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Abstract

Deep metric learning aims to learn a feature space that mod-
els the similarity between images, and feature normalization
is a critical step for boosting performance. However directly
optimizing L2-normalized softmax loss cause the network to
fail to converge. Therefore some SOTA approaches appends
a scale layer after the inner product to relieve the conver-
gence problem, but it incurs a new problem that it’s difficult to
learn the best scaling parameters. In this letter, we look into
the characteristic of softmax-based approaches and propose
a novel learning objective function Stop-Gradient Softmax
Loss (SGSL) to solve the convergence problem in softmax-
based deep metric learning with L2-normalization. In addi-
tion, we found a useful trick named Remove the last BN-
ReLU (RBR). It removes the last BN-ReLU in the backbone
to reduce the learning burden of the model. Experimental re-
sults on four fine-grained image retrieval benchmarks show
that our proposed approach outperforms most existing ap-
proaches, i.e., our approach achieves 75.9% on CUB-200-
2011, 94.7% on CARS196 and 83.1% on SOP which out-
performs other approaches at least 1.7%, 2.9% and 1.7% on
Recall@1.

Introduction
Deep metric learning (DML) aims to learn a similarity met-
ric, which can map samples to a high-dimensional space.
In the high-dimensional space, the samples of the same in-
stance are closer, while the samples of different instances
are farther away. Typical deep metric learning applications
include image retrieval, person re-identification, etc. Popu-
lar methods of deep metric learning include pairwise based
methods and softmax based methods. Pairwise based meth-
ods focused on finding efficient ways to improve sample
weighting strategies over the existing pairwise losses, such
as contrastive loss and triplet loss. Pairwise based methods
directly affect the distance between point pairs in the em-
bedded space, which is strongly related to the goal of DML.
Softmax based methods may seem unrelated to DML as it
does not explicitly involve pairwise distances at the surface.

Some methods such as (Movshovitz-Attias et al. 2017;
Wang et al. 2017a; Zhai and Wu 2019; Wang et al. 2018)
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Figure 1: Illustration of Softmax and our proposed SGSL.
SGSL and softmax share parameters, but there are three dif-
ferences: 1) The value of γ. 2) The feature in SGSL is L2-
normlized. 3) We do not allow gradient update through Wj ,
which is identified as Ŵj . The derivation process and details
can be found in Section Method.

only use softmax loss to train the model which can achieve
good performance as well. In contrast to pairwise-based
methods, the softmax-based method can be viewed as ap-
proximating each class using a proxy (Movshovitz-Attias
et al. 2017), and uses all proxies to provide global con-
text for each training iteration. Boudiaf et al. (Boudiaf et al.
2020) proves that optimizing the softmax-based method cor-
responds to an approximate bound-optimizer of an underly-
ing pairwise loss, showing that minimizing the softmax loss
is equivalent to maximizing a discriminative view of the mu-
tual information between the features and labels. In practice,
the inner product (last fully connection layer) without L2-
normalization is the most widely used similarity measure
when training the softmax-based DML model, but the fea-
tures are often L2-normalized in the testing phase (Boudiaf
et al. 2020; He et al. 2020), that means the distance metric
used during training is different from that used in the testing
phase. In order to make up for this gap, a simple method is
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to use L2-normalization during training directly. However,
after L2-normalization, the network fails to converge eas-
ily. The softmax loss only decreases a little and then con-
verges to a very big value within a few thousands of itera-
tions. After that the loss does not decrease no matter how
many iterations we train and how small the learning rate is.
Wang et al. (Wang et al. 2017a) claim that this is mainly be-
cause the range of inner product output is only [−1, 1] after
L2-normalization, and it may prevent the probability getting
close to 1 even when the samples are well-separated. In or-
der to relieve this convergence problem, Wang et al. (Wang
et al. 2017a) appends a scale layer after the inner product.
The scale layer have a learnable parameter to scale the inner
product output to a bigger value instead of 1, then the soft-
max loss can continue to decrease. However, this method
can not guarantee that the network can learn the best scaling
parameter. In this paper, we propose a new softmax based
metric loss named Stop-Gradient Softmax Loss (SGSL), it
used together with the original softmax. As Figure 1 shows,
it shares parameters with the original softmax and has al-
most the same form, with only three differences: different
γ, L2-normalized feature and stop gradient for Wj . Since
the features used in SGSL are L2-normalized, the distance
metric in the training phase is consistent with that in the test
phase. SGSL and the softmax share parameters, so that the
network can get a good proxy (class center). At the same
time, the gradient of the class center is stopped in SGSL,
but the sample feature does not stop the gradient, thus forc-
ing the sample feature to approach the class center on the
high spherical surface. To summarize, the contribution of
our work is three-fold:

• We propose a novel and efficient Stop-Gradient Soft-
max Loss to solve the convergence problem in softmax-
based DML with L2-normalization. The proposed SGSL
does not need for complex sample-mining in deep metric
learning.

• In addition, we propose a useful trick named Remove the
last BN-ReLU (RBR) for ResNet, it can reduce the learn-
ing burden of the model and improve performance.

• Experiments on CUB-200-2011 (Welinder et al. 2010),
CARS-196 (Krause et al. 2013), Stanford Online Prod-
ucts (SOP) (Oh Song et al. 2016a), and In-shop Clothes
Retrieval (Liu et al. 2016) show that our method achieves
SOTA results than the current pairwise based and soft-
max based DML approaches.

Related Works
Deep Metric Learning
Deep Metric Learning learns a set of nonlinear transforma-
tion (He et al. 2016) for mapping the raw data points into
other feature space with higher discrimination power. The
deep architecture (Simonyan and Zisserman 2014) is ex-
ploited for better comparison and matching ability in the
feature space. It combines metric learning and feature learn-
ing together as a joint framework. Image retrieval is one
of the most common applications of deep metric learning.
One kind of losses used in deep metric learning is based

on classification, which is called softmax-based losses. And
another is based on sample pairs, which is called pairwise-
based losses.

Pairwise-based Losses
Pairwise-based losses use positive or negative sample pair to
supervise the model for learning.
Center Loss (Wen et al. 2016)’s target is to make all samples
as close to the center of their class as possible to increase
the intra-class compactness, and it increase the distance be-
tween different categories and reduce the distance between
the same class:

Lcenter =
1

2
Ex

[
∥x− cy∥22

]
, (1)

where cy is the learned center for class y. The definition
of other symbols is same as above. Working with the ID
cross-entropy loss, center loss can obtain excellent intra-
class compactness and inter-class separability on the train-
ing set.
Triplet Loss (Schroff, Kalenichenko, and Philbin 2015) ap-
plies to a triplet of samples called anchor point, positive
point and negative point. It aims to pull an anchor point
closer to the positive point (same identity) than to the nega-
tive point (different identity) by a fixed margin.

Ltri = E{xa,xp,xn} [D(xa,xp)−D(xa,xn) +m]+ , (2)

where D(·) denotes euclidean distance, m is a fixed margin
and [·]+ is the hinge function.
Soft Margin Triplet Loss (Hermans, Beyer, and Leibe
2017) replace the hinge function in triplet (Schroff,
Kalenichenko, and Philbin 2015) by a smooth approxima-
tion using the softplus function softpuls(·) = ln(1 +
exp(·)). The softplus function has similar behavior to the
hinge, but it decays exponentially instead of having a hard
cut-off.
Lifted Structure Loss (Oh Song et al. 2016b) tries to pull
one positive pair as close as possible and pushes all negative
samples farther than a margin.
Ranked List Loss (Wang et al. 2019b) proposes to build a
set-based similarity structure by exploiting all instances in
the gallery. Different from the above methods, which aim
to pull positive pairs as close as possible in the embedding
space, the Ranked List Loss only needs to pull positive ex-
amples closer than a predefined threshold (boundary).

Pairwise-based losses has a common problem, in which
pairwise losses require careful sample mining and weighting
strategies to obtain the most informative pairs, otherwise, the
performance will be greatly affected.

Softmax-based Losses
Softmax-based losses modify the original softmax to make
the model learn distinguishing features, without the need
for complex sample-mining and optimization schemes. The
original softmax is,

Lsoftmax =
1

N

N∑
i=1

−log
eW

T
yi

fi∑c
j=1 e

WT
j fi

(3)
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Figure 2: A common network architecture for image re-
trieval. Many approaches (Luo et al. 2019; Boudiaf et al.
2020; He et al. 2020) add batch normalization (without scal-
ing and bias) on top of the backbone, as it can smoothen/nor-
malize the feature distribution and enhance the intra-class
compactness.

where N is the number of samples in the batch, c is the num-
ber of classes in training set, fi is the ith sample’s feature
and yi is the ith sample’s label. Wj is the jth column of the
last fully connection layer, which is corresponding to the jth
class.
Ring Loss applies soft normalization, where it gradually
learns to constrain the norm to the scaled unit circle while
preserving convexity leading to more robust features.

LRing =
λ

2m

m∑
i=1

(∥F(xi)∥2 −R)2 (4)

where F(xi) is the deep network feature for the sample xi.
Here, R is the target norm value and λ is the loss weight
enforcing a trade-off between the primary loss function.
Boudiaf et al. (Boudiaf et al. 2020) proving that optimizing
the softmax-based method corresponds to an approximate
bound-optimizer of an underlying pairwise loss.

But these methods can not solve the convergence problem
in L2-normalized softmax well.

Method

In this section, we will first describe the definition of the pro-
posed loss function and discuss about the intuition and inter-
pretation of the loss function. Then we describe and analyse
the “remove last BN-ReLU“ trick when batch normalization
is added on top of the model.

Stop-Gradient Softmax Loss (SGSL)

When training the classification network for metric learning,
many approaches (Wang et al. 2017a; Zhai and Wu 2019;
Wang et al. 2018) remove the bias term in the last fully con-
nection layer, and we follow this setting. To better under-
stand our approach, we give a brief review of the original
softmax and its variants. The original softmax loss (without

bias) can be written as

Lsoftmax =
1

N

N∑
i=1

−log
eW

T
yi

fi∑c
j=1 e

WT
j fi

=
1

N

N∑
i=1

log(1 + e
log

∑c
j=1,j ̸=yi

e
WT

j fi

e
WT

yi
fi )

=
1

N

N∑
i=1

Softplus((log
c∑

j=1,j ̸=yi

eW
T
j fi)−WT

yi
fi)

=
1

N

N∑
i=1

Softplus(LSEγ=1
j ̸=yi

(WT
j fi)−WT

yi
fi)

(5)

where N is the number of samples in the batch, c is the num-
ber of classes in training set, fi is the ith sample’s feature
and yi is the ith sample’s label. Wj is the jth column of the
last fully connection layer, which is corresponding to the jth
class. Softplus(x) = log(1 + ex) and LSEγ(x1 · · ·xn) =
1
γ log(

∑c
j=1 e

γxj ).
The formula of our proposed Stop-Gradient Softmax Loss

(SGSL) is similar to the standard softmax, but there are three
differences: 1) The γ in SGSL is not fixed to 1, but a larger
value. γ can be regarded as a scale parameter to control the
“temperature“ of the loss. But unlike traditional temperature
scaling (Wu, Efros, and Yu 2018), our γ only added when
Wj and fi come from different classes; 2) Both Wj and
fi are L2-normalized; 3) We do not allow gradient update
through Wj . Our proposed SGSL is defined as

LSGSL =
1

N

N∑
i=1

Softplus(LSEγ
j ̸=yi

(
ŴT

j∥∥∥ŴT
j

∥∥∥
2

fi
∥fi∥2

)−
ŴT

yi∥∥∥ŴT
yi

∥∥∥
2

fi
∥fi∥2

)

(6)
where ·

∥·∥2
stands for L2-normalization and Ŵj means we

do not allow gradient update through Wj , γ is a pre-defined
scalar (e.g., 30). Other symbols have the same meaning as
Equation 5. In the experiment, we use the original softmax
and SGSL together, then the total loss is:

Ltotal = Lsoftmax + LSGSL (7)

Why SGSL Works
We know that Softplus(x) = log(1 + ex) (Chapados et al.
2001) is a convex and monotone increasing function, and
can be considered as a smooth version of the positive part
function max(0, x). The so-called Log Sum of Exponentials
LSEγ(x1 · · ·xn) =

1
γ log(

∑n
i=1 e

γxi) is a functional form
commonly encountered in dynamic discrete choice models,
it can be considered as a smooth version of selecting the
largest one in a set of data. And the larger γ is, the smaller
the error is. However, if the error is too small, the informa-
tion except the biggest one may be lost in the optimization
process. So it is important to choose a suitable γ, and in the
experiment we set an empiric value γ = 30 in Equation 6
as default. Based on the above, Equation 6 can be approxi-
mately expressed as

LSGSL ≈ 1

N

N∑
i=1

[maxj ̸=yi
(

ŴT
j∥∥∥ŴT
j

∥∥∥
2

fi
∥fi∥2

)−
ŴT

yi∥∥∥ŴT
yi

∥∥∥
2

fi
∥fi∥2

]+

(8)
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where the [·]+ denotes max([·], 0), Ŵj means we do not
allow gradient update through Wj , and the cosine similar-
ity u

∥u∥2

v
∥v∥2

is normalized version of inner-product of two
vectors, it used to measure the similarities between features
which is independent of magnitude, and it can be equiva-
lently L2-normalized euclidean distance.

As we can see from Equation 8, the target of LSGSL is to
make cosine similarity between fi and Wyi

greater than the
maximum cosine similarity between fi and Wj ̸=yi

. In other
words, LSGSL requires that the features learned by the net-
work should be closer (L2-normalized euclidean distance)
to the proxy of its class and farther away from the proxies of
other classes, which is obviously related to the goal of DML.
Note that LSGSL does not allow gradient update through W ,
therefore there is less convergence problem in SGSL.

Remove the Last BN-ReLU (RBR)
In deep metric learning, ResNet50 without last fully connec-
tion layer is often used as the backbone. As Figure 2 shows,
many approaches (Luo et al. 2019; Boudiaf et al. 2020; He
et al. 2020) add batch normalization (without scaling and
bias) on top of the backbone, as it can smoothen/normalize
the feature distribution and enhance the intra-class compact-
ness. However, it makes the last three layers in backbone
are BN-ReLU-BN which will increase the learning burden
of the model. Continuous BN-ReLU modules added to the
output feature do not bring any new information, but may
drop some useful information for metric learning. The ex-
periment result in Figure 4 further proves that the continuous
BN-ReLU modules added to the output feature are not con-
ducive to metric learning, so we remove the last BN-ReLU
in the backbone.

Experiments
We conduct extensive experiments on four public image
retrieval benchmarks, i.e., CUB-200-2011 (Welinder et al.
2010), CARS-196 (Krause et al. 2013), Stanford Online
Products (SOP) (Oh Song et al. 2016a), and In-shop Clothes
Retrieval (Liu et al. 2016). The architecture as Figure 2
shows. We follow the same evaluation protocol commonly
used in traditional image retrieval benchmarks with the stan-
dard train/test split and compare our proposed approach to
state-of-the-art deep metric learning approaches. For a fair
comparison, we only demonstrate the performance of the ap-
proaches trained with ResNet-50.

Datasets
CUB-200-2011 has 200 classes with 11, 788 images. The
first 100 classes (5864 images) for training and the rest of
the classes (5,924 images) for testing.
CARS-196 has 198 classes with 16, 185 images. The first 98
classes for training (8, 054 images) and the other 98 classes
(8, 131 images) for testing.
Stanford Online Products has 22, 634 classes with
120, 053 images. The first 11, 318 classes (59, 551 images)
for training and the other 11, 316 classes (60, 502 images)
for testing.

Figure 3: Feature distribution visualization of “softmax“ and
“softmax + SGSL“ on fasion MNIST. We can see that the
features obtained by our approach (softmax + SGSL) have a
more compact intra-class distribution. Generally speaking,
more compact intra-class distribution is useful for DML.
Best viewed in color.

In-shop Clothes is a large-scale clothes dataset with com-
prehensive annotations. It has 50 fine-grained categories and
1, 000 attributes, and contains over 800, 000 images, which
are richly annotated with massive attributes, clothing land-
marks, and correspondence of images taken under different
scenarios including store, street snapshot, and consumer.

Implementation Details
Our experiments were executed using PyTorch on GTX
2080Ti GPU. We use different numbers of GPUs for training
according to the size of the data set, for example, SOP used
4 GPU for training, and others used 2. All the experiments
use ResNet50 as the backbone which pre-trained on Ima-
geNet, and we replace the global average pooling by gener-
alized mean pooling (Filip, Giorgos, and Ondrej 2017). As
many DML approaches (Luo et al. 2019; Boudiaf et al. 2020;
He et al. 2020), we add Batch Normalization (BN), without
scaling and bias, on top of the backbone. Like most meth-
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CUB-200-2011 CARS196 Stanford Online Products
Method #dims R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100
Deep Spectral (Law, Urtasun, and Zemel 2017) ICML17 512 53.2 66.1 76.7 85.2 73.1 82.2 89.0 93.0 67.6 83.7 93.3
Angular Loss (Wang et al. 2017b) ICCV17 512 54.7 66.3 76 83.9 71.4 81.4 87.5 92.1 70.9 85.0 93.5
Hierarchical triplet (Ge 2018) ECCV18 512 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7 74.8 88.3 94.8
ABE (Kim et al. 2018) ECCV18 512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1 76.3 88.4 94.8
Normalized Softmax (Zhai and Wu 2019) BMVC19 512 61.3 73.9 83.5 90.0 84.2 90.4 94.4 96.9 78.2 90.6 96.2
RLL-H (Wang et al. 2019b) CVPR19 512 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1 76.1 89.1 95.4
Multi-similarity (Wang et al. 2019a) CVPR19 512 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5 78.2 90.5 96.0
Relational Knowledge (Park et al. 2019) CVPR19 512 61.4 73.0 81.9 89.0 82.3 89.8 94.2 96.6 75.1 88.3 95.2
SoftTriple Loss (Qian et al. 2019) ICCV19 512 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 78.3 90.3 95.9
HORDE (Jacob et al. 2019) ICCV19 512 66.3 76.7 84.7 90.6 83.9 90.3 94.1 96.3 80.1 91.3 96.2
Easy triplet mining (Xuan 2020) WACV20 512 64.9 75.3 83.5 - 82.7 89.3 93.0 - 78.3 90.7 96.3
Proxy NCA++ (Teh, DeVries, and Taylor 2020) ECCV20 512 69.0 79.8 87.3 92.7 86.5 92.5 95.7 97.7 80.7 92.0 96.7
Proxy Anchor (Kim et al. 2020) CVPR20 512 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3 79.1 90.8 96.2
Proxy Few (Zhu et al. 2020) NeurIPS20 512 66.6 77.6 86.4 - 85.5 91.8 95.3 - 78.0 90.6 96.2
EFC(12,48) (Li et al. 2022) IET CV21 576 69.8 79.5 86.5 91.8 91.8 95.1 97.0 98.2 - - -
IBC (Seidenschwarz, Elezi, and Leal-Taixé 2021) ICML21 512 70.3 80.3 87.6 92.7 88.1 93.3 96.2 98.2 81.4 91.3 95.9
HIST (Lim et al. 2022) CVPR22 512 71.4 81.1 88.1 - 89.6 93.9 96.4 - 81.4 92.0 96.7
SGSL (Ours) 512 72.0 81.1 88.3 93.1 94.1 96.7 98.0 99.0 81.4 91.8 96.2
Normalized Softmax (Zhai and Wu 2019) BMVC19 2048 65.3 76.7 85.4 91.8 89.3 94.1 96.4 98.0 79.5 91.5 96.7
Cross-Entropy-cos (Boudiaf et al. 2020) ECCV20 2048 69.2 79.2 86.9 91.6 89.3 93.9 96.6 98.4 81.1 91.7 96.3
Proxy NCA++ (Teh, DeVries, and Taylor 2020) ECCV20 2048 72.2 82.0 89.2 93.5 90.1 94.5 97.0 98.4 81.4 92.4 96.9
KAE-Net (Moskvyak et al. 2021) WACV21 2048 74.2 83.3 89.1 93.2 91.1 94.9 96.9 98.1 - - -
SGSL (Ours) 2048 75.9 85.0 90.7 94.5 94.7 97.2 98.3 99.1 83.1 93.0 97.0

Table 1: Retrieval performance on CUB-200-2011, CARS196 and Stanford Online Products datasets. Bold and Italic fonts
represent the best and second best performance respectively.

Figure 4: Performance of different number of continuous
BN-ReLU modules on Cars-196. The BN-ReLU modules
are added to the output feature. The −1 on the X-axis means
that the last BN-ReLU in the backbone is removed.

ods (Ge 2018; Movshovitz-Attias et al. 2017; Wang et al.
2017b, 2019a; Xuan, Souvenir, and Pless 2018; Xuan 2020;
Yuan, Yang, and Zhang 2017; Zhai and Wu 2019), we use
the L2-normalized euclidean distances to compute the re-
call for the evaluation. All the input images were resized to
256 × 256 and croped to 224 × 224 with a batch size of 64
(4 images/ID and 16 IDs), and we use fp16 to improve the
GPU memory utilization. The model is trained 100 epochs

and we set the learning rate of parameter using cosine an-
nealing schedule. We set γ = 30 as default. To build a robust
model that can generalize well, we use label smoothing for
Lsoftmax. For the stability of training, SGSL starts to join
the training only when the value of softmax is smaller than
3. Other settings are the same as (Boudiaf et al. 2020).

Comparison with other SOTAs
We evaluate our approach in comparison with state-of-the-
art approaches on several image retrieval benchmarks. For a
fair comparison, we only demonstrate the performance with
embedding of 512 dimension and 2, 048 dimension. The
comparison between our approach and other competitors on
four public image retrieval datasets is presented in Table 1
and Table 2. Overall, our approach outperforms all the com-
pared methods. On the datasets CUB-200-2011, CARS196
and SOP, the Recall@1 with 2, 048 dimension of our ap-
proach are much higher than previous SOTAs by 1.7%, 2.9%
and 1.7% respectively. And for InShop, our proposed SGSL
can also achieve state-of-the-art performance.

Comparison with other Losses
We conducted experiments with different losses on CUB-
200-2011, CARS196 and In-shop Clothes, i.e., L2-
normlization Loss, Triplet Loss (Schroff, Kalenichenko, and
Philbin 2015), SoftMargin Loss (Hermans, Beyer, and Leibe
2017), Ring Loss (Zheng, Pal, and Savvides 2018). The re-
sults are shown in Table 3. Compared with these common
loss functions, SGSL shows excellent performance both on
512 dimensions and 2, 048 dimensions. Especially on the
CUB-200-2011, SGSL exceeds the other losses by more
than 4.4% on Recal@1. In addition, we note that the per-
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Method #dims R@1 R@10 R@20 R@40
A-BIER (Opitz et al. 2018) PAMI20 512 83.1 95.1 96.9 97.8
ABE (Kim et al. 2018) ECCV18 512 87.3 96.7 97.9 98.5
Normalized Softmax (Zhai and Wu 2019) BMVC19 512 88.6 97.5 98.4 98.8
Multi-similarity (Wang et al. 2019a) CVPR19 512 89.7 97.9 98.5 99.1
Learning to Rank (Cakir et al. 2019) 512 90.9 97.7 98.5 98.9
HORDE (Jacob et al. 2019) ICCV19 512 90.4 97.8 98.4 98.9
Proxy NCA++ (Teh, DeVries, and Taylor 2020) ECCV20 512 90.4 98.1 98.8 99.2
Proxy Anchor (Kim et al. 2020) CVPR20 512 91.5 98.1 98.8 99.1
IBC (Seidenschwarz, Elezi, and Leal-Taixé 2021) ICML21 512 92.8 98.5 99.1 99.2
SGSL (Ours) 512 93.5 98.6 99.1 99.3
Normalized Softmax (Zhai and Wu 2019) BMVC19 2048 89.4 97.8 98.7 99.0
Cross-Entropy-cos (Boudiaf et al. 2020) ECCV20 2048 90.6 98.0 98.6 99.1
Proxy NCA++ (Teh, DeVries, and Taylor 2020) ECCV20 2048 90.9 98.2 98.9 99.4
SGSL (Ours) 2048 93.0 98.6 99.1 99.3

Table 2: Retrieval performance on In Shop Clothes. Bold and Italic fonts represent the best and second best performance
respectively.

CUB-200-2011 CARS196 In-shop Clothes
Method #dims R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@20
Softmax (Boudiaf et al. 2020) 512 67.9 78.5 86.0 91.8 92.1 95.7 97.5 98.7 92.7 98.5 99.0
Softmax + L2-Norm 512 59.3 70.7 80.3 87.2 88.0 92.4 94.9 96.9 92.4 98.4 98.9
Softmax + Triplet 512 66.9 77.2 84.9 90.8 91.5 95.1 97.1 98.4 92.7 98.5 99.0
Softmax + SoftMargin 512 65.0 75.2 83.7 89.8 91.5 94.7 96.9 98.2 92.3 98.5 99.0
Softmax + Ring Loss 512 69.7 79.6 87.1 92.0 92.2 95.6 97.5 98.7 92.7 98.5 99.0
Softmax + SGSL (Ours) 512 72.0 81.1 88.3 93.1 94.1 96.7 98.0 99.0 93.5 98.6 99.1
Softmax (Boudiaf et al. 2020) 2048 69.2 79.2 86.9 91.6 89.3 93.9 96.6 98.4 90.6 98.0 98.6
Softmax + L2-Norm 2048 61.3 72.5 81.3 87.7 89.7 93.2 95.8 97.3 92.2 98.2 98.9
Softmax + Triplet 2048 68.0 78.5 86.3 91.7 92.5 95.7 97.4 98.5 92.2 98.3 98.9
Softmax + SoftMargin 2048 66.1 76.7 84.4 90.2 91.6 95.3 97.1 98.2 91.8 98.3 98.9
Softmax + Ring Loss 2048 71.5 81.2 88.3 92.8 92.2 95.6 97.5 98.6 91.2 98.1 98.7
Softmax + SGSL (Ours) 2048 75.9 85.0 90.7 94.5 94.7 97.2 98.3 99.1 93.0 98.6 99.1

Table 3: Comparison with some metric learning losses on CUB-200-2011, CARS196 and In-shop Clothes datasets. The baseline
is ResNet50 with softmax (cross entropy) loss only, the detail settings are same as (Boudiaf et al. 2020). Bold fonts represent
the best performance (in %).

Base Method R@1 R@2 R@4 R@8
Softmax (Boudiaf et al. 2020) 91.9 95.6 97.4 98.7
Softmax + RBR 92.4 96.0 97.8 98.9
Softmax + RBR + SGSL(γ = 1) 94.1 96.9 98.1 99.0
Softmax + RBR + SGSL(γ = 10) 94.6 97.1 98.3 99.1
Softmax + RBR + SGSL(γ = 30) 94.7 97.2 98.3 99.1
Softmax + RBR + SGSL(γ = 50) 94.5 97.0 98.3 99.1
Softmax + RBR + SGSL(γ = 70) 94.4 97.2 98.4 99.0

Table 4: We analyzed the performance of SGSL and RBR on
Cars196 by the ablation study experiments. SGSL is short
for Stop-Gradient Softmax Loss and RBR is short for Re-
move the last BN-ReLU. The embedding dimension is 2048.

formance of L2-Norm, Triplet and SoftMargin on the CUB
dataset is even lower than that of baseline, a possible reason
is that the baseline Softmax uses the setting of (Boudiaf et al.
2020), which has carefully designed the hyper-parametric
for each dataset, and directly using above losses may destroy
this design. While our proposed SGSL achieved a perfor-
mance improvement of 6.7% on the CUB-200-2011 dataset,

which indicates that SGSL has good compatibility.

Feature Distribution Visualization
To better understand the effect of SGSL, we conduct an
experiment on Fashion MNIST (Xiao, Rasul, and Vollgraf
2017) to visualize the feature distributions trained by origi-
nal softmax and SGSL. We use a five-layer CNN model, and
set the output number of the last hidden layer to 3, which al-
lows us to plot the features on 3-D surface for visualization.
The results are shown in Figure 3 in which different colors
are used to denote samples from different classes. It can be
seen that SGSL can significantly shrink the intra-class vari-
ance which is beneficial to metric learning.

Class Separability Criterion
We use the class separability criterion (CSC) (Sergios and
Konstantinos 2003) to evaluate the effect of our proposed
SGSL. It takes large values when samples in the embed-
ding space are well clustered around their mean, within each
class, and the clusters of the different classes are well sepa-
rated. The CSC is calculated by between-ID scatter matrix
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Dataset Methos trace {Sb} trace {Sw} CSC

CUB Softmax 492.3 14.9 33.0
Softmax+SGSL 456.5 12.7 36.0

CARS-196 Softmax 437.1 11.1 39.4
Softmax+SGSL 375.9 9.1 41.3

SOP Softmax 841.2 111.2 7.6
Softmax+SGSL 772.1 86.7 8.9

In-shop Softmax 450.2 33.6 13.4
Softmax+SGSL 440.7 31.0 14.2

Table 5: The CSC comparison among different losses, the
larger value of CSC, the better performance of the loss. The
default dimension is 2, 048.

(Sb) and within-ID scatter matrix (Sw):

Sb =
M∑
i=1

Probi(µi − µ0)(µi − µ0)
T ,

Sw =
M∑
i=1

ProbiE[(xi − µi)(xi − µi)
T ],

CSC =
trace {Sb}
trace {Sw}

,

(9)

where M is the number of classes; Probi is the probabil-
ity of class i; µi is the mean vector of class i, µ0 is the
global mean vector; xi is the whole samples in class i. In
Tabel 5, we can find that our proposed SGSL gets higher
CSC than corresponding Softmax. Better class separability
leads to better retrieval performance.

Ablation Study
The Impact of SGSL and RBR
In Table 4, we analyze the effect of applying SGSL and
RBR on Cars196 with 2048 dimension. The experimental
results show that both SGSL and RBR can improve the per-
formance, and SGSL plays a greater role. γ is a pre-defined
scalar in Equation 6. From 3th row to 7th row in Table 4,
we can see that larger γ is beneficial to the model, and when
γ is greater than 10, the performance tends to be saturated.
This is because LSEγ(·) in Equation 6 is used to select the
most similar negative proxy with cosine similarity and the
larger γ is, the smaller the selection error is.

The Impact of Continuous BN-ReLU
In this section, we conduct experiments to investigate the im-
pact of different number of continuous BN-ReLU modules.
ResNet is the most commonly used backbone. As Figure 2
shows, many approaches (Luo et al. 2019; Boudiaf et al.
2020; He et al. 2020) add batch normalization (without scal-
ing and bias) on top of the backbone, as it can smoothen/nor-
malize the feature distribution and enhance the intra-class
compactness. Therefore, when extracting features, the last
three layers are BN, ReLU and BN. In this sub-section, we
added different number of continuous BN-ReLU modules
before the last BN layer which on top of the backbone. Fig-
ure 4 shows that continuous BN-ReLU modules does not

bring any performance improvement, but only reduce the
performance. The possible reason is that the continuous BN-
ReLU may lose some information, thus affecting the re-
trieval performance. The best performance is achieved by re-
moving the last BN-ReLU in the backbone, and we adopted
this trick in our approach.

Impact of Loss Weight
Some studies like (Kendall, Gal, and Cipolla 2018; Zheng
et al. 2019) show that multi task learning has the ability
to achieve advanced performance by extracting appropri-
ate shared information between tasks. When multiple losses
work together, the weight of the loss is usually important.
We conducted experiments on CARS196 to evaluate the ef-
fect of loss weight of SGSL. We change the loss weight β
of SGSL from 0.1 to 10.0 in equation 10, and the results
are shown in table 6. The experimental results show that
β = 1.0 is a better choice.

Ltotal = Lsoftmax + βLSGSL (10)

loss weight R@1 R@2 R@4 R@8
β = 0.1 93.2 96.4 98.0 98.8
β = 0.5 94.1 96.8 98.1 98.9
β = 1.0 94.7 97.2 98.3 99.1
β = 2.0 93.5 96.7 97.9 98.9
β = 10.0 93.0 96.2 97.8 98.9

Table 6: Effect of weighting factor β of SGSL when working
together with softmax loss(in %) on CARS196. The default
dimension is 2, 048.

Conclusion
In this work, we propose a Stop-Gradient Softmax Loss
(SGSL) and a trick named Remove the last BN-ReLU
(RBR) for the task of deep metric learning. Without need for
complex sample-mining, SGSL works with original softmax
together. Standard softmax performs traditional learning and
optimization for good class separability, while SGSL per-
forms distance metric learning based on L2-normalization.
And we theoretically analyze that the target of SGSL is to
make the L2-normalized distance between the anchor and
its positive proxy smaller than that between anchor and its
negative proxy. In addition, we remove the last BN-ReLU in
backbone to lighten the learning burden of the model. The
extensive experimental results on four public image retrieval
benchmarks show clear advantages over current state-of-the-
art approaches.
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