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Abstract

Videos such as movies or TV episodes usually need to divide
the long storyline into cohesive units, i.e., scenes, to facili-
tate the understanding of video semantics. The key challenge
lies in finding the boundaries of scenes by comprehensively
considering the complex temporal structure and semantic in-
formation. To this end, we introduce a novel Context-Aware
Transformer (CAT) with a self-supervised learning frame-
work to learn high-quality shot representations, for generat-
ing well-bounded scenes. More specifically, we design the
CAT with local-global self-attentions, which can effectively
consider both the long-term and short-term context to im-
prove the shot encoding. For training the CAT, we adopt the
self-supervised learning schema. Firstly, we leverage shot-
to-scene level pretext tasks to facilitate the pre-training with
pseudo boundary, which guides CAT to learn the discrimina-
tive shot representations that maximize intra-scene similar-
ity and inter-scene discrimination in an unsupervised manner.
Then, we transfer contextual representations for fine-tuning
the CAT with supervised data, which encourages CAT to ac-
curately detect the boundary for scene segmentation. As a re-
sult, CAT is able to learn the context-aware shot representa-
tions and provides global guidance for scene segmentation.
Our empirical analyses show that CAT can achieve state-of-
the-art performance when conducting the scene segmentation
task on the MovieNet dataset, e.g., offering 2.15 improve-
ments on AP.

Introduction
With the development of internet, a significantly increasing
number of videos have been produced and stored. In order
to reduce manual costs and improve efficiency, intelligent
video understanding has received extensive attention and re-
searches (Yang et al. 2018; Zhu et al. 2020). A fundamental
aspect of video semantic understanding is scene segmenta-
tion (i.e., scene boundary detection) (Rao et al. 2020; Chen
et al. 2021; Huang et al. 2020; Wang et al. 2021), which
plays an important role in facilitating downstream tasks. For
example, students can quickly locate knowledge points ac-
cording to the segmented educational videos; users can uti-
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lize the interested scenes to retrieve movies with similar
themes; video platforms can advertise based on the segmen-
tation point to obtain higher revenue. Compared with locat-
ing a shot directly using visual cues (Cotsaces, Nikolaidis,
and Pitas 2006) (here shot represents a set of visually con-
tinuous frames over an uninterrupted period of time), scene
segmentation is a more challenging task, that aims to find the
temporal locations of scene with complex temporal structure
and semantic information (here scene denotes a sequence of
shots to describe a semantically associated story).

Despite the great progress in temporal localization, most
existing approaches usually focus on localizing certain ac-
tion from short videos (Lin et al. 2019, 2018; Long et al.
2020), these methods usually pre-define a list of categories
that are visually distinguishable (Rao et al. 2020). However,
scene segmentation poses significantly more difficult chal-
lenges: 1) Coarse-grained labels. The input video has only
binary boundary labels, without the fine-grained content cat-
egories for each scene as action recognition. 2) High-order
coherence. Scene segmentation needs to group the shots by
considering extracted high-order information, i.e., semanti-
cal coherence, rather than simple visual continuity. To ad-
dress these challenges, unsupervised approaches (Baraldi,
Grana, and Cucchiara 2015; Chasanis, Likas, and Galat-
sanos 2009) were firstly developed, which detected the
boundary with pairwise similarity comparison or nearest
shots clustering. Nevertheless, their performance is rela-
tively low considering the unsupervised setting. Further-
more, (Rao et al. 2020; Chen et al. 2021; Das and Das 2020)
introduced the scene boundary label for supervised predic-
tion with contextual shots within the sliding window. How-
ever, these methods are limited to using labeled data, without
considering the unlabeled videos. Therefore, self-supervised
approaches (Chen et al. 2020; Roh et al. 2021) are widely
researched by learning effectiveness representation without
relying on costly ground-truth annotations. Therefore, the
self-supervised learning methods (Chen et al. 2021; Mun
et al. 2022; Wu et al. 2022a) have been designed to employ
the pre-training protocols for learning spatio-temporal pat-
terns in video scenes. However, in current self-supervised
methods, the strategy of pretext task designs and high-level
contextual representation modeling are not well addressed.

Therefore, in this paper, we develop a Context-Aware
Transformer (CAT), which takes advantage of the princi-
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ple behind video production that nearby shots should have
semantically cohesive story-arch, and the far away shots
will have a transition with little similarity. In detail, CAT
develops the local-global self-attention heads to synthesize
the complementary information from both long-term and
short-term neighbors, rather than encoding the shots with
only single-level contextual information. Moreover, in self-
supervised training CAT, we propose shot-to-scene level
pretext tasks, i.e., Shot Masking Prediction, Shot Order Pre-
diction, Global Scene Matching, and Local Scene Matching,
that leverage pseudo-boundaries to capture semantic contex-
tual representation during pre-training, thus leading to pre-
cise scene boundary detection in fine-tuning stage with la-
beled data. Along this line, we can overcome the limitation
of modeling videos by learning context-aware shot represen-
tations, and wisely employing the unlabeled videos. Conse-
quently, CAT provides global guidance for video scene seg-
mentation.

Related Work
Video Scene Segmentation (also known as scene boundary
detection) aims at identifying the begin and end locations
of different scenes with cohesive story-arch in videos. Early
attempts mainly adopt the unsupervised learning to contrast
or cluster neighboring shots into scenes. For example, (Rui,
Huang, and Mehrotra 1998) grouped shots into semantically
related scenes with time-adaptive similarity. (Rasheed and
Shah 2003) utilized the motion content, shot length and
color properties of shots for first pass cluster, then com-
puted scene dynamics for fine-grained cluster. (Chasanis,
Likas, and Galatsanos 2009) proposed an improved spec-
tral clustering method and employed the fast global k-means
algorithm for grouping shots. (Baraldi, Grana, and Cuc-
chiara 2015) introduced a deep siamese network for seg-
menting videos into coherent scenes. (Sidiropoulos et al.
2011; Yang et al. 2021; Baraldi, Grana, and Cucchiara 2015)
fused multi-modal such as audio and visual features for final
detection. However, these methods always rely on manually
designed similarity mechanisms, which are suffered from
low performance and efficiency. Therefore, supervised ap-
proaches are researched, which adopted the boundary label
for supervised training. For example, (Rotman, Porat, and
Ashour 2017) formulated the scene detection as a generic
optimization problem to optimally group shots into scenes.
(Das and Das 2020) concatenated a shot with its left and
right contexts for segment boundary prediction. (Rao et al.
2020) proposed to hierarchically learn shot embedding to
provide a top-down scene segmentation with multi-modal
information. Furthermore, to utilize the unlabeled videos,
self-supervised segmentation approaches are proposed. For
example, (Chen et al. 2021) presented a self-supervised shot
embedding approach to learn a shot representation that max-
imizes the similarity between nearby shots compared to ran-
domly selected shots. (Mun et al. 2022) pre-trained a trans-
former encoder with pseudo-boundaries, and then fine-tuned
the encoder with labeled data. Nevertheless, these methods
always adopted sophisticated model architectures, without
carefully considering the contextual information of the long-
term video.
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Figure 1: Illustration of Context-Aware Transformer (CAT).
CAT designs the local-global self-attentions to comprehen-
sively consider both short-term shots and potential long-
term correlated shot information.

Self-Supervised Representation Learning attempts to
learn representations using unlabeled data by solving pre-
text tasks using pseudo-supervised learning. The pseudo-
labels are automatically created without requiring labeled
data (Jing and Tian 2021). For example, (Pathak et al.
2016; Vincent et al. 2008) used the pretext tasks of recon-
structing corrupted, (Doersch, Gupta, and Efros 2015) pro-
posed to classify inputs with pseudo-labels. Inspired by self-
supervised learning, many approaches are proposed with
various pretext tasks in video understanding tasks. For ex-
ample, (Ahsan, Sun, and Essa 2018) presented a pretext task
of masked frame modeling to learn temporal dependency be-
tween frames. (Xu et al. 2019) discovered the spatiotemporal
representations of the video by predicting the order of shuf-
fled clips from the video. (Kuang et al. 2021) proposed a
video-level contrastive learning method based on segments
to formulate positive pairs. However, most methods concen-
trated on the classification task by modeling the shot level
pretext tasks, which may be sub-optimal to the video scene
segmentation task.

Proposed Method
Considering that state-of-the-art methods (Rao et al. 2020;
Chen et al. 2021; Mun et al. 2022) formulate scene seg-
mentation based on the constituent set of shots (i.e., de-
termine whether a shot boundary is a scene boundary), all
input videos are first divided into shots with standard shot
detection techniques (Sidiropoulos et al. 2011), details are
in the supplementary. Therefore, given an untrimmed video
{vt}Tt=1 with T shots, where vt is the t−th shot. Scene
segmentation is to generate a set of boundary label y =
{yt}Tt=1, where yt = 1 represents the boundary, otherwise
yt = 0. To this end, we first introduce a context-aware
Transformer encoder to model the contextual information,
and then propose a self-supervised learning scheme with
shot-to-scene pretext tasks to learn discriminative shot rep-
resentations for segmentation.

Context-Aware Transformer
The key challenge to encoding the sequential shots is that:
different shot neighbors have various importance in mod-
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eling contextual information. To overcome this challenge,
we design the Transformer with local-global self-attention
heads to integrate both short-term shots and potential long-
term correlated shot information.
Shot Encoder. Following (Rao et al. 2020; Chen et al. 2021;
Wu et al. 2022b; Mun et al. 2022), we employ a shot encoder
fe to encode a shot by capturing its spatio-temporal patterns.
Given a shot vt, the representations can be formulated as:
fe(vt). Then the encoded shot sequence is sent into the CAT.
Local Encoder. To comprehensively encode each shot by
considering the dependencies between shots, we employ
the transformer encoder (Vaswani et al. 2017) as the back-
bone, which can encode the relationships among indepen-
dent shots by adopting the self-attention mechanism. Specif-
ically, as shown in Figure 1, with the input shots, a video can
be denoted as v̄ = [v̄1, v̄2, · · · , v̄T ] = fe(v)W̄ ∈ RT×d,
where d is the hidden dimension, W̄ ∈ Rd1×d is the learn-
able matrix. In the self-attention layer, the input representa-
tions can be used to compute three matrices: Q, K, and V
corresponding to queries, keys, and values. Note that local
self-attention heads only calculate the dot-product similari-
ties between queries and keys of the shot neighbors, i.e., a
fixed L-size window centered on the shot:

Ql = v̄WQl
, Kl = v̄WKl

, Vl = v̄WVl
,

Al =
QlK

⊤
l√

dNl

·M Att(v̄l) = σ(Al)Vl,
(1)

where Ql ∈ RT×dNl , Kl ∈ RT×dNl , Vl ∈ RT×dNl , and
WQl

∈ Rd×dNl ,WKl
∈ Rd×dNl ,WVl

∈ Rd×dNl are learn-
able matrices. Nl denotes the number of local heads. The ac-
tivation function σ can be used as softmax here. M ∈ RT×T

represents the mask matrix with padding, where the shots in
defined local window is 1, otherwise is 0.
Global Encoder. To introduce the extra neighbor shot
as complementary information, we further propose jointly
modeling strategy with global self-attention heads, which di-
rectly determine attention distributions with the dot-product
similarity between fully queries and keys:

Qg = v̄WQg
, Kg = v̄WKg

, Vg = v̄WVg
,

Ag =
QgK

⊤
g√

dNg

Att(v̄g) = σ(Ag)Vg,
(2)

where Qg ∈ RT×dNg , Kg ∈ RT×dNg , Vg ∈ RT×dNg , and
WQg

∈ Rd×dNg ,WKg
∈ Rd×dNg ,WVg

∈ Rd×dNg are
learnable matrices. Ng denotes the number of global heads.
Finally, local-global self-attention is composed of N = Nl+
Ng parallel heads, and dNl

= dNg
= d/N .

In summary, the local head attentions are responsible for
capturing local dependencies based on local details, i.e.,
the potential intra-scene shots, and global head attentions
are designed to model the long-term dependencies between
shots, i.e., the potentially missed intra-scene and inter-scene
shots. The combination of local and global attention enables
our CAT to dynamically model local shots and capture the
global dependencies of similar shots. Consequently, we can
acquire output representations of shots, i.e., v̂ = ft(v̄) =
[v̂1, v̂2, · · · , v̂T ] ∈ RT×d, where ft denotes the CAT.

Self-Supervised Training
To employ unlabeled videos, there are two ways: semi-
supervised and self-supervised techniques. A direct way in
semi-supervised methods (Arazo et al. 2020) is to use a
model’s predictions to obtain artificial labels for unlabeled
data. A specific variant is the pseudo labeling, which con-
verts the model predictions of unlabeled data to hard labels
for calculating the cross entropy. However, when we used
semi-supervised ideas in the early stage, we found that the
model performance was not as good as the supervision ef-
fect. We find that the reason is that the distributions of un-
labeled and labeled data are inconsistent in the MovieNet
dataset, which leads to the problem of noisy labeling pre-
dicted by the model trained on labeled data. In detail, we set
the supervised data with label 1, and the unsupervised data
with label 0, then we train a binary classifier using the repre-
sentations fe(v). The result of test AUC is 78.6, which indi-
cates that we can easily distinguish the supervised and unsu-
pervised data, i.e. existing distribution drift problem. There-
fore, the self-supervised scheme, which first trains a gen-
eralized model using the unsupervised data and then fine-
tunes the pre-trained model using supervised model, can
well overcome this challenge.

Pre-Training Objectives
Shot Masked Modeling (SMM). Inspired by masked lan-
guage modeling (Vaswani et al. 2017), we adopt the shot
masked modeling task that reconstructs the representation
of masked shots based on the surrounding shots. In detail,
given the input shot features v̄, we randomly mask them
with a probability of 15%. For masked shot sets, we learn
to reconstruct the output representations to their input shot
features with a regression head. The reconstruction loss can
be formulated as:

Lsmm =
∑
i∈Dm

∥v̄i − hsmm(v̂i)∥22 (3)

where hsmm is a regression head to match the contextualized
shot representations with input features v̄i. v̂i denotes the
learned representation of i-th shot by CAT. Dm denotes the
set of masked shots.
Shot Order Modeling (SOM). SOM aims at full-scale ex-
ploiting the sequential nature of video input. Inspired by the
frame order modeling (Li et al. 2020), we randomly select
15% of the shots to be shuffled, and the SOM is to recon-
struct their original timestamps, i.e., s = {sj}|Do|

j=1 , where
sj ∈ {1, 2, · · · , T}, Do is the set of shuffled shots and |Do|
represents the size. SOM can be formulated as a classifica-
tion problem, where s is the ground-truth labels of the re-
ordered shots. The objective can be formulated as:

Lsom =
∑
j∈Do

CE(sj , hsom(v̂j)) (4)

where CE represents the cross-entropy loss, hsom denotes
the order predictor with a softmax layer.
Global Scene Matching (GSM). GSM aims to make the
shot representations similar to its associated scene, while
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Figure 2: Illustration of self-supervised training. In the pre-training stage, we train the shot encoder and context-aware Trans-
former with shot-to-scene pretext tasks using pseudo boundary in an unsupervised manner. Then, we fix the shot encoder, and
fine-tune the context-aware Transformer with supervised data, including boundary prediction and supervised contrastive losses.

dissimilar to other scenes. To achieve this purpose, we con-
struct a long fixed-size (i,e, P length) window for each
shot, in which each shot act as the center shot, i.e., ct =
{v̄t−(P−1)/2, · · · , v̄t, · · · , v̄t+(P−1)/2}. And then we sim-
ply find pseudo-boundaries by measuring the similarity be-
tween shots, i.e, taking the given shot as the center to spread
to both sides, and the first shot whose cosine similarity with
the center shot is lower the threshold is regarded as a pseudo-
boundary, i.e., cos(v̄j , v̄t) ≤ µ. As a result, we divide the
fixed-size window of CAT output into three non-overlapping
sub-sequences, i.e., Qleft

t , Qt, Q
right
t . Algorithm details are

in the supplementary. The reason for using v̄ to calculate the
pseudo-boundary is that adopting the output representations
of CAT to calculate the similarity will create more noise,
considering the integration of contextual information in the
forward process. Related experiments are in the supplemen-
tary. Considering the split three sub-sequences as pseudo-
scenes, we train the model using InfoNCE loss (van den
Oord, Li, and Vinyals 2018):

Lgsm =−
∑

Q̂∈{Qleft
t ,Qt,Q

right
t }

log
esim(v̂,Q̂)/τ

esim(v̂,Q̂)/τ +
∑

Qr∈Nr
esim(v̂,Qr)/τ

sim(v̂, Q̂) = cos(v̂,mean(Q̂))
(5)

where v̂ is a randomly sampled shot from Q̂, τ is a temper-
ature hyperparameter and mean(Q) means scene-level rep-

resentations, which utilizes the average pooling of shots in
sub-sequence Q. Nr is the constructed negative scenes using
the pseudo-scenes except for Q̂, and other pseudo-scenes in
the mini-batch.
Local Scene Matching (LSM). Moreover, LSM measures
the semantic coherence of the local shots rather than global
scene, which learns to decide whether the given two shots
belong to the same scene. In detail, we use the center shot v̂t

as the anchor and construct a tuple (v̂t, v̂pos, v̂neg), where
v̂pos is sampled from Qt, and v̂neg is sampled from Qleft

t

and Qright
t . The loss is defined as:

Llsm = − log
esim(v̂t,v̂pos)/τ

esim(v̂t,v̂pos)/τ +
∑

v̂neg∈Nn
esim(v̂t,v̂neg)/τ

(6)

where sim denotes cos function. Nn is the constructed neg-
ative shots. In summary, GSM and LSM encourage the CAT
to maximize intra-scene similarity, while minimizing inter-
scene similarity. The final pre-training loss is defined as:

L = Lsmm + Lsom + Lgsm + Llsm, (7)

Fine-Tuning for Segmentation
As a matter of fact, we have limited videos with bound-
ary labels. Therefore, in the fine-tuning phase, we formulate
the video scene segmentation as a binary classification task
to identify transitional moments. In detail, given a labeled
video v, we develop a scene boundary detection head to in-
fer the boundary prediction for each shot. Following (Mun
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et al. 2022), we freeze the parameters of the shot encoder
fe, and fine-tune the ft and boundary detection head. The
binary cross-entropy loss can be formulated as:

Lp = −
∑
v̂t

[yt log(hpre(v̂t)) + (1− yt) log(1− hpre(v̂t))]

(8)

where hpre denotes the boundary detection head. In infer-
ring phase, we predict scene boundary when a shot’s predic-
tion score is higher than a pre-defined threshold (i.e., 0.5).

Experiments
Experimental Setups
Dataset. Considering the availability and scale of video seg-
mentation datasets, we adopt the MovieNet dataset follow-
ing all current state-of-the-art methods (Rao et al. 2020;
Chen et al. 2021; Wu et al. 2022b; Mun et al. 2022).
MovieNet (Huang et al. 2020) dataset published 1,100
movies where 318 of them are annotated with scene bound-
aries. In detail, most movies in MovieNet have a time du-
ration between 90 to 120 minutes, providing rich informa-
tion about individual movie stories. The whole annotation
set is split into Train, Validation, and Test sets with the ratio
of 10:2:3 on video level following (Huang et al. 2020), the
scene boundaries are annotated at shot level. The length of
the annotated scenes varies from less than 10s to more than
120s, where the majority last for 10∼30s, more details are
in the supplementary.
Comparison Methods. We compare our method CAT
with state-of-the-art segmentation approaches: 1) unsuper-
vised methods, i.e., GraphCut (Rasheed and Shah 2005),
SCSA (Chasanis, Likas, and Galatsanos 2009), DP (Han and
Wu 2011), StoryGraph (Tapaswi, Bäuml, and Stiefelhagen
2014), Grouping (Rotman, Porat, and Ashour 2017). 2) su-
pervised methods, i.e., including Siamese (Baraldi, Grana,
and Cucchiara 2015), MS-LSTM (Huang et al. 2020), and
LGSS (Rao et al. 2020), and 3) self-supervised methods,
including ShotCoL (Chen et al. 2021), SCRL (Wu et al.
2022b), and BaSSL (Mun et al. 2022), more details are in
the supplementary.
Evaluation Protocol. Following (Mun et al. 2022), we
adopt four commonly used metrics: 1) Average Precision
(AP), 2) AUC, 3) F1, and 2) Miou, which measures the aver-
aged intersection over union (IoU) between predicted scene
segments and their closest ground truth scene segments.
Shot Feature Encoding. Considering the input features
of shots, we construct two modal features following (Rao
et al. 2020; Chen et al. 2021; Mun et al. 2022), i.e., the
visual and audio modalities, which are encoded indepen-
dently with separate encoder networks from the input shots.
Specifically, visual modality includes place elements to
capture the complex semantic information. Place features
(2,048 dimensions) are extracted from key-frames in shots
with ResNet50 (He et al. 2016). On the other hand, Au-
dio features (512 dimensions) are obtained by concatenat-
ing STFT (Umesh, Cohen, and Nelson 1999) features in a
shot with a 16K Hz sampling rate and 512 windowed signal
length. Multi-modal experiments are in the supplementary.

Implementation Details
For CAT framework, we choose the 2-layer Transformer
network with 8 heads, i.e., N = 8, as the encoder net-
work architecture. The regression head hsmm is a fully con-
nected network with three layers, and the order prediction
hsom and boundary detection head hpre are fully connected
networks with two layers. All weights in the encoder and
MLP are randomly initialized. For the pre-training stage, we
cross-validate the number of neighbor shots among L =
{1, 3, 5, 7}/P = {13, 15, 17, 19} and L = 5/P = 17
is selected due to its good performance and computational
efficiency. The optimization method is Adaptive Moment
Estimation (Adam), and the learning rate is searched in
{0.5, 0.1, 0.05, 0.01, 0.005, 0.001} to find the best settings
for each task. Finally, we set the learning rate as 0.001. The
hyper-parameter µ = 0.3, τ = 0.1. Code is available at
https://github.com/njustkmg/CAT.

Video Scene Segmentation
Table 1 summarizes segmentation results against compar-
ison methods. M.S. represents the MovieScenes dataset
with 150 annotated movies, M.S-318 denotes the MovieNet
dataset with 318 annotated movies, and Eval. means the
dataset used for supervised fine-tuning after the self-
supervised pre-training. Train., Test., and Val. represent
training, testing, and validation sets of MovieNet (Huang
et al. 2020). The segmentation results are adopted directly
according to the original paper except for * annotation. “-
” denotes that the results are not given in original papers.
The results reveal that: 1) Supervised methods perform su-
perior to the unsupervised methods, e.g., the LGSS achieves
at least 20% improvement in AP. For the reason that su-
pervised data can better guide representation learning. 2)
Self-supervised style approaches further improve the per-
formance, which indicates the advantages of pre-training
with unsupervised data. 3) CAT achieves the best perfor-
mance on various criteria, e.g., CAT outperforms the su-
pervised state-of-the-art method, i.e., LGSS by margins of
12.45/4.87 in terms of AP/mIOU, outperforms the state-of-
the-art self-supervised method, i.e., BaSSL by margins of
2.15/2.98 /4.91/1.27 in terms of AP/mIOU/F1/AUC, which
indicate the effectiveness of context-aware Transformer and
pre-training objectives. Besides, CAT using Transformer
with only global attention (i.e., CAT with Transformer) per-
forms worse than CAT, revealing the advantages of using
context-aware attention. 4) To prevent data leakage, we have
reproduced the performance of self-supervised methods on
the training dataset (660 movies) for comparison. Compared
with other self-supervised approaches that have performance
declines, CAT can achieve competitive performance with
less training data, with only a decline of 0.33/0.23/0.58/0.18
in terms of AP/mIOU/F1/AUC.

Ablation Study
Impact of individual pretext tasks. To explore the contri-
bution of each pre-training objective, we train models by
varying the usage of pre-training tasks. From Table 2, we
conclude the following observations: 1) SMM task leads the
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W/o SSL Dataset AP (↑) mIOU(↑) F1(↑) AUC(↑)
GraphCut M.S. 14.10 29.70 - -
SCSA M.S. 14.70 30.50 - -
DP M.S. 15.50 32.00 - -
Grouping M.S. 17.60 33.10 - -
StoryGraph M.S. 25.10 35.70 - -
Siamese M.S. 28.10 36.00 - -
MS-LSTM M.S. 46.50 46.20 - -
LGSS M.S. 47.10 48.80 - -
LGSS w/o DP M.S. 44.90 46.50 38.52 -
LGSS w/o DP∗ M.S-318 44.90 46.50 38.52 87.73

W/ SSL Dataset AP(↑) mIOU(↑) F1(↑) AUC(↑)Pretrain Data Eval.

ShotCoL Train.+Test.+Val. M.S-318 52.89 - 49.17 -
SCRL Train.+Test.+Val. M.S-318 54.82 - 51.43 -
BaSSL Train.+Test.+Val. M.S-318 57.40 50.69 47.02 90.54
CAT with transformer Train.+Test.+Val. M.S-318 58.35 51.92 50.20 90.59
CAT Train.+Test.+Val. M.S-318 59.55 53.67 51.93 91.81

ShotCoL Train. only M.S-318 48.21 - 46.52 -
SCRL Train. only M.S-318 54.55 - 51.39 -
BaSSL∗ Train. only M.S-318 53.36 48.32 43.64 89.26
CAT Train. only M.S-318 59.22 53.44 51.35 91.63

Table 1: Scene segmentation results. The compared methods are grouped in two, i.e., (a) approaches that do not use self-
supervised learning, including unsupervised and supervised methods, and (b) approaches that adopt self-supervised learning
followed by supervised fine-tuning. * denotes our implementations.

Pretext Tasks Evaluation Metric

SMM SOM GSM LSM AP mIOU AUC F1 SUM

✓ 16.61 28.00 69.09 21.99 135.69
✓ 39.59 44.34 82.58 38.42 198.93

✓ 44.27 42.03 86.21 32.12 204.63
✓ 29.38 39.88 77.63 30.98 177.87

Table 2: Ablation results for different pre-training tasks.

Local Window AP mIOU AUC F1

L=3 58.07 53.10 91.15 51.12
L=5 59.55 53.67 91.81 51.93
L=7 59.49 53.62 91.77 51.93

Table 3: Ablations of the local encoder window size L. The
best scores are in bold.

worst performance, which indicates that context-aware pre-
text tasks (i.e., GSM, LSM, and SOM) can consider contex-
tual relationships well, which is vital for scene segmenta-
tion. 2) Scene-level task, i.e., GSM achieves the best perfor-
mance, which indicates the importance of considering intra-
scene and inter-scene distances.
Sensitivity of Hyperparameters. To explore the effect of
different hyperparameters: 1) the window size L in the local
encoder. 2) the number of local and global attention heads
Nl/Ng in context-aware Transformer. 3) the global scene

Contextual Window AP mIOU AUC F1

P=13 58.73 52.62 91.41 50.44
P=15 59.27 53.39 91.72 51.44
P=17 59.55 53.67 91.81 51.93
P=19 59.14 53.46 91.64 51.59

Table 4: Ablations of the contextual window length P in
scene-level tasks. The best scores are in bold.

length P in scene-level tasks, we conduct more experiments.
More parameter analyses are in the supplementary. Table 3
exhibits the results of parameter L. The performance first in-
creases and then decreases, indicating that a larger window
can consider more contextual information, but an oversized
one may introduce noisy information. Table 4 records the
performance of parameter P , which is similar to parame-
ter L in that a larger global scene can introduce more con-
textual information, but an oversized one will cause worse
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Figure 3: Comparison of boundary detection results from three approaches: LGSS, BaSSL, and our CAT. The green dividing
lines indicate the correct boundary, while the yellow lines denote the incorrect ones. “GT” represents the ground truth boundary.

Local-Global Heads AP mIOU AUC F1

Nl = 0, Ng = 8 58.35 51.92 90.59 50.20
Nl = 2, Ng = 6 59.55 53.67 91.81 51.93
Nl = 4, Ng = 4 59.19 53.19 91.66 51.46
Nl = 6, Ng = 2 59.10 53.02 91.57 51.08
Nl = 8, Ng = 0 58.92 52.27 91.44 50.92

Table 5: Ablations of the local-global number. The best
scores are in bold.

performance. Table 5 provides the segmentation results us-
ing various local-global heads in CAT. The performance of
CAT firstly increases, and then decreases. The CAT acquires
the best performance when local-global is (Nl = 2, Ng = 6).
The reason may be that the local encoder’s window size is
limited, thereby the global shots can provide additional sup-
plementary information.

Methods AP mIOU AUC F1

LGSS (Visual) 39.00 - - -
LGSS (Audio) 17.50 - - -
LGSS (Visual+Audio) 43.40 - - -
ShotCoL (Visual) 46.77 - - -
ShotCoL (Audio) 27.92 - - -
ShotCoL (Visual+Audio) 44.32 - - -
SCRL (Visual) 53.74 - - -
SCRL (Audio) 29.39 - - -
SCRL (Visual+Audio) 50.80 - - -
BaSSL (Visual) 57.40 50.69 90.54 47.02
BaSSL (Audio) 31.69 41.85 79.98 35.49
BaSSL (Visual+Audio) 58.39 52.67 91.09 49.97
CAT (Visual) 59.55 53.67 91.81 51.93
CAT (Audio) 33.41 42.43 80.79 36.40
CAT (Visual+Audio) 60.20 55.49 92.17 54.78

Table 6: Comparison results of the multi-modal experiment
on MovieNet. Backbones of following methods for each
modality are the same.

Performance of Multi-modal Learning
Following (Rao et al. 2020; Yang et al. 2022; Wu et al.
2022b; Mun et al. 2022), we experiment with the proposed
method using multi-modal data, i.e., audio and visual modal-

ities. In detail, we adopt the late fusion (i.e., using max pool-
ing of multi-modal predictions) following (Mun et al. 2022).
“-” denotes that the results are not given in the original pa-
per. Table 6 records the results, we find that the multi-modal
fusion performs better than the single modality, but the audio
is a weak modality, which has little promotion.

Visualization
To explore the learning of shot representations, we conduct
more experiments. We show segmented cases in Figure 3 to
demonstrate the CAT. There are two scenes, we find that a
shot with clear change is likely to predict a wrong bound-
ary (i.e., yellow lines) by context limited approaches, even
though has similar semantics to contextual shots. However,
CAT can successfully predict the boundary. More visualiza-
tion cases are in supplementary.

Conclusion
In this paper, we study the video segmentation task. With
the development of self-supervised learning that adopts both
the unsupervised and supervised data into training, we intro-
duce a novel Context-Aware Transformer (CAT) with a self-
supervised learning framework to learn high-quality shot
representations, for generating well-bounded scene. In de-
tail, CAT utilizes local-global self-attentions to improve the
shot encoding. Furthermore, we design shot-to-scene level
pretext tasks for learning shot representations, and then we
direct fine-tune the CAT with supervised data. Empirical
analyses show that CAT can achieve state-of-the-art perfor-
mance when conducting the scene segmentation task. In the
future, how to design a more robust multi-modal fusion strat-
egy is an interesting work.
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