledgments
This work is supported by the 2022 Hangzhou Key Science
and Technology Innovation Program (No. 2022AIZD0054),
and the Key Research and Development Program of Zhe-
jiang Province (No. 2022C01011), the ARC-Discovery
grants (DP220100800) and ARC-DECRA (DE230100477).

References
Bitouk, D.; Kumar, N.; Dhillon, S.; Belhumeur, P.; and Na-
yar, S. K. 2008. Face swapping: automatically replacing
faces in photographs. In ACM SIGGRAPH 2008 papers,
1–8.
Blanz, V.; Scherbaum, K.; Vetter, T.; and Seidel, H.-P. 2004.
Exchanging faces in images. In Computer Graphics Forum,
volume 23, 669–676. Wiley Online Library.
Blanz, V.; and Vetter, T. 1999. A morphable model for
the synthesis of 3D faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, 187–194.
Cao, Q.; Shen, L.; Xie, W.; Parkhi, O. M.; and Zisserman, A.
2018. Vggface2: A dataset for recognising faces across pose
and age. In 2018 13th international conference on automatic
face & gesture recognition (FG 2018), 67–74. IEEE.
Chen, D.; Chen, Q.; Wu, J.; Yu, X.; and Jia, T. 2019. Face
swapping: realistic image synthesis based on facial land-
marks alignment. Mathematical Problems in Engineering,
2019.
Chen, R.; Chen, X.; Ni, B.; and Ge, Y. 2020. SimSwap: An
Efficient Framework For High Fidelity Face Swapping. In
Proceedings of the 28th ACM International Conference on
Multimedia, 2003–2011.
DeepFakes. 2019. DeepFakes. https://github.com/
deepfakes/faceswap. Online; Accessed March 1, 2021.
Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 4690–4699.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Gao, G.; Huang, H.; Fu, C.; Li, Z.; and He, R. 2021. Infor-
mation bottleneck disentanglement for identity swapping. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 3404–3413.
He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; and Girshick,
R. 2022. Masked autoencoders are scalable vision learners.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16000–16009.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196.
Karras, T.; Laine, S.; and Aila, T. 2019. A style-based gen-
erator architecture for generative adversarial networks. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 4401–4410.
Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.;
and Aila, T. 2020. Analyzing and improving the image qual-
ity of stylegan. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 8110–8119.
Kim, J.; Lee, J.; and Zhang, B.-T. 2022. Smooth-Swap: A
Simple Enhancement for Face-Swapping with Smoothness.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 10779–10788.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Li, J.; Li, Z.; Cao, J.; Song, X.; and He, R. 2021. FaceIn-
painter: High Fidelity Face Adaptation to Heterogeneous
Domains. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5089–5098.
Li, L.; Bao, J.; Yang, H.; Chen, D.; and Wen, F. 2019.
Faceshifter: Towards high fidelity and occlusion aware face
swapping. arXiv preprint arXiv:1912.13457.
Li, T.; Bolkart, T.; Black, M. J.; Li, H.; and Romero, J. 2017.
Learning a model of facial shape and expression from 4D
scans. ACM Transactions on Graphics, (Proc. SIGGRAPH
Asia), 36(6): 194:1–194:17.
Lim, J. H.; and Ye, J. C. 2017. Geometric gan. arXiv preprint
arXiv:1705.02894.
Lin, Y.; Lin, Q.; Tang, F.; and Wang, S. 2012. Face replace-
ment with large-pose differences. In Proceedings of the 20th
ACM international conference on Multimedia, 1249–1250.
Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; and Song, L. 2017a.
Sphereface: Deep hypersphere embedding for face recogni-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 212–220.
Liu, X.; Vijaya Kumar, B.; You, J.; and Jia, P. 2017b. Adap-
tive deep metric learning for identity-aware facial expres-
sion recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 20–
29.
MarekKowalski, M. 2021. FaceSwap. [EB/OL]. https:
//github.com/MarekKowalski/FaceSwap Accessed March 1,
2021.
Nirkin, Y.; Keller, Y.; and Hassner, T. 2019. Fsgan: Subject
agnostic face swapping and reenactment. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 7184–7193.
Nirkin, Y.; Masi, I.; Tuan, A. T.; Hassner, T.; and Medioni,
G. 2018. On face segmentation, face swapping, and face
perception. In IEEE International Conference on Automatic
Face & Gesture Recognition, 98–105. IEEE.
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