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Abstract

In recent years, skeleton-based action recognition has
achieved remarkable performance in understanding human
motion from sequences of skeleton data, which is an impor-
tant medium for synthesizing realistic human movement in
various applications. However, existing methods assume that
each action clip is manually trimmed to contain one specific
action, which requires a significant amount of effort for an-
notation. To solve this problem, we consider a novel problem
of skeleton-based weakly-supervised temporal action local-
ization (S-WTAL), where we need to recognize and localize
human action segments in untrimmed skeleton videos given
only the video-level labels. Although this task is challeng-
ing due to the sparsity of skeleton data and the lack of con-
textual clues from interaction with other objects and the en-
vironment, we present a frame-level label refinement frame-
work based on a spatio-temporal graph convolutional network
(ST-GCN) to overcome these difficulties. We use multiple in-
stance learning (MIL) with video-level labels to generate the
frame-level predictions. Inspired by advances in handling the
noisy label problem, we introduce a label cleaning strategy
of the frame-level pseudo labels to guide the learning pro-
cess. The network parameters and the frame-level predictions
are alternately updated to obtain the final results. We exten-
sively evaluate the effectiveness of our learning approach on
skeleton-based action recognition benchmarks. The state-of-
the-art experimental results demonstrate that the proposed
method can recognize and localize action segments of the
skeleton data.

Introduction
With the rise of demand from applications such as virtual
reality and gaming, 3D skeleton motion data has become an
important medium for understanding and synthesizing real-
istic human motion. Although skeleton motion data require
dedicated apparatus for acquisition, the processed data can
be directly applied to various characters to perform human
movements. Moreover, marker-less 3D human motion cap-
ture from images is starting to make the acquisition of skele-
ton motion data easier without complex camera arrays and
studios (Hasler et al. 2009; Habermann et al. 2019, 2020).

Recently, along with the growing interest in skeleton data
itself, various action recognition (AR) methods based on

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of S-WTAL. One example of the train-
ing data is a video stream of skeleton data, consisting of sev-
eral action segments, i.e., walk and lift, and transition frames
denoted as background (BG). In the proposed S-WTAL task,
the model needs to detect each action segment at frame-level
from only the video-level labels. In other words, the frame-
level ground truth is not available.

skeleton data have also attracted considerable attention. As
these methods are more focused on the posture of humans,
skeleton-based methods have strong generalization ability
and adaptability to complicated backgrounds (Vemulapalli,
Arrate, and Chellappa 2014; Du, Wang, and Wang 2015;
Tang et al. 2018). Skeleton-based models benefit from a
number of advantages, such as strong robustness to varia-
tions in position, scale, and viewpoint, by utilizing the 3D
coordinate positions of multiple key body joints to perform
AR (Zheng et al. 2018).

Conventional skeleton-based AR methods try to classify
trimmed action clips, each containing a single action, into
activity categories. However, acquiring such trimmed action
clips requires an enormous amount of manual labor. This
may not scale efficiently with the growing set of data size,
total video length, and activity categories. The variance in
the timestamps of each action (i.e., the beginning and ending
of each action) among annotators can also affect the qual-
ity of the dataset. On the other hand, it is much simpler for
a human to offer a few labels that sum up the content of
an untrimmed sequence. These video-level labels are gener-
ally referred to as weak labels, and can be used to train AR
models that identify and localize activities in untrimmed se-
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quences.
In this paper, we propose a novel problem setting, named

skeleton-based weakly-supervised temporal action localiza-
tion (S-WTAL), which aims to detect actions in the skeleton
stream and output beginning and end timestamps of the ac-
tions, as shown in Fig. 1. To the best of our knowledge, our
study is the first to tackle the problem of S-WTAL.

Rather than extracting skeletons from videos after pro-
cessing them via image-based methods, we propose to di-
rectly operate on skeleton motion clips. This is mainly due
to the fact that in some cases, image-based videos may not
necessarily focus on the human posture during actions. For
example, in image-based AR for trimmed videos (Simonyan
and Zisserman 2014; Feichtenhofer et al. 2019), some ac-
tions may be classified by the background without directly
observing human action (He et al. 2016). Moreover, in the
methods for untrimmed image-based videos (Singh and Lee
2017; Wang et al. 2017; Huang, Wang, and Li 2021), the
untrimmed videos consist of several trimmed videos, which
cause the depicted scenes to suddenly change from one to
another, leading to disjoint fragments of human actions and
providing a hint for the classification of different actions.
Consequently, considering the subsequent applications such
as animating various characters, the proposed S-WTAL set-
ting is more suitable than image-based action localization.

However, compared with the image-based AR task, S-
WTAL is more challenging. The difficulty stems from the
fact that the model needs to learn body joint relations and
activity dynamics solely from the skeleton data, where vi-
sual information of interaction with surrounding objects is
not available. To overcome these challenges, we propose a
framework that uses multiple instance learning (MIL) with
frame-level label refinement (FLR) to learn the representa-
tions of the skeleton actions from video-level labels and re-
fine the pseudo frame-level labels during model training.

To extract the spatio-temporal representations of each
frame from the skeleton stream, we use spatio-temporal
graph convolutional network (ST-GCN) (Yan, Xiong, and
Lin 2018; Shi et al. 2019), which consists of graph convolu-
tional networks (Kipf and Welling 2017) and temporal con-
volutional networks (Soo Kim and Reiter 2017). We train the
ST-GCN with video-level labels by MIL, and then extract
frame-level predictions as the pseudo labels of the frames.
Since these frames are originally unlabeled, these pseudo la-
bels would result in incorrect label assignments. Inspired by
a solution to the noisy label problem (Tanaka et al. 2018), we
update the network parameters and the pseudo labels alter-
nately as a joint optimization to clean the noisy frame-level
label predictions. At the same time, we adopt a two-headed
network architecture with two independent classifiers to fur-
ther reduce noisy samples by multi-view learning, and im-
prove the quality of pseudo frame-level labels.

We evaluate our method on a skeleton-based AR bench-
mark, BABEL (Punnakkal et al. 2021). In many settings, our
method outperforms existing methods by a large margin. We
summarize the contributions of this paper as follows:

• We propose a novel problem setting S-WTAL, and a
training methodology for the task.

Task Input
Type

Sequence
Type

Label
Type

AR Image Trimmed Full
S-AR Skeleton Trimmed Full
TAL Image Untrimmed Full

WTAL Image Untrimmed Weak
S-WTAL Skeleton Untrimmed Weak

Table 1: Summary of action recognition tasks. Our pro-
posed method is the only method applicable to untrimmed
sequences of skeleton data with weak video-level labels.

• We propose a frame-level label refinement framework
that extracts the action representation of each frame and
refines the frame-level pseudo label by alternating opti-
mization and multi-view learning.

• We evaluate our method by comparison with existing
methods across several S-WTAL tasks, in which the pro-
posal outperforms state-of-the-art by a considerable mar-
gin. Our approach successfully recognizes and localizes
action segments in the skeleton streams.

Related Work
Skeleton-based Action Recognition
For skeleton-based AR, traditional methods use handcrafted
features to model the human body (Vemulapalli, Arrate, and
Chellappa 2014). After the breakthroughs in deep learn-
ing, data-driven methods consisting of Recurrent and Con-
volutional Neural Networks (RNNs and CNNs) have been
widely used. RNN-based methods aim to model skeleton
data as a sequence of coordinate vectors representing a hu-
man body joint (Du, Wang, and Wang 2015; Liu et al. 2016).
CNN-based methods attempt to transform the skeleton data
to pseudo images according to handcrafted transformation
rules (Ke et al. 2017; Liu, Liu, and Chen 2017). However,
these representations, vector sequences and 2D grids used
by RNNs and CNNs, do not match the structure of skeleton
data because they are naturally embedded as graphs. To ad-
dress this issue, Yan et al.(Yan, Xiong, and Lin 2018) pro-
pose to directly model the skeleton data as graph structure
with ST-GCN, which does not need handcrafted transforma-
tion rules. (Miki, Chen, and Demachi 2020) introduce local
importance to ST-GCN in trimmed short sequences. Adap-
tive graph convolutional network (AGCN) (Shi et al. 2019)
improves ST-GCN by parameterizing the graph structure of
skeleton data and embedding it into the network.

However, all existing skeleton-based AR models are ap-
plied on trimmed sequences, which limits their utility in
applications that require detailed scrutiny of the pose se-
quence, including action retrieval, intelligent surveillance,
and human-computer interaction. Our method attempts to
overcome this constraint to make skeleton-based AR appli-
cable to untrimmed inputs.

Image-based Action Recognition
Among the tasks of video and action understanding, action
classification of trimmed videos (Simonyan and Zisserman
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2014; Feichtenhofer et al. 2019) is a popular task, generally
named AR. Moreover, temporal action localization (TAL)
(Chao et al. 2018; Shou, Wang, and Chang 2016) is another
popular and challenging task. Conventional TAL methods
require frame-level annotations (Chao et al. 2018; Lin et al.
2020). To avoid the labor-intensive and time-consuming task
of manually assigning precise temporal annotation of each
action instance, weakly-supervised TAL (WTAL) methods,
which enable the network to be trained with video-label an-
notations, have drawn increasing attention (Singh and Lee
2017; Wang et al. 2017; Huang, Wang, and Li 2021). Hide-
and-seek (Singh and Lee 2017) uses class activation maps
to identify the relevant frames of each action. Untrimmed-
Net (Wang et al. 2017) introduces the MIL (Maron and
Lozano-Pérez 1997; Paul, Roy, and Roy-Chowdhury 2018)
framework to select foreground snippets and group them
as action segments. STPN (Nguyen et al. 2018) improves
upon UntrimmedNet by using a sparsity loss to encourage
the sparsity of selected snippets. CoLA (Zhang et al. 2021)
uses contrastive learning to identify foreground and back-
ground snippets. FAC-Net (Huang, Wang, and Li 2021) in-
troduces a hybrid attention mechanism with class-wise fore-
ground classification to improve the action localization per-
formance. However, we note that all the methods introduced
above are proposed to predict frame-level labels of image-
based video streams.

Although the studies on skeleton-based and image-based
AR have accomplished great achievements, there is no re-
search trying to apply WTAL to skeleton data. Our method is
the first trial for tackling S-WTAL, which aims at training a
model to not only localize the action segments in untrimmed
skeleton streams, but also achieve high localization perfor-
mance when only the video-level annotations are available.
With the development of S-WTAL, we can obtain clean ac-
tion segments at low annotation cost, which benefits appli-
cations such as motion generation (Guo et al. 2020; Petro-
vich, Black, and Varol 2021). Table 1 summarizes the re-
lationship between the proposed method and other existing
approaches.

Method
In this section, we present our proposed framework for S-
WTAL, which is shown in Fig. 2.

Problem Statement
S-WTAL aims to recognize and localize action segments in
untrimmed 3D-skeleton videos given only video-level ac-
tion labels during training. We assume that a video-label
pair, {v,y}, drawn from a set of labeled videos with N
samples {V, Y } = {(vi,yi)}Ni=1, is available. v denotes an
untrimmed training video and y ∈ RC denotes its ground-
truth label, where C is the number of action categories. Note
that y could be a multi-hot vector if more than one action
is present in the video, which means the action classifica-
tion of a video is a multi-label classification. Since the input
video is 3D-skeleton data, it is denoted by v ∈ RT×J×3,
where T represents the length of the video, J × 3 represents
the position of the 25-joint (J = 25) skeleton used in NTU

RGB+D (Shahroudy et al. 2016) in Cartesian coordinates,
(x, y, z). We also denote the input as a movement sequence
v = (v1, · · · ,vt, · · · ,vT ). As the setting of S-WTAL, we
only know the label set of v, and do not know the frame-level
label of vt. The goal of our method is to correctly predict the
frame-level label of each vt and then extract action segments
by thresholding the frame-level predictions, as described by
the implementational details in the Experiment Section.

Feature Extraction
To extract spatio-temporal features from the skeleton data,
we use the modules before the global average pooling (GAP)
layer of AGCN proposed in (Shi et al. 2019) as the feature
extractor E. We add a temporal convolutional block with
stride 2 between the first and the second block of AGCN to
obtain the temporal representations. Differing from WTAL
methods based on image data that divide each untrimmed
video into non-overlapping 16-frame snippets, we directly
input the whole video v with T × J × 3 dimensions into the
feature extractor and obtain the representations f = E(v) ∈
RT

8 ×D, where D = 256 is the feature dimensionality. Since
the goal of S-WTAL is to generate the action prediction of
each frame, we further up-sample the feature f into RT×D

by linear interpolation along the temporal dimension and ap-
ply L2 normalization along the feature dimension.

Action Localization
To achieve S-WTAL, we train the classifier with only video-
level annotations by MIL. We build an extended action
classifier as a cosine classifier consisting of weight vectors
W = [w1, · · · ,wC ,wC+1], where the first C classes cor-
respond to the action categories, and the C + 1 class the
background.

When the feature f is obtained, cosine similarities be-
tween f and the weights in W are calculated to obtain the
frame-level class activation scores s ∈ RT×(C+1):

st,c = δ · cos(f t,wc), (1)

where f t, wc and δ represent the feature of frame t, the
weight of class c, and a scalar to control the scale of the
value, respectively.

To perform MIL, we calculate the class-wise attention
scores a ∈ RT×(C+1) by the softmax function along the
temporal dimension, which can be written as:

at,c =
exp(τ · st,c)∑T

k=1 exp(τ · sk,c)
, (2)

where τ denotes a temperature parameter to control the
smoothness of the softmax function. Then, the video-level
class activation scores r ∈ RC+1 can be calculated by ag-
gregating the frame-level class activation scores s according
to the attention a as follows:

rc =
T∑

t=1

at,cst,c. (3)

Since the video-level classification in S-WTAL is a multi-
label problem, we apply sigmoid function for each class:

r̂c = Sigmoid(rc), (4)
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Figure 2: Overview of the proposed framework, which has one feature extractor (E) and an action classifier with weight vectors
(W). The network is trained via the MIL under the supervision of video-level labels and the FLR of frame-level pseudo labels.

Algorithm 1: Joint Optimization

for e← 0 to #Epoch do
update θ(e+1) by Adam on Lbce + Lpseudo + LKL

update s̄(e+1) as s̄(e+1) ← ŝ(e) by Eq. (9)
end for

and then train the model with binary cross-entropy loss:

Lbce = −
1

N

N∑
i=1

C+1∑
c=1

yc
i log r̂

c
i +(1−yc

i ) log(1− r̂ci ), (5)

where yi denotes the ground truth label of the i-th sample.
Because the background frames exist in all videos, all videos
should have the background label, i.e., yC+1

i = 1.

Frame-Level Label Refinement
Joint Optimization Through training with MIL, the
model can localize the action segments to some extent. How-
ever, we found that the performance of localization increases
at the beginning of the training, and instead of showing fur-
ther improvement, eventually decreases during the training
process. Since only video-level annotations are available for
training the model, the trained model tends to only recognize
the video-level actions according to the key frames of each
action. This results in detected action segments to contain
only the salient key frames and not the related frames that
constitute each action, which inevitably leads to a decrease
in the performance of action localization.

To solve this problem, we interpret the generation of
frame-level labels in S-WTAL as a noisy label problem.
When we train the model with MIL, we can obtain the
frame-level predictions by applying softmax function to

frame-level class activation scores as follows:

ŝt,c =
exp(st,c)∑C+1

k=1 exp(st,k)
. (6)

As previously mentioned, we observed that these predic-
tions are correct to some extent at the beginning of the train-
ing, but start to overfit to key frames during the training
process. This phenomenon is similar to that observed in the
noisy label problem (Tanaka et al. 2018).

Suppose the pseudo labels for each frame are available
in some way, we can train the model with the frame-level
pseudo labels with the cross-entropy loss as follows:

Lpseudo = − 1

N

N∑
i=1

T∑
t=1

C+1∑
c=1

s̄t,ci log ŝt,ci , (7)

where s̄t,ci denotes the pseudo label for the c-th class of the
t-th frame in the i-th video and may contain some noise.

To deal with the noisy label problem, Tanaka et al.
(Tanaka et al. 2018) observed that if a network is trained
with a high learning rate, it is less likely to overfit to noisy
labels. Consequently, the loss Eq. (7) is high for noisy labels
and low for clean labels, which suggests that clean pseudo
labels can be obtained by updating the pseudo labels in the
direction that decreases Eq. (7). To achieve this, we formu-
late the problem as the joint optimization of the network pa-
rameters and the pseudo labels:

min
θ,s̄
Lpseudo, (8)

where θ denotes the network parameters of the feature ex-
tractor E and the action weight vectors W in the classifier.
Alternately updating the network parameters and pseudo la-
bels is achieved via joint optimization (Tanaka et al. 2018)
by repeating these two steps:
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Updating θ with fixed s̄: As all terms in the loss function
Eq. (7) are differentiable with respect to θ, we update θ by
the Adam optimizer (Kingma and Ba 2014) on Eq. (7).

Updating s̄ with fixed θ: Considering the update of s̄, we
need to minimize Lpseudo with fixed θ to correct the pseudo
labels. Lpseudo can be minimized when the predictions of
the network equals s̄. As a result, s̄ is updated as follows:

s̄(e+1) ← ŝ(e), (9)
which means the frame-wise predictions of the current
epoch e are used as the pseudo labels for the next epoch
e+ 1 to reduce the noise of the pseudo label before the net-
work overfits to noisy labels. The entire algorithm of this
joint optimization is as described in Algorithm 1.

Multi-View Learning To improve the robustness of the
model to noisy labels, we also apply the multi-view learning
strategy inspired by co-training (Blum and Mitchell 1998;
Zhang et al. 2018; Han et al. 2018) to the model training
process. Specifically, instead of using a single action classi-
fier, we prepare two action classifiers with different weight
vectors W1 and W2. We initialize the two classifiers with
different random initial parameters, but train them with the
same data at the mini-batch level. As a result, the two inde-
pendently trained classifiers have different abilities to learn
from the noisy labels, which means the two classifiers tend
to output similar results from clean samples and dissimilar
results from noisy ones (Wei et al. 2020; Yu, Hashimoto, and
Ushiku 2021). To eliminate the effects of noisy samples, we
calculate the agreement of the two classifiers by the symmet-
ric Kullback Leibler (KL) divergence between predictions of
the two networks ŝ1 and ŝ2:

lKL = DKL(ŝ
t
1||ŝ

t
2) +DKL(ŝ

t
2||ŝ

t
1), (10)

where

DKL(ŝ1||ŝ2) =
C+1∑
c=1

ŝt,c1 log
ŝt,c1

ŝt,c2

, (11)

DKL(ŝ2||ŝ1) =
C+1∑
c=1

ŝt,c2 log
ŝt,c2

ŝt,c1

. (12)

To learn from clean samples, we select examples having
small lKL, where the selected small-loss instances are more
likely to be with clean labels. Specifically, we conduct small-
loss selection:

S′ = argminS′:|S′|≥α|S|lKL(S), (13)
where S denotes the frame-level predictions of the dataset
by S = {{ŝti}Tt=1}Ni=1. This equation indicates that we only
use α% frames in the dataset to minimize the divergence.
The average loss on these examples are calculated as:

LKL =
1

|S′|
∑
s∈S′

lKL(s). (14)

Overall Objective Function
In summary, our frame-level label refinement framework
performs MIL, joint optimization, and multi-view learning.
The overall learning objective is:

min
θ,s̄
Lbce + λpseudoLpseudo + λKLLKL. (15)

Dataset Actions #Training
Sequences

#Test
Sequences

Subset-1 walk, stand, turn, jump 2,954 1,001
Subset-2 sit, run, stand-up, kick 624 212
Subset-3 jog, wave, dance, gesture 232 102

Table 2: Details of the subsets used in the experiment.

Experiment
Experimental Setup
Datasets. We verify the effectiveness of our approach on
the benchmark dataset of 3D human motion, BABEL (Pun-
nakkal et al. 2021). BABEL is the only dataset containing
large-scale 3D human motion sequences with frame-level
labels, which describe all actions in every frame of the se-
quences. BABEL annotates about 43 hours of mocap se-
quences from AMASS (Mahmood et al. 2019), which con-
sist of over 63k frame-level labels and over 250 unique ac-
tion categories. We generate the video-level labels by gath-
ering the frame-level labels of each sequence. Due to the
difficulty of S-WTAL, we create 3 subsets, each of which
consists of 4 action categories. The details of each subset
are shown in Table 2.

Comparison of Methods. Since there is no existing
method for solving S-WTAL directly, we combine existing
WTAL methods with the skeleton-based feature extractor for
comparison. As the proposed frame-level label refinement is
built with AGCN (Shi et al. 2019) as the feature extractor,
we also apply AGCN to WTAL methods. Specifically, we in-
corporate two state-of-the-art WTAL methods CoLA (Zhang
et al. 2021) and FAC-Net (Huang, Wang, and Li 2021) based
on AGCN to provide fair and meaningful comparison.

Evaluation Protocols. We adopt the same standard met-
rics for evaluating the performance of AR and localization as
WTAL i.e., mean Average Precisions (mAPs) under differ-
ent Intersection of Union (IoU) thresholds, by transforming
the frame-level predictions to action segments. In practice,
we adopt the official evaluation code provided by FAC-Net
(Huang, Wang, and Li 2021). Additionally, we also evaluate
the classification mAP at the video level to verify the effec-
tiveness of our approach.

Implementation Details. We use the PyTorch library
(Paszke et al. 2019) to implement the proposed framework
on a single NVIDIA A100 GPU. The entire network, includ-
ing one feature extractor and two classifiers, is jointly trained
in an end-to-end manner. Except for the modification men-
tioned in the section of feature extraction, the feature extrac-
tor uses the same parameter setting as in the original papers.
The Adam optimizer with the learning rate of 0.0001 is ap-
plied to optimize the network at the mini-batch level with
batch-size 8 for 100 epochs. The hyper-parameters adopted
to construct the classifier are empirically set as follows:
δ = 5.0, τ = 2.0. The α used for selecting clean samples
in Eq. (13) is set as 0.2. The loss weights λpseudo and λKL

are set to 1.0 and 0.5, respectively. We begin updating the
frame-level pseudo labels from the 10th epoch, and we use
the average output probability for each frame from the past
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Subset-1

Method Classification
mAP (%)

Detection mAP @ IoU (%)
0.1 0.2 0.3 0.4 0.5 Avg

CoLA 73.84 ± 1.03 27.40 14.63 6.43 4.03 2.15 10.93 ± 0.53
FAC-Net 76.74 ± 1.53 29.65 17.65 8.48 3.88 2.62 12.46 ± 0.63

Ours 80.21 ± 0.68 48.74 39.82 33.15 27.39 21.70 34.16 ± 1.26
Ours w/o FLR 77.06 ± 0.43 25.92 15.02 7.81 4.48 2.17 11.08 ± 1.08

Subset-2

Method Classification
mAP (%)

Detection mAP @ IoU (%)
0.1 0.2 0.3 0.4 0.5 Avg

CoLA 82.96 ± 1.50 40.10 26.86 19.90 14.02 10.32 22.24 ± 2.41
FAC-Net 86.47 ± 1.18 34.18 19.84 12.95 9.03 6.53 16.51 ± 2.75

Ours 89.15 ± 1.59 61.01 50.26 40.36 29.84 19.55 40.20 ± 3.09
Ours w/o FLR 83.97 ± 0.91 40.30 31.31 18.82 11.52 5.16 21.42 ± 2.89

Subset-3

Method Classification
mAP (%)

Detection mAP @ IoU (%)
0.1 0.2 0.3 0.4 0.5 Avg

CoLA 34.74 ± 5.43 21.50 17.40 15.16 12.10 8.99 15.03 ± 1.78
FAC-Net 59.90 ± 6.12 27.51 22.26 17.64 14.05 8.90 18.07 ± 4.25

Ours 67.08 ± 3.34 35.81 31.45 26.55 23.42 20.36 27.52 ± 1.23
Ours w/o FLR 65.90 ± 2.86 19.52 12.65 7.80 3.87 1.61 9.09 ± 1.59

Table 3: Video-level classification and segment-level detection performance comparisons over BABEL. The column Avg indi-
cates the average mAP at IoU thresholds from 0.1 to 0.5. The averages and standard deviations are obtained from three trials.

Figure 3: Detection mAP@0.1 vs. epoch curve of each method on each subset.

10 epochs as s̄ in Eq. (9).
During inference, we reject the category whose class

probability r̂c in Eq. (5) is lower than 0.1. Following
(Huang, Wang, and Li 2021), a set of thresholds are used
to obtain the predicted action segments, then non-maximum
suppression is performed to remove overlapping segments.

Experimental Results
The classification mAP of each video and the detection mAP
of each detected action segment on the three subsets are
shown in Fig. 3. To evaluate the performance of video-level
multi-label classification, we report the mAP by averaging
the AP of each class. Regarding the action localization per-
formance, since S-WTAL is still a challenging task, we re-
port the mAP at thresholds from 0.1 to 0.5 and their average.
According to Fig. 3, we find that our method outperforms the
existing approaches in all the metrics by a large margin. We

also report the proposed method without FLR, and its per-
formance drops significantly, indicating the effectiveness of
the proposed frame-level label refinement.

We show the learning curve of each method on each sub-
set in Fig. 3. Despite using the features extracted from the
same base network, the proposed framework far outperforms
existing WTAL methods CoLA and FAC-Net. This demon-
strates that the task of S-WTAL is much more challenging
than that of image-based WTAL. As mentioned in the sec-
tion of frame-level label refinement, it is interesting to ob-
serve that the proposed framework without FLR achieves
good results at the beginning of the training, but then starts
to overfit to key frames during the training process, lowering
the performance. However, our method with FLR can main-
tain high performance until the end of the training process.

Some examples of detected action segments are visual-
ized in Fig. 4. In the first example of sitting, our method
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Figure 4: Qualitative results on BABEL. We show the ground truth and the activation scores of each method.

Dataset Subset-1 Subset-2 Subset-3
Walk Stand Turn Jump Sit Run Stand-up Kick Jog Wave Dance Gesture

CoLA 43.87 37.98 14.68 13.07 78.40 40.35 19.20 22.45 23.03 5.93 43.67 13.36
FAC-Net 49.17 31.65 22.52 15.24 57.11 36.59 16.44 26.57 40.45 15.28 42.56 11.76

Ours 79.34 74.32 24.28 17.03 83.74 57.49 23.59 79.21 45.45 16.93 66.13 14.75
w/o FLR 44.07 45.23 5.39 9.01 56.89 45.02 6.03 53.29 41.80 7.27 22.63 6.37
w/o JO 55.73 56.07 8.89 13.57 60.18 46.75 8.99 55.16 42.34 9.82 25.91 10.37

w/o MVL 78.14 67.09 16.67 20.91 81.09 56.49 20.42 79.04 43.92 15.39 62.37 13.65
λpseudo = 0.2 77.82 69.24 19.25 12.99 82.16 51.89 21.14 80.14 48.48 18.17 44.90 11.16
λpseudo = 0.5 78.72 68.55 18.87 14.63 83.32 55.97 20.66 80.03 44.93 16.89 65.71 17.59
λKL = 0.2 78.91 73.02 21.00 18.70 84.10 50.80 22.57 79.38 43.85 17.44 63.15 12.26
λKL = 1.0 79.27 72.92 23.21 16.11 83.05 54.05 20.34 79.39 44.75 19.29 60.66 18.55
α = 0.1 79.36 73.97 19.97 16.81 81.60 54.31 22.64 79.77 43.34 17.02 59.86 18.00
α = 0.5 79.37 73.35 24.56 15.93 82.58 52.17 22.62 80.19 47.63 16.57 52.42 20.26

Table 4: Results of analysis tasks. Detection mAP@0.1 are reported.

shows high action scores when the action occurs. In the sec-
ond example of kicking, where the action is frequently re-
peated in the video, the proposed method successfully de-
tects all action segments, indicating that our method can
handle dense action occurrences. Furthermore, our proposal,
FLR, prevents our model from overfitting to key frames, pro-
viding better coverage of the ground truth.

Analysis
Variants of the proposed method were evaluated using the
BABEL dataset, for further exploration of the efficacy of the
proposal. The following variants were studied: (1) “Ours w/o
FLR” is a variant that does not use FLR, i.e., Lpseudo and
LKL in Eq. (15). (2) “Ours w/o JO” is a variant that does
not use joint optimization on frame-level pseudo labels, i.e.,
Lpseudo in Eq. (15). (3) “Ours w/o MVL” is a variant that
omits the multi-view learning loss LKL in Eq. (15).

Table 4 shows the comparisons of the detection mAP on
each class of each subset between the existing methods and
the variants of our method. The results reveal that the version
of our approach that uses all the losses outperforms other
variants in all settings on average. Specifically, the most im-
portant component for our method is Lpseudo, and LKL is

also necessary to achieve higher performance. In Table 4,
we also demonstrate the sensitivity of the loss in Eq. (15)
to different weights and the α. We find that our method is
robust to these hyper-parameters.

Conclusion

In this study, we proposed a frame-level label refinement
framework for a novel AR problem setting, S-WTAL. Our
framework uses AGCN to learn the spatio-temporal features
from the skeleton data, and generates the frame-level pseudo
labels by MIL with video-level annotations. The frame-
level pseudo labels are further refined by joint optimization
and multi-view learning. The performance of the proposed
method was evaluated on a real dataset across various set-
tings, and our method outperformed existing state-of-the-art
WTAL methods by a considerable margin. To improve the
detection performance of some difficult motion classes, we
would like to analyze the characteristics of each motion to
better estimate the duration of each action segment in future
work.
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