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Abstract

Referring image segmentation segments an image from a lan-
guage expression. With the aim of producing high-quality
masks, existing methods often adopt iterative learning ap-
proaches that rely on RNNs or stacked attention layers to
refine vision-language features. Despite their complexity,
RNN-based methods are subject to specific encoder choices,
while attention-based methods offer limited gains. In this
work, we introduce a simple yet effective alternative for pro-
gressively learning discriminative multi-modal features. The
core idea of our approach is to leverage a continuously up-
dated query as the representation of the target object and at
each iteration, strengthen multi-modal features strongly cor-
related to the query while weakening less related ones. As the
query is initialized by language features and successively up-
dated by object features, our algorithm gradually shifts from
being localization-centric to segmentation-centric. This strat-
egy enables the incremental recovery of missing object parts
and/or removal of extraneous parts through iteration. Com-
pared to its counterparts, our method is more versatile—it can
be plugged into prior arts straightforwardly and consistently
bring improvements. Experimental results on the challenging
datasets of RefCOCO, RefCOCO+, and G-Ref demonstrate
its advantage with respect to the state-of-the-art methods.

1 Introduction
Given an image and a natural language expression that de-
scribes an object from the image, the task of referring image
segmentation is to predict a pixel-wise mask that delineates
that object (Cheng et al. 2014; Hu, Rohrbach, and Darrell
2016). It has applications in a broad range of areas such
as image editing, augmented reality, robotics, etc. Different
from the more conventional semantic/instance segmentation
tasks where targets fall into a pre-defined set of categories,
this task requires an algorithm to not only predict an accu-
rate mask for the target, but infer what the target is from a
free-form language expression.

Taking advantage of a fully convolutional architecture
(Long, Shelhamer, and Darrell 2015), current state-of-the-
art methods (Liu et al. 2017; Li et al. 2018; Chen et al. 2019;
Luo et al. 2020a; Liu et al. 2021a; Ding et al. 2021; Yang
et al. 2022) jointly address both requirements by developing
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Figure 1: Top half: Referring image segmentation aims to
predict a mask delineating a target area described by a lan-
guage expression. Bottom half: Our method tackles this
problem in iterations, where it continuously improves upon
its previous prediction based on accumulated object context,
finally producing a highly accurate mask.

powerful cross-modal feature fusion methods, which align
linguistic meanings and visual cues in a common feature
space. Intuitively, learning accurate cross-modal alignments
can be a daunting task as abundant noise is present in both
the language and the vision inputs. In this context, iterative
learning becomes a characteristic approach that is adopted
by many methods, which mitigates that difficulty: By per-
forming cross-modal feature fusion in several rounds, align-
ments can be incrementally established and refined, subse-
quently leading to higher segmentation accuracy.

Existing state-of-the-art methods generally perform iter-
ative learning via recurrent neural networks (RNNs) (Liu
et al. 2017; Li et al. 2018; Chen et al. 2019) or stacked at-
tention layers (Luo et al. 2020a). RNN-based methods ex-
ploit the sequential property of the input data, either that
of a sentence encoded step by step by a recurrent language
model (Liu et al. 2017), or that of an image encoded into a
feature pyramid by a hierarchical vision backbone network
(Li et al. 2018; Chen et al. 2019). Though having the po-
tential of capturing helpful dependencies, they have several
drawbacks. Recurrent language models (e.g., (Sutskever,
Vinyals, and Le 2014)) are disadvantaged against the preva-
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Figure 2: A comparison of iterative learning schemes for re-
ferring image segmentation. (a) The recurrent modeling ap-
proach exploits the sequential property of sentence features
or the hierarchical property of pyramidal image features.
(b) The cascade attentions approach employs stacked atten-
tion layers where each layer enhances the vision-language
mapping from the previous layer. (c) Motivated differently,
SADLR performs semantics-aware dynamic convolutions
by leveraging continuously updated object context.

lent Transformer-based language models (e.g., (Devlin et al.
2019)), while recurrently integrating multi-scale visual se-
mantics only indirectly addresses cross-modal alignment.
Moreover, neither strategy is orthogonal to many of the other
state-of-the-art fusion methods (such as ones proposed in
VLT (Ding et al. 2021) and LAVT (Yang et al. 2022)). The
recent advance by Luo et al. introduces cascade grouped at-
tentions (Luo et al. 2020a), which refine cross-modal fea-
tures of the whole image but lack the ability to exploit prior
evidence for helping focus on regions that may need refine-
ment the most—local regions where targets live and mis-
takes occur frequently. As we observe in our experiments,
this technique also does not bring improvements to baselines
that adopt powerful Transformer-based fusion methods.

To address those issues, we propose a semantics-aware
dynamic localization and refinement (SADLR) method
for referring image segmentation. SADLR progressively
strengthens target signals and suppresses background noise
by leveraging a semantics-aware dynamic convolution mod-
ule, which performs convolutions conditioning on a contin-
uously updated representation of the target (what we denote
as the “query”). To aid localization, in the first step, we ini-
tialize the query with a language feature vector summarized
from the input expression, and predict a convolutional kernel
from the query which operates on the multi-modal feature
maps. This step strengthens features according to language
information. In each of the following steps, we update the
query with pooled object context obtained using the predic-
tion from the previous step and perform dynamic convolu-
tion again. As more object context is incorporated along the
way, SADLR is able to gradually pinpoint the target and re-
fine segmentation to a high degree of accuracy.

When applied to three state-of-the-art referring image

segmentation methods, namely, LTS (Jing et al. 2021),
VLT (Ding et al. 2021), and LAVT (Yang et al. 2022),
the proposed SADLR approach is able to bring consistent
performance improvements. On the challenging benchmark
datasets of RefCOCO (Yu et al. 2016), RefCOCO+ (Yu et al.
2016), and G-Ref (Nagaraja, Morariu, and Davis 2016), our
method combined with the most powerful LAVT obtains
74.24%, 64.28%, and 63.60% overall IoU on the validation
sets, improving the state of the art for these datasets by ab-
solute margins of 1.51%, 2.01%, and 2.36%, respectively.

2 Related Work
Referring image segmentation has attracted growing atten-
tion in the past decade. While prior arts focus on developing
cross-modal feature fusion methods based on CNN back-
bones (Hu, Rohrbach, and Darrell 2016; Liu et al. 2017;
Chen et al. 2019; Feng et al. 2021; Hu et al. 2020; Huang
et al. 2020; Hui et al. 2020; Luo et al. 2020a; Margffoy-Tuay
et al. 2018; Shi et al. 2018; Ye et al. 2019), recent develop-
ments leverage the Transformer architecture (Vaswani et al.
2017) for aggregating vision-language representations, in-
cluding both at the feature encoding stage (Yang et al. 2022)
and at the feature decoding stage (Ding et al. 2021).

With the purpose of mitigating difficulties in cross-modal
context modeling, some methods, including RMI (Liu et al.
2017), RRN (Li et al. 2018), STEP (Chen et al. 2019), and
CGAN (Luo et al. 2020a), adopt an iterative learning ap-
proach and refine cross-modal features in several rounds.
Mimicking how humans tackle visual grounding tasks, RMI
integrates linguistic features with visual features step by step
in a word-reading order, an approach well motivated for
RNN language models but ill-suited to the fully-connected
Transformer language models. Conversely, RRN and STEP
propose to integrate visual features with linguistic features
stage by stage traversing through the image feature pyramid.
This approach mainly aims at capturing multi-scale seman-
tics from the visual features and has been shown to be in-
ferior to some of the other multi-stage fusion methods such
as LSCM (Hui et al. 2020) and CMPC (Liu et al. 2021a).
The work most related to ours is CGAN, which leverages
cascaded multi-head attention layers for iteratively refining
cross-modal mappings of the whole image. In contrast to our
method, it does not seek to exploit predictions as priors to
help focus refinement on more important regions. Although
in principle, the cascade attentions can be applied on top of
existing models, we find in experiments that they only ben-
efit the more conventional models which do not employ a
powerful Transformer-based architecture for feature fusion.

Albeit our proposal is related to the above class of ap-
proaches, it offers important practical advantages. First, it
does not rely on a specific choice of the language encoder or
the multi-modal feature encoding scheme. Second, it is gen-
eralizable to a variety of top-performing models, including
Transformer-based ones, as shown in our experiments.
Dynamic convolution is a versatile technique that can be
applied for detecting user-defined patterns in a set of fea-
ture maps. Originally proposed in the context of short-range
weather prediction (Klein, Wolf, and Afek 2015), it has re-
cently found popularity in several query-based object detec-
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Figure 3: A schematic illustration of the proposed SADLR approach. In the first iteration, the query used for dynamic convolu-
tion is initialized by a language feature vector and segmentation mainly exploits language semantics. In each of the following
iterations, we continuously update our query with an object feature vector based on the previous iteration’s prediction, and
segmentation exploits an increasing amount of object semantics. All parameters are shared across iterations.

tion systems (Sun et al. 2021; Fang et al. 2021). In such
models, a set of learnable embeddings serve as latent ob-
ject features, and dynamic weights are predicted from these
queries for localizing and classifying objects. In comparison,
we leverage dynamic convolution for solving the problem of
segmentation from natural language.

Here, we make a distinction between the types of dynamic
convolutions employed in this work and some earlier meth-
ods addressing the related task of referring video object seg-
mentation (Gavrilyuk et al. 2018; Li et al. 2017; Wang et al.
2020). In those methods, the term dynamic convolution/fil-
tering refers to predicting classification weights that have the
same number of channels as the target feature maps, from
which a foreground score map is generated. In contrast, our
aim is to produce an enriched set of feature maps that high-
light the semantics related to the dynamic query.
Multi-modal reasoning is a broader topic that covers many
lines of work. For instance, Radford et al. focus on the
large-scale pre-training of transferable representations using
paired image-text data (Radford et al. 2021). Hu et al. pro-
pose the Unified Transformer model (Hu and Singh 2021)
which jointly learns many vision-language tasks such as vi-
sual question answering (Antol et al. 2015) and visual entail-
ment (Xie et al. 2019). Kamath et al. devise MDETR (Ka-
math et al. 2021), an end-to-end modulated detector condi-
tioning on language queries, which can be fine-tuned to per-
form downstream tasks such as few-shot learning for long-
tailed detection (Gupta, Dollar, and Girshick 2019).

3 Method
3.1 Overview
Preliminaries. Fig. 3 illustrates our method schematically.
The input consists of an image and a language expression.
We first extract a set of linguistic features, L ∈ RCl×N , from
the input expression by leveraging a language encoder (such
as BERT (Devlin et al. 2019) or an RNN (Cho et al. 2014)).
Here, Cl denotes the number of channels and N denotes the
number of words. Then, the input image and the linguistic
features L go through a multi-modal feature encoding net-
work, which can be instantiated by most any state-of-the-art
referring segmentation model simply by removing its final
classification layer. Fig. 3 illustrates our default choice of
LAVT (Yang et al. 2022), for which we include more de-
tails in Sec. 3.2. This multi-modal feature encoding stage
ensures that linguistic features and visual features are joined
together in a single feature space that captures alignment in-
formation. We denote the output set of multi-modal feature
maps as Y ∈ RC×H×W , where C is the number of channels
and H and W denote the height and the width, respectively.
Semantics-aware dynamic convolution. In the ensuing
stage, instead of directly producing the object mask via a
classifier, we iteratively refine the multi-modal features via
a semantics-aware dynamic convolution module, which we
further motivate and detail in Sec. 3.3. Each layer of this
module predicts a kernel from an input feature vector and
convolves multi-modal feature maps with the predicted ker-
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Figure 4: Illustration of the semantics-aware dynamic convolution module at iteration i. The input feature maps Y are strength-
ened by two layers of 1 × 1 convolution (implemented by matrix multiplication here), with output Zi capturing semantics
encoded by the input query Qi. ‘MatMul’ denotes matrix multiplication and ‘LN’ denotes layer normalization. This module
is different from stacked (cross-)attention layers, for each of which, features at each output position would be computed as an
aggregated sum of features at certain input positions based on pair-wise similarities (potentially with locality as a constraint).

nel. In this paper, we call this kernel-generating feature vec-
tor a “query,” to give relevance to its functionality as an ex-
emplar that characterizes the notion we wish to highlight in
the multi-modal feature maps.
Pipeline of each iteration. Assuming there are n iterations
in our refinement procedure, where n is a hyper-parameter
we study in Sec. 4.4, we denote the dynamic query at itera-
tion i ∈ {1, 2, ..., n} as Qi ∈ RC , where C denotes the num-
ber of channels. At each iteration, we send the query Qi and
the multi-modal feature maps Y (from the encoding stage)
into the aforementioned semantics-aware dynamic convolu-
tion module, where a kernel is derived from Qi and con-
volved with Y for producing a set of feature maps that high-
light notions relevant to Qi. We denote the output feature
maps as Zi ∈ RC×H×W , where H and W denote the height
and the width, respectively, and C denotes the number of
channels. Next, a 1 × 1 convolution projects Zi into raw
score maps, denoted as Ri ∈ R2×H×W , where indices 0 and
1 along the channel dimension define the score maps for the
“background” class and the “object” class, respectively. We
obtain a binary object mask Mi ∈ RH×W by taking argmax
along the channel dimension of Ri.
Query initialization and iterative update. In different it-
erations, we use different queries with the purpose of high-
lighting different types of features. To start with, at iteration
1, we initialize Q1 as a sentence feature vector, S ∈ RC ,
which is obtained from L (from the language encoder) via
average pooling across the word dimension followed by lin-
ear projection for channel reduction. Since Q1 contains pure
linguistic information that summarizes the target object, the
output from the semantics-aware dynamic convolution mod-
ule Z1 highlights referring localization information. At it-
eration i, i ∈ {2, 3, ...n}, we update Qi−1 with an object
feature vector Oi−1 pooled from Y using Mi−1 to obtain a
new query Qi for the current iteration. This process can be
described mathematically as follows

Oi−1 = AvgPool(Mi−1, Y ), (1)
Qi = Qi−1 +Oi−1, (2)

where ‘AvePool’ denotes computing a weighted average of
feature vectors across the spatial dimensions of Y , with the
binary mask Mi−1 being the weight map. This query up-
date scheme aims to progressively integrate more object

context information into the query as the predicted mask
Mi−1 grows more accurate by each iteration. As mentioned
earlier, dynamic convolution strengthens features related to
the given query. Therefore, as the query grows from being
purely linguistic to containing more object-centric features,
the algorithm gradually shifts focus from referring localiza-
tion to segmentation refinement. As shown in the qualitative
analysis in Fig. 5, the predicted masks tend to grow more
refined by each iteration.

3.2 Multi-modal Feature Encoding
By default, we adopt LAVT (Yang et al. 2022) as the multi-
modal feature encoding network for its top performance in
this task. LAVT leverages a powerful hierarchical vision
Transformer (Liu et al. 2021b) to jointly embed vision and
language information. At each stage of the vision backbone,
a pixel-word attention module densely aligns linguistic fea-
tures with visual features at each spatial location, and a lan-
guage pathway directs integrated multi-modal cues into the
next stage of the vision backbone. Our proposed method is
not limited to a specific multi-modal feature encoding net-
work. As we show in Table 3, when adopting LTS (Jing et al.
2021) or VLT (Ding et al. 2021) as the encoding network,
SADLR consistently obtains improved results with respect
to the vanilla model.

3.3 Semantics-Aware Dynamic Convolution
Much like a traditional convolution, dynamic convolution
convolves an input set of feature maps with the same kernel
across all locations. However, in dynamic convolution, the
kernel is generated from a conditioning feature vector (what
we call the query in this paper) instead of being fixed model
parameters. It particularly suits our need in referring image
segmentation, as the generated kernel is sample-specific.

Fig. 4 illustrates our semantics-aware dynamic convolu-
tion module. It consists of two layers of dynamic convolu-
tions. At each iteration of SADLR, given query Qi, a first
linear function generates a dynamic kernel, Ki ∈ RC×C′

,
where C and C ′ denote the input and the output numbers
of channels, respectively. Then convolution is performed via
matrix multiplication between the input feature maps Y and
the dynamic kernel Ki, followed by layer normalization (Ba,
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RefCOCO RefCOCO+ G-Ref
val test A test B val test A test B val (U) test (U) val (G)

DMN (Margffoy-Tuay et al. 2018) 49.78 54.83 45.13 38.88 44.22 32.29 - - 36.76
RRN (Li et al. 2018) 55.33 57.26 53.93 39.75 42.15 36.11 - - 36.45
MAttNet (Yu et al. 2018) 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 -
CMSA (Ye et al. 2019) 58.32 60.61 55.09 43.76 47.60 37.89 - - 39.98
STEP (Chen et al. 2019) 60.04 63.46 57.97 48.19 52.33 40.41 - - 46.40
BRINet (Hu et al. 2020) 60.98 62.99 59.21 48.17 52.32 42.11 - - 48.04
CMPC (Huang et al. 2020) 61.36 64.53 59.64 49.56 53.44 43.23 - - 49.05
LSCM (Hui et al. 2020) 61.47 64.99 59.55 49.34 53.12 43.50 - - 48.05
CMPC+ (Liu et al. 2021a) 62.47 65.08 60.82 50.25 54.04 43.47 - - 49.89
MCN (Luo et al. 2020b) 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
EFN (Feng et al. 2021) 62.76 65.69 59.67 51.50 55.24 43.01 - - 51.93
BUSNet (Yang et al. 2021) 63.27 66.41 61.39 51.76 56.87 44.13 - - 50.56
CGAN (Luo et al. 2020a) 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54
LTS (Jing et al. 2021) 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
VLT (Ding et al. 2021) 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76
CRIS (Wang et al. 2021) 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 -
LAVT (Yang et al. 2022) 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50
Ours 74.24 76.25 70.06 64.28 69.09 55.19 63.60 63.56 61.16

Table 1: Comparison with other methods in terms of overall IoU. “U” and “G” represent UMD and Google, respectively.

Kiros, and Hinton 2016) and ReLU non-linearity (Nair and
Hinton 2010). Another convolutional kernel, K ′

i ∈ RC′×C ,
is subsequently generated from Qi by a second linear func-
tion. Similarly, convolution is performed between the output
from the previous layer and K ′

i via matrix multiplication,
followed by layer normalization and ReLU non-linearity.

3.4 Predicted Masks and the Loss Function
To produce segmentation masks, we upsample the raw score
maps Ri via bilinear interpolation to the resolution of the
input image, and take the argmax along the channel dimen-
sion of the upsampled score maps. The loss function used
for training is the following,

L = λ1L1 + λ2L2 + ...+ λnLn, (3)

where n is the number of iterations, Li, i ∈ {1, 2, ...n},
denotes the individual loss from iteration i, and λi, i ∈
{1, 2, ...n}, is the balancing weight for loss at iteration
i. Each individual loss is computed as the average Dice
losses (Milletari, Navab, and Ahmadi 2016) for the “object”
class and the “background” class. During inference, mask
from the last iteration is used as the prediction.

4 Experiments
4.1 Datasets and Evaluation Metrics
Datasets. We evaluate our proposed method on the datasets
of RefCOCO (Yu et al. 2016), RefCOCO+ (Yu et al. 2016),
and G-Ref (Mao et al. 2016; Nagaraja, Morariu, and Davis
2016). All three datasets collect images from the MS COCO
dataset (Lin et al. 2014), and each object is annotated with
multiple language descriptions from humans. RefCOCO and
RefCOCO+ are similar in size, both containing about 20K
images, 50K annotated objects, and 140K expressions. They

are annotated in a two-player game, where each player is
motivated to provide a minimally sufficient description for
the other to identify the target. As a result, expressions from
these two datasets are succinct, averaging about 4 words per
expression, and emphasize simple traits such as color, size,
and position. A special property about RefCOCO+ is that lo-
cation words (such as “left” and “right”) are banned, making
it the harder of the two. G-Ref contains roughly 27K images,
55K annotated objects, and 105K expressions. Expressions
in G-Ref tend to be longer, averaging around 8 words per
expression, and provide more complete descriptions of the
target objects. As the expressions can be elaborate, G-Ref is
the most challenging dataset of the three. We evaluate our al-
gorithm on both the UMD partition (Nagaraja, Morariu, and
Davis 2016) and the Google partition (Mao et al. 2016).
Evaluation metrics. We adopt three sets of metrics: preci-
sion@K (P@K, where K indicates an IoU threshold), mean
IoU (mIoU), and overall IoU (oIoU). The precision@K met-
ric measures the percentage of test samples (i.e., image-
sentence pairs) that pass an IoU threshold, where the IoU
is computed between the prediction and the ground truth.
We evaluate precision at the thresholds of 0.5, 0.6, 0.7, 0.8,
and 0.9. On a separate note, this metric should be more accu-
rately called “recall@K.” The mean IoU metric is the aver-
age IoU of all test samples. This metric treats large and small
objects equally. The overall IoU is the intersection accumu-
lated on all test samples divided by the union accumulated
on all test samples. It favors large objects.

4.2 Implementation Details
As our best SADLR model is based on LAVT, most train-
ing and inference settings follow those in (Yang et al. 2022).
We adopt the BERT-base model from (Devlin et al. 2019)
as the language encoder, and the Swin-B model from (Liu
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RefCOCO RefCOCO+ G-Ref
val test A test B val test A test B val-U test-U val-G

RefTrans 74.34 76.77 70.87 66.75 70.58 59.40 66.63 67.39 -
Ours 76.52 77.98 73.49 68.94 72.71 61.10 67.47 67.73 65.21

Table 2: Comparison with Referring Transformer (Li and
Leonid 2021) by mean IoU.

et al. 2021b) as the backbone network. BERT initialization
weights are obtained from HuggingFace (Wolf et al. 2020),
and Swin initialization weights are ones pre-trained on Ima-
geNet22K from (Liu et al. 2021b). The rest of the parameters
in our model are randomly initialized. The entire framework
is trained end-to-end with the loss function defined in Eq. 3.
We adopt an AdamW (Loshchilov and Hutter 2019) opti-
mizer with initial learning rate 5e-5 and weight decay 1e-
2, and apply the “poly” learning rate scheduler (Chen et al.
2018). The numbers of channels Cl and C in Sec. 3 are 768
and 512, respectively. The default number of iterations (n
in Sec. 3) is 3, for which the loss weights, λ1, λ2, and λ3,
are 0.15, 0.15, 0.7, respectively. For each n, we search for
optimal balancing weights as follows. While ensuring that
the sum of the weights is 1, we experiment with large val-
ues (⩾0.5) on the last iteration, each time assigning equal
weights to the rest of the iterations. For each dataset, the
model is trained on the training set for 40 epochs with batch
size 32, where each object is sampled exactly once in an
epoch (with one of its text annotations randomly sampled).
Images are resized to 480 × 480 resolution and sentence
lengths are capped at 20.

4.3 Comparison with Others
In Table 1, we evaluate our proposed method against the
state-of-the-art methods on the popular benchmarks of Re-
fCOCO, RefCOCO+, and G-Ref. Our approach obtains the
highest overall IoU on all subsets of all benchmark datasets
with various margins. On the validation, test A, and test B
subsets of RefCOCO, our method surpasses the second-best
LAVT by margins of 1.51%, 0.43%, and 1.27%, respec-
tively. On RefCOCO+, our method establishes a relatively
large 2.01% (absolute) lead with respect to the second-best
method CRIS (Wang et al. 2021) on the validation set, while
also comparing favorably against the second-best LAVT on
the test A and test B subsets with small advantages. On
both the validation and test sets of G-Ref (UMD partition),
our approach improves the state of the art by solid margins
of 2.36% and 1.47%, respectively. On the most challeng-
ing validation set of G-Ref (Google partition), our method
is also able to achieve new state-of-the-art results with a
small improvement of 0.66% (absolute). In Table 2, we re-
port the mean IoU of our method for comparison with Re-
ferring Transformer (Li and Leonid 2021), as mean IoU in-
stead of overall IoU is reported in (Li and Leonid 2021). Our
method obtains better results on all three datasets.

4.4 Ablation Study
In this section, we evaluate the effectiveness of the SADLR
method and study the effects of several key design choices.

Meth. P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU FLOPs Ti.
LTS 82.10 77.51 70.94 58.54 27.14 70.84 71.92 133.3G 41
" + C 84.52 80.72 74.89 61.57 29.13 71.39 73.57 143.3G 49
" + S 85.20 81.79 76.39 64.92 32.28 72.22 74.49 139.4G 47
VLT 83.80 79.96 74.10 60.52 25.60 70.31 72.62 142.6G 42
" + C 80.33 76.33 69.94 56.32 22.80 66.41 69.62 152.7G 49
" + S 85.00 81.85 76.17 62.44 27.81 71.64 73.90 148.6G 48
LAVT 85.49 82.00 76.44 65.65 35.16 73.12 75.30 197.4G 46
" + C 85.14 81.37 75.98 64.57 34.35 72.56 75.05 207.5G 55
" + S 86.90 83.68 78.76 67.93 37.36 74.24 76.52 203.5G 52

Table 3: Comparison between our method, CGAN, and sev-
eral baseline methods on the RefCOCO validation set. “" +
C” or “" + S” denotes that we apply CGAN or SADLR on
top of the baseline method represented by the ditto mark, re-
spectively. As described in the text below, all experiments
adopt BERT as the language encoder and Swin-B as the
backbone network, and follow the same training settings.

The experiment setups, including the language encoder, the
visual backbone network, the loss, etc., are kept the same in
all studies for fair comparisons. As a result, there is a differ-
ence between our reproduced overall IoU of LAVT (reported
in Tables 3 and 4) and that of LAVT from the original paper
(reported in Table 1). This difference mainly originates from
the Dice loss that we adopt in all the experiments—the orig-
inal LAVT adopts a cross-entropy loss.
Comparison with CGAN and baseline methods. In Ta-
ble 3, we apply our iterative dynamic refinement proce-
dure on three different state-of-the-art methods, namely,
LTS (Jing et al. 2021), VLT (Ding et al. 2021), and
LAVT (Yang et al. 2022), and show that our method can
generalize to all three architectures. When using either the
Transformer-based VLT or LAVT as the baseline method
(the multi-modal feature encoding network in Sec. 3), our
method consistently brings 1 to 2 absolute points of im-
provement on all of the seven evaluation metrics, including
precision at the five threshold values, the overall IoU and
the mean IoU. On the non-Transformer-based LTS, our pro-
posal achieves still greater improvements. From P@0.5 to
P@0.9, our method achieves 3.10%, 4.28%, 5.45%, 6.38%,
and 5.14% absolute improvements, respectively. The gain
generally increases as the threshold gets larger, which high-
lights the efficacy of our method in refining segmentation
masks to a high degree of accuracy. Moreover, on the overall
IoU and mean IoU, our method attains 1.38% and 2.57% ab-
solute improvements, respectively. Overall, the results above
highlight the generality and effectiveness of SADLR.

On the contrary, CGAN (Luo et al. 2020a) is only able to
bring moderate improvement to the more conventional LTS
model, which is the best model among ones not employing
Transformers for cross-modal feature fusion. When the more
effective Transformer architecture has been employed, ap-
plying CGAN leads to performance deterioration, as shown
by the “VLT + CGAN” and “LAVT + CGAN” variants.

To analyze the computational overhead of SADLR, we
report the FLOPs and the inference time (in milliseconds)
of all models in Table 3. We measure the inference time
by averaging over 500 forward passes using batch size 1
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P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU
(a) number of iterations
0 85.49 82.00 76.44 65.65 35.16 73.12 75.30
1 85.44 82.01 76.68 65.92 35.86 73.22 75.41
2 86.63 83.63 78.48 67.83 37.04 73.99 76.32
3 (*) 86.90 83.68 78.76 67.93 37.36 74.24 76.52
4 86.64 83.12 77.77 68.01 36.87 73.56 76.09
(b) structure of the semantics-aware dynamic convolution module
[128] 86.26 82.84 77.74 67.36 36.69 72.98 75.87
[256] 86.50 83.27 78.38 67.37 37.16 73.62 76.22
[64, 256] 87.00 83.88 78.33 67.75 37.02 73.76 76.34
[512] 86.33 83.21 78.27 67.53 36.73 73.56 76.02
[128, 512] (*) 86.90 83.68 78.76 67.93 37.36 74.24 76.52
[128, 512]× 2 86.47 83.27 78.09 67.19 36.87 73.70 76.12
(c) query update method
sum (*) 86.90 83.68 78.76 67.93 37.36 74.24 76.52
replace 86.52 83.48 78.36 67.09 37.35 73.19 76.14

Table 4: Ablation studies on the RefCOCO validation set.
Rows with (*) indicate our default choices. In each experi-
ment, we change only one variable from our default config-
uration and study its effect on the overall model.

at 480 × 480 input resolution on an NVIDIA Quadro RTX
8000. SADLR brings 3.1%, 4.6%, and 4.2% relative in-
crease of FLOPs and 13.0%, 14.6%, and 14.3% relative in-
crease of inference time to LAVT, LTS, and VLT, respec-
tively, all of which are smaller than those of CGAN.
Number of iterations. Next, we study the optimal number
of iterations in SADLR. As shown in Table 4 (a), as the
number of iterations grows, results continuously improve,
with optimal ones obtained when there are three iterations.
Adding a fourth iteration generally does not yield better re-
sults (except marginally so on P@0.8). Applying 0 iteration
equals to using the baseline method (and in these experi-
ments, LAVT). These observations are consistent with our
intuition that refinement may eventually saturate but before
saturation, applying more iterations is beneficial.
Structure of the semantics-aware dynamic convolution
module. Our default implementation of this module consists
of two convolution layers. In Table 4 (b), we study the effects
of the number of convolution layers and the number of filters
(the number of output channels) for each layer. We define [a]
as one convolution layer with a filters and [a, b] as two con-
volution layers with a and b filters, respectively, where a and
b are numbers. Similarly, we define [a, b]× k as a stack of k
[a, b] sub-structures, where k is a number. As shown in Ta-
ble 4 (b), the structure [128, 512] produces the best results in
five of the seven metrics, and is chosen as our default imple-
mentation. [64, 256] comes as the overall second-best struc-
ture and produces the best P@0.5 and P@0.6. We note that
when using only one layer of convolution, having 256 filters
works better than having 512 filters (shown via a comparison
between the “[256]” and “[512]” variants). Conversely, when
using two layers of convolutions, having more filters prevails
over having fewer filters (shown via a comparison between
the “[128, 512]” and “[64, 256]” variants). This suggests that
adopting more filters can be beneficial, but only likely so

Iteration 1 Iteration 2 Iteration 3 Ground TruthImage

“back zebra”

“right pic bottom left donut”

“orange wedge furthest left”

“third bottle from the left”

“arm of the man with backpack”

Iteration 1 Iteration 2 Iteration 3 Ground TruthImage

Figure 5: Visualizations of predictions from each iteration of
SADLR (our default 3-iteration model). In the success cases
(inside the green box), the first iteration predicts a mask that
roughly locates the intended object and the following itera-
tions correct the missing and/or extra parts progressively. In
the failure cases (inside the red box), refinement fails as the
prediction from the first iteration contains too much noise—
that is, when localization is too bad. This is a fundamental
challenge and solving it requires still more effort devoted to
addressing cross-modal understanding.

when more layers are employed which facilitates learning.
In addition, we show that repeating our best [128, 512] struc-
ture once (leading to a total of four convolution layers) does
not bring further improvements.
Query update method. In Table 4 (c), we compare sum-
mation with an alternative replacement strategy when updat-
ing the query across iterations. This corresponds to changing
Eq. 2 to Qi = Oi−1, where the object feature vector replaces
the previous query as the new one. Table 4 (c) shows that re-
placement leads to inferior results, which indicates that it is
beneficial to retain language information in the query.

5 Conclusion
In this paper, we have proposed a semantics-aware dynamic
localization and refinement (SADLR) method for the re-
ferring image segmentation problem, which iteratively re-
fines multi-modal feature maps based on aggregated ob-
ject context. Extensive experiments on three baseline meth-
ods demonstrate the effectiveness and generality of the pro-
posed method. And evaluations on three standard bench-
marks demonstrate its advantage with respect to the state-
of-the-art methods. We hope that our method could inspire
further interest in the development of iterative learning ap-
proaches for referring image segmentation and be extended
to related tasks in the future.
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