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Abstract

High-resolution (HR) images are usually downscaled to low-
resolution (LR) ones for better display and afterward up-
scaled back to the original size to recover details. Recent
work in image rescaling formulates downscaling and upscal-
ing as a unified task and learns a bijective mapping between
HR and LR via invertible networks. However, in real-world
applications (e.g., social media), most images are compressed
for transmission. Lossy compression will lead to irreversible
information loss on LR images, hence damaging the inverse
upscaling procedure and degrading the reconstruction accu-
racy. In this paper, we propose the Self-Asymmetric Invert-
ible Network (SAIN) for compression-aware image rescaling.
To tackle the distribution shift, we first develop an end-to-
end asymmetric framework with two separate bijective map-
pings for high-quality and compressed LR images, respec-
tively. Then, based on empirical analysis of this framework,
we model the distribution of the lost information (including
downscaling and compression) using isotropic Gaussian mix-
tures and propose the Enhanced Invertible Block to derive
high-quality/compressed LR images in one forward pass. Be-
sides, we design a set of losses to regularize the learned LR
images and enhance the invertibility. Extensive experiments
demonstrate the consistent improvements of SAIN across var-
ious image rescaling datasets in terms of both quantitative
and qualitative evaluation under standard image compres-
sion formats (i.e., JPEG and WebP). Code is available at
https://github.com/yang-jin-hai/SAIN.

1 Introduction
With advances in computational photography and imag-
ing devices, we are facing increasing amounts of high-
resolution (HR) visual content nowadays. For better dis-
play and storage saving, HR images are often downscaled
to low-resolution (LR) counterparts with similar visual ap-
pearances. The inverse upscaling is hence indispensable to
recover LR images to the original sizes and restore the de-
tails. Super-resolution algorithms (Dong et al. 2015; Dai
et al. 2019) have been the prevalent solution to increase im-
age resolution, but they commonly assume the downscaling
operator is pre-determined and not learnable. To enhance the
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Figure 1: Image rescaling without or with compression.

reconstruction quality, recent works (Kim et al. 2018; Xiao
et al. 2020; Guo et al. 2022) have attempted to jointly op-
timize the downscaling and upscaling process. Especially,
IRN (Xiao et al. 2020) firstly model the conversion between
HR and LR image pairs as a bijective mapping with invert-
ible neural networks (INN) to preserve as much information
as possible and force the high-frequency split to follow a
case-agnostic normal distribution, as shown in Fig. 1(a).

However, the LR images are usually compressed (Son
et al. 2021) to further reduce the bandwidth and storage in
realistic scenarios, especially for transmission on social me-
dia with massive users. Worse still, lossy compression (e.g.
JPEG and WebP) has become a preference for social net-
works and websites. Although standard image compression
formats (Wallace 1992; Google 2010) take advantage of hu-
man visual characteristics and thus produce visually-similar
contents, they still lead to inevitable additional information
loss, as shown in Fig. 1(b). Due to the bijective nature, the
INN-based approaches (Xiao et al. 2020; Liang et al. 2021)
perform symmetric rescaling and thus are especially sensi-
tive to the distribution shift caused by these compression ar-
tifacts. In this sense, lossy compression can also be utilized
as an adversarial attack to poison the upscaling procedure.

In this paper, we tackle compression-aware image rescal-
ing via a Self-Asymmetric Invertible Network (SAIN). Be-
fore delving into the details, we start with empirical analyses
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Figure 2: Illustration and empirical analysis of the Dual-IRN baseline under the proposed asymmetric framework. The early-
layer features of the U-IRN exhibit high similarity to the final output of the D-IRN (i.e., the high-quality LR images). Besides,
the latent variables of the U-IRN generally have a multi-modal distribution. Our SAIN model is inspired by these phenomena.

of a baseline model Dual-IRN. To mitigate the influence of
compression artifacts, we instantiate the Dual-IRN with an
asymmetric framework, establishing two separate bijective
mappings, as shown in Fig. 2(a). Under this framework, we
can conduct downscaling with the D-IRN to derive visually-
pleasing LR images and then, after compression distortion,
use the U-IRN for compression-aware upscaling. To study
the behavioral difference between the two branches, we
adopt the CKA metric (Kornblith et al. 2019) to measure the
representation similarity. As shown in Fig. 2(b), the obtained
high-quality LR images (i.e., the final outputs of D-IRN) are
highly similar to the anterior-layer features of the U-IRN.
Besides, we plot the histograms of the high-frequency splits
in Fig. 2(c)(d), which are previously assumed to follow the
normal distribution. Interestingly, this assumption does not
hold for the latent variables of the compression-aware U-
IRN, which exhibits a multi-modal pattern.

Inspired by the analysis above, we inject our SAIN model
with inductive bias. First, we inherit the asymmetric frame-
work from Dual-IRN, which can upscale from compression-
distorted LR images without sacrificing the downscaling
quality. Second, we present a compact network design with
Enhanced Invertible Block and decouple the blocks into the
downscaling module and the compression simulator, which
enables approximating high-quality and compressed LR in
one forward pass. Third, we adopt isotropic Gaussian mix-
tures to model the joint information loss under the entangled
effect of downscaling and compression.

Our main contributions are highlighted as follows:

• To our knowledge, this work is the first attempt to study
image rescaling under compression distortions. The pro-
posed SAIN model integrates rescaling and compression
into one invertible process with decoupled modeling.

• We present a self-asymmetric framework with Enhanced
Invertible Block and design a series of losses to enhance

the reconstruction quality and regularize the LR features.
• Both quantitative and qualitative results show that SAIN

outperforms state-of-the-art approaches by large margins
under standard image codecs (i.e., JPEG and WebP).

2 Related Work
Invertible Neural Networks. Invertible neural networks
(INNs) originate from flow-based generative models (Dinh,
Krueger, and Bengio 2014; Dinh, Sohl-Dickstein, and Ben-
gio 2016). With careful mathematical designs, INNs learn a
bijective mapping between the source domain and the tar-
get domain with guaranteed invertibility. Normalizing-flow
methods (Rezende and Mohamed 2015; Kobyzev, Prince,
and Brubaker 2020) map a high-dimensional distribution
(e.g. images) to a simple latent distribution (e.g., Gaussian).
The invertible transformation allows for tractable Jacobian
determinant computation, so the posterior probabilities can
be explicitly derived and optimized by maximum likeli-
hood estimation (MLE). Recent works have applied INNs to
different visual tasks, including super-resolution (Lugmayr
et al. 2020) and image rescaling (Xiao et al. 2020).
Image Rescaling. Super-resolution (SR) (Dong et al. 2015;
Lim et al. 2017; Zhang et al. 2018b) aims to reconstruct
the HR image given the pre-downscaled one. Traditional im-
age downscaling usually adopts low-pass kernels (e.g., Bicu-
bic) for interpolation sub-sampling, which generates over-
smoothed LR images due to high-frequency information
loss. Differently, image rescaling (Kim et al. 2018; Li et al.
2018; Sun and Chen 2020) jointly optimize downscaling and
upscaling as a unified task in an encoder-decoder paradigm.
IRN (Xiao et al. 2020) models image rescaling as a bijective
transformation with INN to maintain as much information
about the HR images. The residual high-frequency compo-
nents are embedded into a case-agnostic latent distribution
for efficient reconstruction. Recently, HCFlow (Liang et al.
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2021) proposes a hierarchical conditional flow to unify im-
age SR and image rescaling tasks in one framework.

However, image downscaling is often accompanied by
image compression in applications. Although flow-based
methods perform well in ideal image rescaling, they are vul-
nerable to lossy compression due to the high reliance on re-
versibility. A subtle interference on the LR images usually
causes a considerable performance drop.

3 Methodology
3.1 Preliminaries
Normalizing flow models (Kobyzev, Prince, and Brubaker
2020) usually propagate high-dimensional distribution (e.g.
images) through invertible transformation to enforce a sim-
ple specified distribution. The Jacobian determinant of such
invertible transformation is easy to compute so that we can
inversely capture the explicit distribution of input data and
minimize the negative log-likelihood in the source domain.

In the image rescaling task, however, the target domain
is the LR images, whose distribution is implicit. Therefore,
IRN (Xiao et al. 2020) proposes to split HR images x into
low-frequency and high-frequency components [xl, xh] and
learn the invertible mapping [xl, xh] ↔ [y, a], where y is the
desired LR image and a ∼ N (0, 1) is case-agnostic.

In this work, we establish an asymmetric framework to
enhance the robustness against image compression for the
rescaling task. In the forward approximation pass, we not
only model the downscaling process by f but also simulate
the compressor by g. The downscaling module f alone can
derive the visually-pleasing LR y, while the function com-
position f ◦ g maps [xl, xh] → [ŷ, ẑ], where ŷ is the sim-
ulated compressed LR. When y suffers from compression
distortion ε and results in y′, the reverse restoration pass is
used to reconstruct the HR contents by [y′, z] → x′. The
forward and inverse pass are asymmetric but share one in-
vertible structure. The ultimate goal is to let x′ approach the
true HR x.

3.2 Self-Asymmetric Invertible Network
The difficulty of compression-robust image rescaling lies in
designing a model that performs both high-quality down-
scaling and compression-distorted upscaling. Since we ap-
proximate the downscaling and the compression process in
one forward pass, and they essentially share large propor-
tions of computations, it is important to avoid confusion in
the low-frequency split. In this work, we assume that the in-
formation loss caused by compression is conditional on the
high-frequency components, and thus devise the Enhanced
Invertible Block (E-InvBlock). During upscaling, the latent
variable z is sampled from a learnable Gaussian mixture to
help recover details from perturbed LR images. The overall
framework is illustrated in Fig. 3.

Haar Transformation. We follow existing works (Xiao
et al. 2020; Liang et al. 2021) to split the input image via the
Haar transformation. This channel splitting is crucial for the
construction of invertible modules (Kingma and Dhariwal
2018; Ho et al. 2019). Haar transformation decomposes an

image into a low-pass approximation, the horizontal, verti-
cal, and diagonal high-frequency coefficients (Lienhart and
Maydt 2002). The low-frequency (LF) approximation and
the high-frequency (HF) components represent the input im-
age as [xl, xh]. For a scale larger than 2, we adopt successive
Haar transformations to split the channels at the first.

Vanilla Invertible Block. The Vanilla Invertible Block (V-
InvBlock) inherits the design in IRN (Xiao et al. 2020). It is
a rearrangement of existing coupling layers (Dinh, Krueger,
and Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016)
to fit the image rescaling task. For the j-th layer,

xj+1
l = xj

l + ϕ
(
xj
h

)
, (1)

xj+1
h = xj

h ⊙ exp
(
ρ
(
xj+1
l

))
+ η

(
xj+1
l

)
, (2)

where ⊙ denotes the Hadamard product and in practice, we
use a centered Sigmoid function for numerical stability after
the exponentiation. The inverse step is easily obtained by

xj
h =

(
xj+1
h − η

(
xj+1
l

))
⊙ exp

(
−ρ

(
xj+1
l

))
, (3)

xj
l = xj+1

l − ϕ
(
xj
h

)
. (4)

Enhanced Invertible Block. In V-InvBlock, the LF part is
polished by a shortcut connection on the HF branch. Since
f is cascaded to g, simply repeating the V-InvBlock to con-
struct f would cause ambiguity in the LF branch. Therefore,
we augment the LF branch and thus make the modeling of
the high-quality LR y and the emulated compressed LR ŷ
separable to some extent. Generally, we let xl help stimulate
ŷ, and let the intermediate representation yi undertake the
polishing for y. Since there is no information loss inside the
block, we assume the compression distortion can be recov-
ered from the HF components. Formally,

yi = xi
l + ϕ

(
xi
h

)
, (5)

xi+1
l = yi − φ

(
xi
h

)
. (6)

It only brings a slight increase in computational over-
head but significantly increases the model capacity. Note
that ϕ(·), φ(·), η(·), and ρ(·) can be arbitrary functions.

Isotropic Gaussian Mixture. The case-specific informa-
tion is expected to be completely embedded into the down-
scaled image, since preserving the HF components is im-
practical. IRN (Xiao et al. 2020) forces the case-agnostic
HF components to follow N(0, I) and sample from the same
distribution for inverse upscaling. However, due to the mis-
match between real compression and simulated compres-
sion, the distribution of the forwarded latent ẑ and the un-
derlying upscaling-optimal latent z are arguably not identi-
cal. Besides, as shown in Fig. 2(c), the latent distribution of
the compression-aware branch presents a multimodal pat-
tern. Therefore, rather than explicitly modeling the distri-
bution of ẑ, we choose to optimize a learnable Gaussian
mixture to sample for upscaling from compressed LR im-
ages. For simplicity, we assume the Gaussian mixture is iso-
topic (Améndola, Engström, and Haase 2020) and all dimen-
sions of z follow the same univariate marginal distribution.
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Figure 3: Overview of the proposed Self-Asymmetric Invertible Network (SAIN). We decouple the invertible architecture into
the downscaling module f to generate visually-appealing LR images and the compression simulator g to mimic standard codecs.
Thus, due to the reversible nature of InvBlocks, we can inversely restore the compression distortion via g−1 from LR images
that are compressed by real codecs (albeit not perfectly), and then upscale to original size via f−1. The exp(·) of ρ is omitted.

For any zo ∈ z:

p(zo) =
K∑

k=1

πkN (zo | µk, σk) , (7)

where the mixture weights πk, means µk, and variances
σk are learned globally. Since the sampling operation is
non-differentiable, enabling end-to-end optimization of the
parameters {πk, µk, σk} is non-trivial. We decompose the
sampling from p(zo) into two independent steps: (1) dis-
crete sampling k ∼ Categorical(π) to select a component;
(2) sample zo from the parameterized N (µk, σk). In this
way, we use Gumbel-Softmax (Jang, Gu, and Poole 2017)
to approximate the first step and use the reparameterization
trick (Kingma and Welling 2013) for the second step, and
thus estimate the gradient for backpropagation.

Compression and Quantization. To jointly optimize the
upscaling and the downscaling steps under compression ar-
tifacts, we employ a differentiable JPEG simulator (Xing,
Qian, and Chen 2021) to serve as a virtual codec ε. It per-
forms discrete cosine transform on each 8×8 block of an
image and simulates the rounding function with the Fourier
series. For the LR and HR images, we use the Straight-
Through Estimator (Bengio, Léonard, and Courville 2013)
to calculate the gradients of the quantization module. More-
over, we incorporate real compression distortion ϵ to pro-
vide guidance for network optimization, which extends our
model to be also suitable for other image compression for-
mats besides JPEG.

3.3 Training Objectives
The downscaling module, the compression simulator, and
the inverse restoration procedure are jointly optimized. The
overall loss function is a linear combination of the final
reconstruction loss and a set of LR guidance to produce

visually-attractive LR images and meanwhile enhance the
invertibility:
L = λ1Lrec + λ2Lfit + λ3L′

fit + λ4Lreg + λ5Lrel . (8)
HR Reconstruction. Despite the information loss caused
by the downscaling and the compression, we expect that
given a model-downscaled LR y, the counterpart HR image
x can be restored by our model using a random sample of z
from the learned distribution p(zo):

Lrec = Lhr

(
f−1

(
g−1 ([y, z])

)
, x

)
. (9)

LR Guidance. First, the model-downscaled LR images
should be visually-meaningful. We follow existing image
rescaling works (Kim et al. 2018; Xiao et al. 2020) to drive
the LR images y to resemble Bicubic interpolated images as
a guidance of the downscaling module f :

Lfit = Llr (Bicubic (x) , y) . (10)
Second, to better simulate the compression distortions and
the inverse restoration, we encourage the model-distorted
LR image ŷ to approximate the compressed version of the
Bicubic downscaled LR image which undergoes the distor-
tion ϵ of a real image compression process:

L′
fit = Llr (ϵ (Bicubic (x)) , ŷ) . (11)

Third, we regularize the similarity between the model-
downscaled LR image y and the inversely restored LR image
yr to enhance reversibility: Lreg = Llr (y, yr).

Finally, we further facilitate the compression simula-
tion by enforcing the relation between y and ŷ: Lrel =
Llr (ϵ (y) , ŷ). Note that ϵ can be any image compressor to
make our model robust against other compression formats.

4 Experiments
4.1 Experimental Setup
Datasets and Settings. We adopt the 800 HR images
from the widely-acknowledged DIV2K training set (Agusts-
son and Timofte 2017) to train our model. Apart from
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Downscaling & Upscaling Scale JPEG QF=30 JPEG QF=50 JPEG QF=70 JPEG QF=80 JPEG QF=90

Bicubic & Bicubic ×2 29.38 / 0.8081 30.19 / 0.8339 30.91 / 0.8560 31.38 / 0.8703 31.96 / 0.8878
Bicubic & SRCNN (Dong et al. 2015) ×2 28.01 / 0.7872 28.69 / 0.8154 29.43 / 0.8419 30.01 / 0.8610 30.88 / 0.8878
Bicubic & EDSR (Lim et al. 2017) ×2 28.92 / 0.7947 29.93 / 0.8257 31.01 / 0.8546 31.91 / 0.8753 33.44 / 0.9052
Bicubic & RDN (Zhang et al. 2018b) ×2 28.95 / 0.7954 29.96 / 0.8265 31.02 / 0.8549 31.91 / 0.8752 33.41 / 0.9046
Bicubic & RCAN (Zhang et al. 2018a) ×2 28.84 / 0.7932 29.84 / 0.8245 30.94 / 0.8538 31.87 / 0.8749 33.44 / 0.9052
CAR & EDSR (Sun and Chen 2020) ×2 27.83 / 0.7602 28.66 / 0.7903 29.44 / 0.8165 30.07 / 0.8347 31.31 / 0.8648
IRN (Xiao et al. 2020) ×2 29.24 / 0.8051 30.20 / 0.8342 31.14 / 0.8604 31.86 / 0.8783 32.91 / 0.9023
SAIN (Ours) ×2 31.47 / 0.8747 33.17 / 0.9082 34.73 / 0.9296 35.46 / 0.9374 35.96 / 0.9419

Bicubic & Bicubic ×4 26.27 / 0.6945 26.81 / 0.7140 27.28 / 0.7326 27.57 / 0.7456 27.90 / 0.7618
Bicubic & SRCNN (Dong et al. 2015) ×4 25.49 / 0.6819 25.91 / 0.7012 26.30 / 0.7206 26.55 / 0.7344 26.84 / 0.7521
Bicubic & EDSR (Lim et al. 2017) ×4 25.87 / 0.6793 26.57 / 0.7052 27.31 / 0.7329 27.92 / 0.7550 28.88 / 0.7889
Bicubic & RDN (Zhang et al. 2018b) ×4 25.92 / 0.6819 26.61 / 0.7075 27.33 / 0.7343 27.92 / 0.7556 28.84 / 0.7884
Bicubic & RCAN (Zhang et al. 2018a) ×4 25.77 / 0.6772 26.45 / 0.7031 27.21 / 0.7311 27.83 / 0.7537 28.82 / 0.7884
Bicubic & RRDB (Wang et al. 2018) ×4 25.87 / 0.6803 26.58 / 0.7063 27.36 / 0.7343 27.99 / 0.7568 28.98 / 0.7915
CAR & EDSR (Sun and Chen 2020) ×4 25.25 / 0.6610 25.76 / 0.6827 26.22 / 0.7037 26.69 / 0.7214 27.91 / 0.7604
IRN (Xiao et al. 2020) ×4 25.98 / 0.6867 26.62 / 0.7096 27.24 / 0.7328 27.72 / 0.7508 28.42 / 0.7777
HCFlow (Liang et al. 2021) ×4 25.89 / 0.6838 26.38 / 0.7029 26.79 / 0.7204 27.05 / 0.7328 27.41 / 0.7485
SAIN (Ours) ×4 27.90 / 0.7745 29.05 / 0.8088 29.83 / 0.8272 30.13 / 0.8331 30.31 / 0.8367

Table 1: Quantitative results (PSNR / SSIM) of image rescaling on DIV2K under distortion at different JPEG QFs.

Figure 4: Cross-dataset evaluation of image rescaling (×2) over standard benchmarks: Set5, Set14, BSD100, and Urban100.

the DIV2K validation set, we also evaluate our model
on 4 standard benchmarks: Set5 (Bevilacqua et al. 2012),
Set14 (Zeyde, Elad, and Protter 2010), BSD100 (Martin
et al. 2001), and Urban100 (Huang, Singh, and Ahuja 2015).
Following the convention in image rescaling (Xiao et al.
2020; Liang et al. 2021), the evaluation metrics are Peak
Signal-to-Noise Ratio (PSNR) and SSIM (Wang et al. 2004)
on the Y channel of the YCbCr color space.

Implementation Details. For ×2 and ×4 image rescal-
ing, we use a total of 8 and 16 InvBlocks in total, and the
downscaling module f has 5 and 10 E-InvBlocks, respec-
tively. The transformation functions ϕ(·), φ(·), η(·), and
ρ(·) are implemented with Dense Block (Wang et al. 2018;
Xiao et al. 2020). The input images are cropped to 128×128
and augmented via random horizontal and vertical flips. We
adopt Adam optimizer (Kingma and Ba 2014) with β1 = 0.9
and β2 = 0.999, and set the mini-batch size to 16. The
model is trained for 500k iterations. The learning rate is ini-
tialized as 2 × 10−4 and reduced by half every 100k iter-
ations. We use L1 pixel loss as the LR guidance loss Llr

and L2 pixel loss as the HR reconstruction loss. To bal-
ance the losses in LR and HR spaces, we use λ1 = 1 and

λ2 = λ3 = λ4 = λ5 = 1
4 . The compression quality factor

(QF) is empirically fixed at 75 during training. The Gaussian
mixture for upscaling has K = 5 components.

4.2 Evaluation under JPEG Distortion
JPEG (Wallace 1992) is the most widely-used lossy image
compression method in consumer electronic products. As
various compression QFs may be used in applications, we
expect SAIN to be a one-size-fits-all model. That is, after
compression-aware training under a specific format, it can
handle compression distortions at different QFs.

Quantitative Evaluation. We compare our model with
three kinds of methods: (1) Bicubic downscaling & super-
resolution (Dong et al. 2015; Lim et al. 2017; Zhang et al.
2018a,b); (2) jointly-optimized downscaling and upscal-
ing (Sun and Chen 2020); (3) flow-based invertible rescal-
ing models (Xiao et al. 2020; Liang et al. 2021). We re-
produce all the compared methods and get similar perfor-
mance as claimed in their original papers when tested with-
out compression distortions. Then, for each approach, we
apply JPEG distortion to the downscaled LR images at dif-
ferent QFs (i.e., 30, 50, 70, 80, 90), and evaluate the con-

3159



Figure 5: Qualitative results of image rescaling (×2) on DIV2K under distortion at different JPEG QFs. Due to space limitation,
we only visualize results of the top three methods at each QF. More results can be found in the supplementary material.

struction quality of the upscaled HR images.
As is evident in Tab. 1, the proposed SAIN outperforms

existing methods by a large margin at both scales and across
all testing QFs. The reconstruction PSNR of SAIN signif-
icantly surpasses the second best results by 1.33-3.59 dB.
The performances of previous state-of-the-arts drop severely
as JPEG QF descents and are even worse than naı̈ve Bicu-
bic resampling at lower QF and larger scale. HCFlow (Liang
et al. 2021) suffers even more from the compression artifacts
than IRN (Xiao et al. 2020) since it assumes the HF compo-
nents are conditional on the LF part.

Cross-Dataset Validation. In addition to the DIV2K val-
idation set, we further verify our methods on 4 standard
benchmarks (Set5, Set14, BSD100, Urban100) to investi-
gate the cross-dataset performance. Similarly, we test all the
compared models at different QFs for the ×2 image rescal-
ing task, and plot the corresponding PSNR in Fig. 4.

From these curves, we can clearly observe that the pro-
posed approach SAIN achieves substantial improvements
over the state-of-the-arts. SRCNN (Dong et al. 2015) adopts
a very shallow convolutional network to increase image res-
olution and thus is quite fragile to the compression artifacts.
CAR & EDSR (Sun and Chen 2020) learns an upscaling-
optimal downscaling network in an encoder-decoder frame-
work that is specific to EDSR (Lim et al. 2017), so when the
downscaled LR images are distorted by compression, it also
fails at restoring high-quality HR images. Interestingly, there
exists a trade-off between the tolerance to high QFs and the
low QFs for the other methods. Those who perform better
at higher QFs seem to be inferior at lower QFs. Differently,
our model consistently performs better due to the carefully
designed network architecture and training objectives.

Qualitative Evaluation. Fig. 5 shows the visual details
of the top HR reconstruction results at QF=30 and QF=90.
The chroma subsampling and quantization in JPEG encod-
ing lead to inevitable information loss, hence the compared
methods tend to produce blurred and noisy results. Appar-
ently, SAIN can better restore image details and still gener-
ate sharp edges at a low JPEG QF of 30, which is attributed
to the proposed compression-aware invertible structure.

Besides, although our model implicitly embeds all HF in-
formation into the LR images, they remain similar appear-
ances to the Bicubic interpolated ground-truth. Some down-
scaled LR results are shown in the supplementary material.

4.3 Ablation Study

Ablation Study on Training Strategy. To prove the ef-
fectiveness and efficiency of our model, we conduct an ab-
lation study on the training strategy. We design a set of al-
ternatives with three training strategies: (1) Vanilla: training
without compression-awareness. (2) Fine-tuning: the down-
scaling process is pre-defined while the upscaling process is
finetuned with compression-distorted LR images; (3) Ours:
the downscaling and upscaling are jointly optimized with the
proposed asymmetric framework (recall Fig 2).

Tab. 2 lists the quantitative results of ×2 image rescal-
ing evaluated at JPEG QF=75. The models following the
proposed asymmetric training framework are evidently su-
perior to the two-stage finetuning methods. Compared with
IRN (Xiao et al. 2020), our model only increases 0.36M
parameters, but significantly boosts the performance by
3.65 dB. Compared with Dual-IRN, SAIN reduces ∼ 40%
parameters and still achieves a 0.41 dB gain.
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Strategy CA AF Method Param PSNR

Vanilla ✗ ✗ IRN 1.66M 31.45

Fine-
Tuning

✓ ✗ IRN 1.66M 32.70
✓ ✗ Bicubic&EDSR 40.7M 32.97
✓ ✗ IRN&EDSR 42.4M 32.92

Ours
✓ ✓ IRN&EDSR 42.4M 34.41
✓ ✓ Dual-IRN 3.34M 34.69
✓ ✓ SAIN (Ours) 2.02M 35.10

Table 2: Ablation study on training strategy. “CA”: Training
with compression-awareness. “AF”: Training with the pro-
posed asymmetric framework. Refer to Sec. 4.3 for details.

Figure 6: Effect of the number of E-InvBlocks and GMM
components. Evaluated at JPEG QF=75 on DIV2K (×2).

Ablation Study on Training Objective. In this part, we
investigate the effect of the introduction of the Gaussian
mixture model (GMM) and the additional training objec-
tives. As presented in Tab. 3, all of them play a positive
role in the final performance. The L′

fit matters most since
it guides the sub-network g on how to simulate real com-
pression. Thanks to the invertibility, it simultaneously learns
the g−1 for restoration from real compression artifacts. Dif-
ferent from IRN (Xiao et al. 2020) that captures the HF com-
ponents with a case-agnostic distribution N (0, 1), we utilize
a learnable GMM to excavate a universal knowledge about
the HF component. Although this distribution is learned on
DIV2K, we can see that it also improves the performance on
other datasets (e.g., Set5).

5 Further Analysis
5.1 Hyper-Parameter Selection
We mainly investigate the influence of different settings
of the hyper-parameters related to the model structure. We
fixed the total number of blocks as 8 (for ×2 task) and search
for the best value of the number of E-InvBlocks. It actu-
ally searches for a complexity balance between the down-
scaling module f and the compression simulator g. From
Fig. 6, we observe that the performance saturates after this
value reaches 5. Since adding E-InvBlocks would increase
the number of parameters, we use 5 and 10 E-InvBlocks for
×2 and ×4 experiments, respectively. Besides, we can find
that the best value of GMM components K is 5. Too large or
too small values both degrade the performance. An analysis
of the effect of the training QF is in the supplementary.

N (0, 1)
→GMM Lrel L′

fit Lreg Set5 DIV2K

✓ ✓ ✓ 35.98 35.01
✓ ✓ ✓ 36.02 35.02
✓ ✓ ✓ 35.85 34.95
✓ ✓ ✓ 35.95 34.96
✓ ✓ ✓ ✓ 36.04 35.10

Table 3: Ablation study of PSNR under JPEG QF=75.

Downscaling & Upscaling QF PSNR / SSIM

Bicubic & Bicubic 90 32.02 / 0.8922
Bicubic & SRCNN (Dong et al. 2015) 90 31.29 / 0.9014
Bicubic & EDSR (Lim et al. 2017) 90 34.32 / 0.9220
Bicubic & RDN (Zhang et al. 2018b) 90 34.26 / 0.9212
Bicubic & RCAN (Zhang et al. 2018a) 90 34.34 / 0.9222
CAR & EDSR (Sun and Chen 2020) 90 32.58 / 0.8918
IRN (Xiao et al. 2020) 90 33.38 / 0.9140
SAIN (Ours) 90 35.83 / 0.9410

Bicubic & Bicubic 30 29.75 / 0.8244
Bicubic & SRCNN (Dong et al. 2015) 30 28.47 / 0.8160
Bicubic & EDSR (Lim et al. 2017) 30 29.62 / 0.8249
Bicubic & RDN (Zhang et al. 2018b) 30 29.64 / 0.8252
Bicubic & RCAN (Zhang et al. 2018a) 30 29.54 / 0.8235
CAR & EDSR (Sun and Chen 2020) 30 28.03 / 0.7800
IRN (Xiao et al. 2020) 30 29.86 / 0.8303
SAIN (Ours) 30 33.15 / 0.9144

Table 4: Quantitative results on DIV2K against WebP.

5.2 Evaluation under WebP Distortion
WebP (Google 2010) is a modern compression format that is
widely used for images on the Internet. Therefore, we further
validate the tolerance against WebP of the proposed model.
To make the optimization end-to-end, we still use the differ-
entiable JPEG simulator as the virtual codec ε to approxi-
mate the gradient but set WebP as the real compression ϵ to
guide the behavior of the invertible compression simulator g.
We test the image rescaling (×2) performance at the WebP
QF of 30 and 90. Tab. 4 again shows the robustness against
real compression artifacts of our model, which demonstrates
the potential to extend to other image compression methods.

6 Conclusion
Existing image rescaling models are fragile to compression
artifacts. In this work, we present a novel self-asymmetric
invertible network (SAIN) that is robust to lossy compres-
sion. It approximates the downscaling and compression pro-
cesses in one forward pass by virtue of the proposed E-
InvBlock, and thus can inversely restore the compression
distortions for improved upscaling. We leverage a learnable
GMM distribution to capture a generic knowledge shared
across samples, and carefully design the loss functions to
benefit approximations and restorations. Extensive experi-
ments prove that our model performs far better than previous
methods under the distortion of standard image codecs and
is flexible to be extended to other compression formats.
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