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Abstract

Modern object detectors are ill-equipped to incrementally
learn new emerging object classes over time due to the well-
known phenomenon of catastrophic forgetting. Due to data
privacy or limited storage, few or no images of the old data
can be stored for replay. In this paper, we design a novel One-
Shot Replay (OSR) method for incremental object detection,
which is an augmentation-based method. Rather than storing
original images, only one object-level sample for each old
class is stored to reduce memory usage significantly, and we
find that copy-paste is a harmonious way to replay for incre-
mental object detection. In the incremental learning proce-
dure, diverse augmented samples with co-occurrence of old
and new objects to existing training data are generated. To in-
troduce more variants for objects of old classes, we propose
two augmentation modules. The object augmentation module
aims to enhance the ability of the detector to perceive po-
tential unknown objects. The feature augmentation module
explores the relations between old and new classes and aug-
ments the feature space via analogy. Extensive experimental
results on VOC2007 and COCO demonstrate that OSR can
outperform the state-of-the-art incremental object detection
methods without using extra wild data.

Introduction
Modern object detection methods based on deep learn-
ing have achieved remarkable progress, which are usu-
ally trained on pre-defined datasets with a fixed number of
classes. However, in many practical applications, new object
classes often emerge after the detectors have been trained. It
is well-known that naive fine-tuning on new classes suffers
from catastrophic forgetting (French 1999; Goodfellow et al.
2013; McCloskey and Cohen 1989), severely degrading the
performance on old classes (Kirkpatrick et al. 2017). Due
to data privacy and limited storage of the devices, few or
even no old data are available for training the detectors from
scratch. In addition, even if the old data are available, jointly
training with both old and new data will take a long train-
ing time. Therefore, it is necessary to improve the ability
of object detectors to continuously learn new object classes

*Corresponding author
†Aoting Zhang’s work is cooperated and partially sponsored by

Peking University.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ae
ro bik

e
bir

d
bo

at
bo

ttle bu
s ca

r
ca

t
ch

air co
w

0

10

20

30

40

50

60

70

3.6 4.6 5.6
3.1 3.2 3.4

15

5.9
8.2

3.2

14

25

30

15

22

18

68

28

49

15

M
em

or
y 

(M
b)

Class

 Object
 Image

Figure 1: Memory usage (Mb) of all images and cropped
objects for the first 10 classes on VOC2007.

on new data, which is called Incremental Object Detection
(IOD).

According to the ways of tackling catastrophic for-
getting, incremental learning methods can be divided
into: regularization-based, replay (or memory)-based and
parameter-isolation-based (Delange et al. 2021). Recent in-
cremental object detection methods (Chen, Yu, and Chen
2019; Hao, Fu, and Jiang 2019; Hao et al. 2019; Li et al.
2019; Shmelkov, Schmid, and Alahari 2017; Zhang et al.
2020; Zhou et al. 2020; Yang et al. 2022a,b) mainly resort to
designing complex regularization-based methods, which fo-
cus on knowledge preservation and utilize distillation tech-
niques to transfer the knowledge learned from the old data
to the new model.

To this day, replay methods are not thoroughly studied in
recent incremental object detection methods. For the clas-
sification task, traditional replay methods commonly save a
set of original training samples for old classes and combine
it with the new training set in the incremental learning pro-
cedure. Previous methods have proven that data replay can
boost performance and mitigate catastrophic forgetting (Re-
buffi et al. 2017). However, it still has limitations if tradi-
tional replay methods are straightforwardly transferred to
the detection task. On one hand, due to the limited memory
on devices, the number of large-size samples to be stored is
restricted. On the other hand, due to data privacy, completed
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forms of exemplars like the whole image and the bounding-
box annotations may be inaccessible. Therefore, how to rep-
resent the memory space efficiently with marginal storage
and labeling costs is crucial for replay-based incremental ob-
ject detection.

Heuristically, to reduce the memory size, we can crop
the objects with bounding boxes from the old data instead
of storing the original training images. To verify its effect,
we calculate the memory usage of images and cropped ob-
jects. As shown in Figure 1, for the first 10 classes from
VOC2007 according to the alphabetic order, the images take
up about 3.9∼6.9 times more memory than cropped objects.
It demonstrates that storing objects rather than images can
reduce the memory size by a large margin. In this paper, we
propose a One-Shot Replay (OSR) method to store only one
cropped object for each old class, which utilizes copy-paste
as a harmonious design to replay for incremental object de-
tection. Compared with the traditional replay methods, it can
reduce the memory size, require no manual bounding-box
annotations and decrease the training time consumed on old
samples. To increase data diversity and co-occurrence fre-
quency of old and new objects, we design two augmentation
modules, including object augmentation and feature aug-
mentation. Compared with the recent regularization-based
incremental object detection methods, OSR can reduce the
computation cost and improve the variousness of the train-
ing samples in the incremental learning procedure.

The contributions of our work are as follows:
• To the best of our knowledge, this is the first attempt to

explore the unique data replay method for incremental
object detection. We propose the one-shot replay method
using copy-paste to augment data, which is a harmonious
design for incremental object detection.

• Two sophisticated augmentation modules are specially
designed to increase data diversity. Object augmenta-
tion is introduced to extend the perception of the poten-
tial objects. Feature augmentation is proposed to use the
instance-level representation of new classes to enrich the
distribution of old classes.

• Extensive experiments on VOC2007 (Everingham et al.
2010) and COCO (Lin et al. 2014) demonstrate the ef-
fectiveness of one-shot replay. Compared with traditional
replay, it can reduce memory usage and achieve high pre-
cision simultaneously.

Related Work
Incremental learning/Continual learning: According to
the ways of tackling forgetting, the methods can be cat-
egorized into: regularization-based, replay (or memory)-
based and parameter-isolation-based (Delange et al. 2021).
Regularization-based methods (Kirkpatrick et al. 2017;
Aljundi et al. 2018; Li and Hoiem 2017; Liu et al. 2022) in-
troduce additional regularization terms in the loss function,
preserving previously learned knowledge when learning on
data of new classes. It avoids storing old data and allevi-
ates memory requirements. Replay-based methods (Rebuffi
et al. 2017; Shin et al. 2017) store the raw samples or gen-
erate pseudo-samples with a generative model. Parameter-

isolation-based methods (Aljundi, Chakravarty, and Tuyte-
laars 2017) allocate different parameters to each task, which
can be divided into fixed and dynamic architectures (Mai
et al. 2021). Moreover, Zhu et al. (Zhu et al. 2021) propose
a dual augmentation method for class incremental learning.
Recently, the prompting-based method (Wang, Huang, and
Hong 2022) is also proposed for domain incremental learn-
ing.

Incremental Object Detection: Shmelkov et
al. (Shmelkov, Schmid, and Alahari 2017) propose the
first Fast R-CNN (Girshick 2015) based incremental object
detection method, which uses EdgeBoxes (Zitnick and
Dollár 2014) and MCG (Arbeláez et al. 2014) to pre-
compute proposals. Knowledge distillation is applied to
regularize the outputs of the classification and regression
layers in the detection head to preserve the performance
on old classes. Hao et al. (Hao et al. 2019) freeze RPN to
preserve the learned knowledge from the old classes and
minimize the difference between the features of the old and
new models using a feature-changing loss. They also intro-
duce a new dataset (TGFS) in (Hao, Fu, and Jiang 2019),
which is a hierarchical large-scale retail object detection
dataset. They propose to use an exemplar set with a fixed
size of old data for incremental object detection. Chen et
al. (Chen, Yu, and Chen 2019) propose to use a hint loss
(L2 loss) to minimize the distance between the features of
the old and new models. Li et al. (Li et al. 2019) propose to
extract three types of knowledge from RetinaNet (Lin et al.
2017), and they use smooth L1 loss to penalize the feature
difference. Zhang et al. (Zhang et al. 2020) pre-train a new
model only for the new classes and use a dual distillation
function for incremental learning from two teacher models
simultaneously.

The effectiveness of storing a few examples for boosting
the performance on old classes has been demonstrated in
the related works (Hao, Fu, and Jiang 2019; Li et al. 2019;
Joseph et al. 2021b), as well as the works in few-shot object
detection by Wang et al. (Wang et al. 2020) and open-world
object detection by Joseph et al. (Joseph et al. 2021a). How-
ever, they just adopt the typical way to store a small bal-
anced set selected from the original training exemplars with
the annotations, which does not consider the characteristics
of object detection in the incremental learning procedure.

Copy-Paste: Recently, copy-paste as a data augmentation
method has been found to be effective for both object de-
tection (Dwibedi, Misra, and Hebert 2017; Kisantal et al.
2019) and instance segmentation (Fang et al. 2019; Ghiasi
et al. 2021; Xu et al. 2021). Dwibedi et al. (Dwibedi, Misra,
and Hebert 2017) improve detection by the simple cut-and-
paste method, which uses the extra instances with annotated
masks. Ghiasi et al. (Ghiasi et al. 2021) find that randomly
pasting objects can provide solid gains for instance segmen-
tation. However, copy-paste has not been studied as a data
replay method in incremental learning for object detection.
Since it is an effective method that can handle the scarce data
problem for object detection and instance segmentation, we
explore copy-paste for data replay in the incremental object
detection domain to save memory usage, reduce computa-
tion costs and improve performance.

3128



···

Augmented Feature

Head

RPN

New
Model
New

Model

Cls & Reg

Old
Model

Old
Model

Distillation

NewOld

Real Objects

Objects of Old Classes

···

Images of New Classes

Objects of New Classes 

Memory

Mixup

Potential Objects

Pseudo 
Label

Relation Graph

λ 1-λ λ 1-λ λ 1-λ λ 1-λ 

Ground 
Truth

Ground 
Truth

Feature Aug

Cls & Reg

Replay via Copy-Paste

Object 
Aug

Feature 
Aug

Data Preparation Dual Network

Instance-Level 
Feature

Figure 2: The whole framework of the proposed incremental object detection method based on one-shot replay.

Method
Overview
In this paper, we propose a replay-based incremental object
detection method via augmentation, which is based on a dual
network, as shown in Figure 2. The frozen old model trained
on sufficient old data provides the learned knowledge of old
classes. The new model is initialized by the old model and
adapted to incrementally learn from the synthetic new data.
In each forward step of the incremental learning procedure,
we firstly generate synthetic samples with co-occurring ob-
jects of old and new classes by randomly copying the stored
one-shot object of each old class and pasting them on new
samples or clean background. Then, the synthetic samples
are input into the dual network, where the old model assists
in providing the knowledge of old classes in the features and
outputs. To better preserve the learned feature representa-
tions of old classes and maintain the discrimination between
all classes simultaneously, we enforce the instance-level fea-
tures and output logits of old classes from the new model to
imitate those from the old model.

One-Shot Replay
To minimize the storage of old data, we propose to store
only one object for each old class. To fully use the stored
objects and increase the diversity of training data, we ex-
ploit copy-paste to perform replay for incremental learn-
ing, which replays objects of old classes by augmenting new
samples. Intuitively, the advantages of using copy-paste for
replay include: (1) the object-level samples are easily ob-
tained, which can be cropped from the old data. If the old
data are inaccessible, they can also be collected from the
wild data; (2) the memory usage of storing object-level sam-
ples is far less than storing the whole images; (3) copy-paste
can be seen as a kind of augmentation to existing samples
which can increase the data diversity; (4) the size of the new
training dataset is not changed, which will not increase the
number of forward steps and the training time.

The heuristic idea is to copy the cropped objects and paste
them into the new training samples, which will not change
the size of the dataset, as well as save the training time on
extra old samples. It can also increase the co-occurrence fre-
quency of the objects belonging to both old and new classes
to strengthen inter-class discrimination. The main steps are
as follows: firstly, we randomly select a cropped object from
memory and resize it with random width and height in a
range. Then, search a position in the new sample for pasting
the object, where the IoUs between the object and the ground
truths of the new sample should be lower than a threshold. To
ensure the search time is within a range, we also define a lim-
ited running time to restrict the search process. Finally, new
synthetic samples with pasted objects of old classes are gen-
erated, and the integrated annotations of the original ground
truths and the pasted objects are also available.

Since randomly selected objects of old classes may be
deformed or occluded, it is hard to be recognized without
contextual information. To ensure the quality of the stored
objects, we use the pretrained ResNet-50 (He et al. 2016)
on ImageNet to select the representative objects, which are
near the mean of objects for each class, and they can be rec-
ognized with high confidence.

Object Augmentation
To enhance the ability of the detector to perceive poten-
tial objects and improve the recall of candidate propos-
als, we propose an object augmentation scheme based on
Mixup (Zhang et al. 2018). We randomly interpolate two
objects (xa and xb) from old and new classes to generate a
new object and paste it onto the training data, as written in
Eq. 1:

xmix = λxa + (1− λ)xb, (1)

where the interpolation coefficient is λ ∼ β(1.0, 1.0).
To reduce the corruption of original new training data

caused by copy-paste, we replay these augmented objects on
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clean background. Moreover, in some cases, the new emerg-
ing categories contain only a small number of samples for
the incremental learning stage. For example, the number of
samples containing “tv monitor” is just 279 on VOC2007.
The small size of new samples means a lack of context infor-
mation for distinguishing background and foreground, new
classes and old classes, which will cause the intra-class and
inter-class confusion in incremental learning. In addition, it
is difficult for the new model to thoroughly learn the differ-
ences between the old and new categories with only a few
samples, and the new model tends to overfit the new classes.
Therefore, we also paste objects of old and new classes on
the clean background as a new training sample, compensat-
ing for the existing new training data. The synthetic samples
are dynamically generated in the training procedure with-
out taking up any memory. This replay method can generate
diverse images by randomly combining different objects, in-
creasing the number and diversity of new training samples,
as well as preventing overfitting.

After generating the new synthetic samples, there are
three kinds of objects in the training data: objects with
ground truth (original and pasted objects), objects without
annotations (old objects in the new images that are not la-
beled) and mixed objects. Since the mixed objects are dis-
similar to the objects in old data, we only use them for
training RPN, which will not damage the learned knowl-
edge of old classes in the detection head. Since the ratio λ
of two samples for mixing is randomly sampled, some ob-
jects of old classes are still recognizable after being mixed,
which can be used for incremental learning. Therefore, we
use pseudo labels obtained from the old model to get the an-
notations of the recognizable objects of old classes, which
can increase the diversity of the objects of old classes.

Feature Augmentation
To compensate for the insufficient representation of old
classes in feature space, we propose a feature augmenta-
tion module. Inspired by (Wang et al. 2021) and (Zhu et al.
2021), the distribution information (class mean µ and co-
variance Σ) of old classes can be used to augment the feature
space and regularize the learning of the classifier. However,
limited variations are contained in the distribution informa-
tion due to the lack of objects of old classes. Since old and
new classes may have similar appearances, such as “bus”
vs. “train” and “cow” vs. “sheep”, we propose to use the
representation of new classes to enrich the variants of the
distribution of old classes.

Firstly, the old object detector is utilized to construct a
relation graph G =< V, E > between old and new classes,
where V are class nodes and E is the similarity between old
and new classes. It is a confusion matrix on the data of new
classes, which can be calculated as Eq. 2:

εij =

∑Ni

i=1 1(Mold(xi) = COld
j )

Ni
,

Σc =
(
∑CNew

i=1 εi,cΣi +ΣOld
c )

2
,

(2)

where 1 is the indicator function and εij represents the ratio

of the number of objects of the ith new class predicted into
the jth old class. ΣOld

c is calculated by the instance-level
features in the detection head.

Then, we randomly sample augmented features F a from
the refined distribution as written in Eq. 3:

F a ∼ N(F,Σc), (3)
where F is the instance-level features. The cross-entropy
loss of the augmented features of old classes in the feature
space of the detection head is defined as Eq. 4:

Lfea =
1

Cold

Cold∑
k=1

1

M

M∑
m=1

− log(
ew

T
k Fa

k,m+bk∑Call

c=1 e
wT

c Fa
c,m+bc

). (4)

M is the number of generated features. It is optimized with
the upper bound derived from (Wang et al. 2021) when
M → ∞.

The total loss function of the whole framework is defined
as:

L = Ldet + Lfea + Ldist, (5)
where Ldet is the standard detection loss function in the ob-
ject detector, Lfea and Ldist are the feature augmentation
and distillation losses respectively. We use L1 loss for Ldist.

Experiments
Experiment Setup
Datasets. The proposed method is evaluated on two bench-
mark datasets Pascal VOC 2007 and Microsoft COCO 2014.
VOC2007 has 20 object classes, and we use the trainval sub-
set for training and the test subset for evaluation. For COCO,
the 80K images in the training set are used for training, and
the minival (the first 5K images from the validation set)
split is used for evaluation. There are two schemes to add
new classes for evaluating our method: addition at once and
sequential addition. In the following experiments, for fair
comparisons with other methods, we crop the objects from
the old training data without using any extra wild data.
Evaluation metrics. We use mean average precision (mAP)
at 0.5 IoU threshold for VOC2007 and mAP across different
IoU from 0.5 to 0.95 for COCO. The compared methods are
fine-tuning and some recent related works (Chen, Yu, and
Chen 2019; Hao et al. 2019; Shmelkov, Schmid, and Alahari
2017; Li et al. 2019; Zhang et al. 2020; Yang et al. 2022b;
Joseph et al. 2021a,b). We list the results of these methods
reported in their original papers, which are evaluated under
the same settings as our proposed method without using any
wild data. We also design “Baseline++” to evaluate different
components, which uses L1 loss for feature distillation on
instance-level features and logit distillation on output layers.
Implementation details. We use Faster R-CNN (Ren et al.
2015) with ResNet-50 (He et al. 2016) as the basic object
detector. The old model is trained for 20 epochs, and the
initial learning rate is set to 0.001 (lr = 0.001), and decays
every 5 epochs with gamma = 0.1. The momentum is set to
0.9. The new model is trained for 10 epochs with lr = 0.001
and decays after 5 epochs. The confidence and IoU threshold
for NMS are set to 0.5 and 0.3 respectively. The experiments
are conducted on a single NVIDIA GeForce RTX 2080 Ti.
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Components mAP

Copy-Paste Object Aug. Feature Aug. 19+1 15+5 10+10

63.37 60.57 57.10

✓ 68.91 (+5.54) 65.19 (+4.62) 60.60 (+3.50)
✓ ✓ 69.21 (+5.84) 66.55 (+5.98) 61.19 (+4.09)
✓ ✓ ✓ 69.47 (+6.10) 66.62 (+6.05) 61.64 (+4.54)

Table 1: Ablation Study.
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Figure 3: The precision of replaying images and objects
on non-overlapped 19+1, 15+5 and 10+10 settings of
VOC2007, respectively.

Method 19+1 15+5 10+10

Random 68.77 65.77 57.11
OSR 69.47 (+0.70) 66.62 (+0.85) 61.64 (+4.53)

Table 2: Comparison on object selection.

Ablation Study
For the ablation study, the first 19, 15 and 10 classes are
sorted in alphabetical order as old classes, and the remaining
1, 5 and 10 classes are corresponding new classes. To eval-
uate the performance on a non-co-occurrence setting, differ-
ent from the commonly used settings in (Shmelkov, Schmid,
and Alahari 2017), we select the images that only contain the
objects of classes in this group, which means that the unla-
beled objects of old classes do not appear in new data.

Table 1 lists the results of the variants of OSR for eval-
uating the effectiveness of different components. The first
row is the results of our designed “Baseline++”. Compared
with “Baseline++”, the copy-paste way to replay old objects
can improve the performance by a large margin (4.55%) as
shown in the second row, which will not increase the size
of the training set. After adding the proposed object aug-
mentation module, the mAP increases by 0.75% on average.
As shown in the last row, the mAPs are also consistently
improved on all settings when using feature augmentation,
improving about 0.26% on average.

To verify the effectiveness of the proposed one-shot re-
play method, we compare it with replaying the original train-
ing images, which directly stores a subset of the original

Figure 4: The randomly selected objects on 10+10 setting.

Ratio 0.1 0.2 0.5 0.7 1.0

mAP 69.04 69.3 69.47 69.54 69.43

Table 3: The ratio of the new synthetic samples.

training data. For images, we randomly select 1, 5 and 10
images for each old class. For cropped objects, we only store
one cropped object for each old class. Figure 3 presents the
precision as the number of the stored samples increases. It
can be seen that OSR achieves better mAP with negligible
memory compared with replaying original images.

We also conduct experiments on the methods of object se-
lection. As shown in Table 2, compared with random selec-
tion, the selection method in OSR can effectively improve
the performance, especially on 10+10 setting. The reason
may be that the representations learned on the first 10 classes
are not robust, which may be easily interrupted by the ran-
domly selected one-shot objects of old classes. We exem-
plify the selected occluded objects as shown in Figure 4,
which may degrade the performance and change the learned
decision boundary due to the lack of contextual information.

Table 3 presents the performance on different numbers of
new synthetic samples. We calculate the number of new syn-
thetic samples according to the total number of the original
new training samples, where Nsyn = ratio×Nreal. As can
be seen, the best performance is achieved with ratio = 0.7.
However, to save training time, we set the ratio to 0.5 for the
trade-off between training time and accuracy.

In Figure 5, we verify the performance of feature aug-
mentation module with or without analogy using the data of
new classes (w New vs. w/o New). As can be seen, with the
number of similar classes increasing, this module is more
effective (larger improvements on the 10+10 setting).

Addition of Classes at Once
In this section, we evaluate the performance of adding new
classes at once and compare the proposed method with the
recent state-of-the-art incremental object detection methods.
In this experiment, if the image contains the categories to be
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Method Model 19+1 Setting 15+5 Setting 10+10 Setting
Old New All Mem. Old New All Mem. Old New All Mem.

Old Faster R-CNN 73.4 - 73.4 - 74.3 - 74.3 - 88.0 - 88.0 -
Fine-tuning Faster R-CNN 31.8 56.0 33.0 - 47.5 54.7 49.3 - 37.3 65.2 51.3 -
Shmelkov et al. 2017 Fast R-CNN 68.5 62.7 68.3 - 68.3 58.4 65.9 - 63.2 63.1 63.1 -
Chen et al. 2019 Faster R-CNN 68.3 60.0 67.9 - - - - - 65.0 60.0 62.5 -
Li et al. 2019 RetinaNet 66.3 40.4 65.0 - - - - - 67.5 68.4 67.9 -
Zhou et al. 2020 Faster R-CNN 70.5 53.0 69.6 - - - - - 63.5 60.0 61.8 -
Zhang et al. 2020 Faster R-CNN 65.6 64.0 65.5 - - - - - 65.8 61.7 63.8 -
Yang et al. 2022b Faster R-CNN 70.5 59.6 70.0 - 69.6 59.2 67.0 - 66.3 66.0 66.2 -
Joseph et al. 2021a Faster R-CNN 69.4 60.1 68.9 75 71.8 58.7 68.5 58 60.4 68.8 64.6 38
Joseph et al. 2021b Faster R-CNN 70.9 57.6 70.2 14 71.7 55.9 67.8 13 68.4 64.3 66.3 7.9
OSR Faster R-CNN 71.8 66.5 71.5 0.5 72.2 61.2 69.5 0.4 68.7 70.8 69.8 0.3

Upper(1-20) Faster R-CNN 73.5 73.3 73.5 - 75.2 68.3 73.5 - 73.5 73.5 73.5 -

Table 4: Average precision (%) and memory usage (Mb) on the VOC2007 test dataset. Comparisons are conducted under
different settings when 1, 5 or 10 classes are added at once.
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Figure 5: Comparison on feature augmentation with/without
new classes for analogy.

detected, it will be selected for training or testing, so there
is an overlap between the old and new data. As shown in
Table 4, the per-class average precision on the VOC2007 test
dataset is listed when 1, 5 and 10 new classes are added at
once. The results of other methods are also listed, which are
from their original papers.

On the 19+1 setting, Old(·) represents the old model
trained on the data of the old classes. Here, except for the
newly added layers for new classes, we initialize the pa-
rameters of the rest layers by the old model when perform-
ing incremental learning or fine-tuning. As can be seen, the
performance of fine-tuning degrades a lot on old classes,
which has caused severely catastrophic forgetting. OSR out-
performs the competitive method by Joseph et al. (Joseph
et al. 2021b) about 1.3% with only 0.49Mb memory. (Joseph
et al. 2021a) and (Joseph et al. 2021b) store a balanced set
of exemplars (50 and 10 complete images for each class
respectively), taking about 75Mb and 14Mb on 19+1 set-
ting. On the 15+5 setting, OSR also performs well compared
with other methods. The mAP increases by 1.4% compared
with results of (Joseph et al. 2021a), and memory takes
up 0.36Mb. On the 10+10 setting, when adding more new
classes, OSR still outperforms all methods and exceeds the
second best method Li et al. (Li et al. 2019) about 1.9% and

Method mAP@0.5 mAP@[0.5, 0.95]

Old(1-40) 54.4 32.5
Shmelkov et al. 2017 37.4 21.3
Zhou et al. 2020 36.8 22.7
Yang et al. 2022b 43.2 23.6
Joseph et al. 2021b 40.5 23.8
OSR 45.2 25.4

Upper(1-80) 50.1 29.8

Table 5: Average precision (%) on COCO minival dataset.
Comparisons are conducted when 40 classes are added at
once.

exceeds Joseph et al. about 3.5%.
As can be seen, the performance of OSR is consistently

improved compared with other methods on all settings. The
mAPs after incremental learning are very close to the upper
bound (Upper(1-20)), which is trained on the joint data of
both old and new classes. It demonstrates that our proposed
replay method can effectively mitigate catastrophic forget-
ting and reduce the memory usage for storing the samples of
old classes.

To evaluate the performance of adding more classes, we
conduct experiments on COCO, where the first 40 classes
are the old classes and the remaining 40 classes are the new
classes. The results are listed in Table 5. Compared with the
distillation-based method (Shmelkov, Schmid, and Alahari
2017; Zhou et al. 2020; Joseph et al. 2021b), the simpler
OSR can better mitigate catastrophic forgetting with only
0.86Mb extra memory.

Sequential Addition of Multiple Classes
In this experiment, we evaluate the performance of our
method by adding classes sequentially for incremental learn-
ing. For the first setting, we also take 15 and 10 classes from
VOC2007 sorted in alphabetical order as the old classes, and
the remaining 5 and 10 classes are as new classes. Table 6
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15+1+1+1+1+1
Method plant sheep sofa train tv

Replay Img 51.63 55.11 45.07 42.39 33.51
OSR 70.54 67.99 64.96 63.75 63.13

10+2+2+2+2+2
Method table & dog horse & mbike person & plant sheep & sofa train & tv

Replay Img 47.81 41.40 20.77 21.81 21.95
OSR 62.74 58.96 57.03 55.66 56.20

Table 6: Average precision (%) on VOC2007 test dataset when adding 5 or 10 new classes sequentially.

VOC2007 A B C D mAP

Baseline++

67.58 - - - 67.58
48.63 73.67 - - 61.15
29.24 39.40 65.55 - 44.73
21.91 24.86 37.66 45.35 32.45

OSR

67.58 - - - 67.58
60.83 73.88 - - 67.35
48.13 51.35 66.61 - 55.36
43.62 42.71 50.13 49.19 46.41

COCO A B C D mAP

Baseline++

62.17 - - - 62.17
50.45 22.18 - - 36.31
35.83 14.21 21.02 - 23.69
23.17 10.69 15.67 26.23 18.94

OSR

62.17 - - - 62.17
53.94 22.64 - - 38.29
49.50 18.63 22.31 - 30.14
45.09 16.23 18.13 26.57 26.50

Table 7: Results on VOC2007 and COCO, when four groups
are added sequentially.

lists the mAP(%) when adding 5 and 10 classes sequentially
with 5 steps. We compare OSR with replaying one image for
each old class (Replay Img), and the images are randomly
selected to be stored with the original annotations. As can
be seen, OSR achieves comparable performance with replay
original images after multiple learning steps. The proposed
method is also compared with the same Faster R-CNN based
methods (Chen, Yu, and Chen 2019; Yang et al. 2022b) in
ten-step learning, which are distillation-based methods. As
shown in Figure 6, OSR can slow down the descent of the
performance compared with the regularization-based meth-
ods with the increasing of the incremental learning steps,
and it outperforms the results of Chen et al. (Chen, Yu, and
Chen 2019) about 11.94% on the final learning step.

For the second setting, we split the training set of COCO
into four groups: A, B, C and D. For each group, images
that only contain the objects of classes in this group are
selected. As is shown in Table 7, we compare OSR with
Baseline++. OSR can achieve better performance than the
method with only distillation on the non-overlapped sce-
nario for sequential addition. It demonstrates that OSR can
effectively compensate for the missing of old-class objects
in the new training data, and this compensation can effec-
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Figure 6: Comparison with the regularization-based
method (Chen, Yu, and Chen 2019; Yang et al. 2022b) on
the 10+1+...+1 setting of VOC2007.

tively mitigate catastrophic forgetting.

Discussion
The proposed one-shot replay is an augmentation method
for IOD, which can be easily integrated with other
regularization-based methods to further boost the perfor-
mance. OSR can handle the problem of unavailable origi-
nal training data and annotations. It can collect other easily
obtained object-centric images in the wild by using the old
detector to detect, requiring no manual bounding-box an-
notations for replay. In addition, the memory occupied by
one object for each class is negligible, and the computa-
tional complexity is less than regularization-based methods.
Therefore, OSR can be seen as an effective replay method to
avoid complex computation and large memory size.

Conclusion
In this paper, rather than designing the complex regular-
ization methods for preserving the learned knowledge, we
propose a simple yet effective data replay method based
on data and feature augmentation to improve the perfor-
mance of incremental object detection. The easily acces-
sible one cropped object for each old class is stored with
smaller memory size. The proposed two augmentation mod-
ules can generate a diverse set of new samples and enrich the
feature space, requiring no manual bounding-box annota-
tions. Experimental results on VOC2007 and COCO demon-
strate the effectiveness of the proposed method on incremen-
tally learning to detect objects of new classes and mitigating
catastrophic forgetting.
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