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Abstract

Video-Text pre-training aims at learning transferable repre-
sentations from large-scale video-text pairs via aligning the
semantics between visual and textual information. State-of-
the-art approaches extract visual features from raw pixels in
an end-to-end fashion. However, these methods operate at
frame-level directly and thus overlook the spatio-temporal
structure of objects in video, which yet has a strong syn-
ergy with nouns in textual descriptions. In this work, we
propose a simple yet effective module for video-text repre-
sentation learning, namely RegionLearner, which can take
into account the structure of objects during pre-training on
large-scale video-text pairs. Given a video, our module (1)
first quantizes continuous visual features via clustering patch-
features into the same cluster according to content similarity,
then (2) generates learnable masks to aggregate fragmentary
features into regions with complete semantics, and finally (3)
models the spatio-temporal dependencies between different
semantic regions. In contrast to using off-the-shelf object de-
tectors, our proposed module does not require explicit super-
vision and is much more computationally efficient. We pre-
train the proposed approach on the public WebVid2M and
CC3M datasets. Extensive evaluations on four downstream
video-text retrieval benchmarks clearly demonstrate the ef-
fectiveness of our RegionLearner.

Introduction
Video-Text pre-training (Lei et al. 2021; Bain et al. 2021),
which aims to learn transferable representations by aligning
the semantics of video and text, has attracted researchers’
attention in recent years. It enables a series of downstream
video-text tasks, such as video-text retrieval (Rohrbach et al.
2015; Xu et al. 2016), video question answering (Jang et al.
2017), and video captioning (Rohrbach et al. 2015; Xu et al.
2016). The conventional pipeline (Bain et al. 2021; Lei et al.
2021) of video-language pre-training is encoding video and
text into the shared feature space followed by the cross-
modality modeling. The visual input used in existing meth-
ods can be categorized as whole frames and whole frames +
explicit object boxes, as shown in Figure 1.
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Figure 1: Previous works for video-text pre-training usually
extract visual features from the whole frames of video. In-
spired by the success of region features in image-text rep-
resentation (Li et al. 2020b; Chen et al. 2020), some video-
based works also extract semantic features (Zhu and Yang
2020; Liu et al. 2019) from explicit object regions. Our mo-
tivation is to implicitly learn object regions from raw pixels
without any supervision.

i), whole frames (Sun et al. 2019; Lei et al. 2021; Bain
et al. 2021): are directly encoded as the video features
through the pre-trained 2D or 3D visual backbone. Limited
to computing resources, early works (Liu et al. 2019; Sun
et al. 2019) extract such video features in an offline way, but
recent methods have managed to train the visual backbone
on the raw frames in an end-to-end manner (Bain et al. 2021;
Lei et al. 2021). Whereas, these methods evenly encode each
frame as a number of patch-features, which inevitably de-
stroys the inherent spatio-temporal structure of the visual
entities. ii), whole frames + explicit object box (Zhu and
Yang 2020; Liu et al. 2019; Wang et al. 2022): extracts se-
mantic region features from frames supervised by explicit
object boxes detected by the off-the-shelf algorithms for bet-
ter performance. Intuitively, the visual information of lo-
cal objects is more effective for semantic alignment. How-
ever, existing methods adopt offline region features which
are very computationally expensive and not flexible. Beyond
that, region features used in these methods also heavily rely
on the quality of the off-the-shelf detectors.

These observations motivate us to design a lightweight
approach to implicitly learning object region (as shown
in Figure 1 (iii)) without position supervision. We propose
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a simple yet effective plug-and-play RegionLearner mod-
ule for video-text representation learning. Intuitively, align-
ing continuous visual content with discrete textual descrip-
tions directly is difficult for models without explicit supervi-
sion. Inspired by SOHO (Huang et al. 2021), we first quan-
tize each frame of the video by grouping raw patch features
into the same cluster according to visual similarity for better
cross-modal alignment. However, patches that make up an
object are not necessarily visually similar at the low-level.
Therefore, vector quantization based on content similarity
tends to assign these dissimilar patches of one object into
different clusters, which may destroy the semantic integrity
of objects and their dynamic dependencies over time. To this
end, based on the quantized visual features, this work further
mines object regions with complete spatial semantics and
reason the spatio-temporal dependencies among them as fol-
lows. i): aggregate fragmentary quantized patch-features
to construct integrated semantic regions through multiple
learnable region masks; ii) : instead of heavy spatio-
temporal modeling among dense visual patches from raw
features, a lightweight spatio-temporal graph is built on lim-
ited learned region features to explore their latent dependen-
cies over time.

Our contributions can be summarized as three-fold. i) To
our best knowledge, we are the first to take into account
the spatio-temporal structure of objects in the video dur-
ing video-text pre-training in an end-to-end fashion with-
out supervision. ii) We propose a novel module, namely Re-
gionLearner, to implicitly learn discriminative regions from
patch-features. It does not require any explicit supervision
and is also computationally efficient, which is friendly for
democratizing video-language pre-training technology. Be-
yond that, the module will be removed for downstream tasks,
thus it does not bring any additional parameters or compu-
tational overhead. iii) Extensive results on four video-text
retrieval downstream benchmarks demonstrate the effective-
ness of our approach. As a bonus, the proposed approach
also benefits video representations used for visual question
answering. We will release relevant code and pre-trained
model weights to facilitate the research community.

Related Work
Vision-Language Pre-training Learning visual representa-
tion from large-scale video-text pair collections is an emerg-
ing research topic. Early methods (Sun et al. 2019; Li
et al. 2020a) extract offline visual features from pre-trained
video backbones for pre-training. Some recent methods (Lei
et al. 2021; Bain et al. 2021) directly extract visual features
from raw pixels in an end-to-end fashion. Besides, some
works (Liu et al. 2019; Zhu and Yang 2020) attempt to ex-
tract regional features from videos as supplementary with
the help of off-the-shelf detectors (Anderson et al. 2018) pre-
trained on Visual Genome (Krishna et al. 2017). However,
frame feature (Lei et al. 2021; Bain et al. 2021) used in ex-
isting video-language pre-training methods ignore the com-
plete semantics of visual objects, meanwhile region features
heavily rely on the quality of detectors. In this work, we im-
plicitly learn regions from raw pixels without object boxes
for video-language pre-training in an end-to-end fashion.

Some recent works for image-text pre-training attempt to
get rid of the regional feature (Tan and Bansal 2019; Chen
et al. 2020; Kim, Jun, and Zhang 2018) which has been dom-
inant in image-text representations. They either randomly
sample some patch-features (Huang et al. 2020) or con-
struct compact discrete representations through visual dic-
tionary (clustering) (Huang et al. 2021) to achieve promising
performance. Because semantics involved in language de-
scriptions are visually intertwined, simply clustering (Huang
et al. 2021) or randomly sampling (Huang et al. 2020) patch-
features will inevitably lead to a large number of fragmented
and incomplete areas. In this work, we not only quantizes vi-
sual feature into semantic clusters inspired by (Huang et al.
2021), but also further aggregate discrete representation be-
longing to the same semantic region followed by interac-
tions.
Region-centric Video Representation In the past decade,
a large number of deep 2D (Lin, Gan, and Han 2019; Wang
et al. 2016) and 3D (Tran et al. 2015; Wang et al. 2018) mod-
els have been proposed to extract efficient spatial and tem-
poral representations for videos. Recently, inspired by the
success of Transformer in NLP field (Vaswani et al. 2017;
Devlin et al. 2018), visual Transformers (Liu et al. 2022;
Cheng et al. 2021) are sprung up for video representation.
However, these pre-trained video backbones focus more on
temporal cues of defined action categories (Kay et al. 2017;
Sigurdsson et al. 2016) from the whole frames, and cannot
cover rich spatial semantics involved in language descrip-
tions. In this work, we adopt the video backbone pre-trained
from ImageNet (Deng et al. 2009), and then aim to learn
more fine-grained clues (Tang et al. 2022) of local regions
corresponding to the semantics in captions.

In the field of action recognition, to model the dynamic
motion of objects, some recent works (Yan et al. 2020;
Materzynska et al. 2020) extract the region-centric features
from videos according to tracklets of human body or ob-
jects. Meanwhile, region-centric features also facilitate se-
mantic alignment between two different modalities in video-
language tasks (Lei et al. 2018; Zhu and Yang 2020). How-
ever, all these methods rely on the ground truth or detected
tracklets of each region (objects or humans). Different from
these region-centric works which need explicit positional su-
pervision of regions, we aim at implicitly learning object re-
gions from the raw frames directly.

Approach
Video and Text Encoder
In this work, we extract both visual and textual features in
a trainable way, similar to (Bain et al. 2021; Huang et al.
2021). Formally, supposing the input of our approach is a
video V ∈ RT×3×H×W which contains T frames of resolu-
tion H×W , and the associated tokenized textual description
C. We obtain their features as,

F = EV(V ),Y = EC(C). (1)
Here, EV(·) and EC(·) are video and text encoder, respec-
tively. For the text encoder, we choose the current most pop-
ular transformer-based architecture and treat the [CLS] to-
ken of the last hidden layer as the text feature Y . Either
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Figure 2: Overview of the proposed approach. Given a video-text pair, we encode them via the video and text encoder respec-
tively. RegionLearner is proposed to identify and leverage the implicit semantic structure of objects/regions in the video, and
it is performed in three steps. i) clustering the raw features into semantic clusters and replacing raw features with cluster fea-
tures; ii) multiple region masks are designed to capture the corresponding regions with completed semantics from the quantized
feature map and generate a few delicate region features; iii) spatio-temporal dependencies between each region feature can be
easily dug via self-attention thanks to the limited number of regions. Finally, the video representation generated from Region
Learner is fused to compute the similarity with textual representation.

convolution or transformer can be used as a video encoder.
Here, we extract visual representations from a video V via
ViT (Dosovitskiy et al. 2020; Bertasius, Wang, and Torre-
sani 2021) with the patch size of P , thus we obtain video
feature F ∈ RT×L×d where L = HW/P 2.

RegionLearner
Visual Quantization While language used by humans is
inherently discrete, the visual information from video is con-
tinuous and diverse. Trying to align concepts from these
two modalities is already difficult, let alone without any
auxiliary supervision (e.g., semantic object annotation). In-
spired by (Oord, Vinyals, and Kavukcuoglu 2017; Huang
et al. 2021), we believe that quantifying raw continuous vi-
sual features to discrete representations will make video-
language understanding easier. In this work, we cluster the
visual features extracted from patches of each frame based
on content similarity in the global space and then replace the
raw visual feature with the nearest cluster.

Formally, we first define M learnable clusters as
{c0, c1, · · · , cM} in which cm ∈ Rd. Our main idea is to
aggregate similar visual tokens into the shared cluster in the
global space (over the entire dataset). Given a f t

s at the s-
th spatial position and t-th time-step, we update it with the

most similar cluster as,

f t
s

′

= cm∗ , where m∗ = argminm dis(f t
s, cm). (2)

Here dis(a, b) is used to compute the similarity distance be-
tween two input features, and it can be implemented by dif-
ferent methods (e.g., euclidean distance, and cosine similar-
ity). In this work, we adopt euclidean distance and update
these clusters with momentum learning and stop the gradi-
ent on the operation of argmin following (Oord, Vinyals,
and Kavukcuoglu 2017; Huang et al. 2021). After that, we
can achieve a more compact representation F

′ ∈ RT×L×d

with the same shape of input feature F .

Mining Semantic Region According to content similar-
ity, raw continuous visual features of each frame are quan-
tized through a limited number of cluster representations.
However, it is inevitable for the model to represent one vi-
sual entity (object/background/people, etc.) via several dif-
ferent cluster features, which will destroy the semantic in-
tegrity of the visual entity. Intuitively, each word or phrase
in textual descriptions usually refers to a visual instance or
region with complete semantic. Therefore, it is necessary to
further abstract several visual representations with complete
semantics from each quantized feature map. Specifically, in-
spired by (Ryoo et al. 2021), we extract K region features
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with complete semantics in space from the sequential fea-
tures F

′
.

Formally, for each video, we can obtain the semantic rep-
resentation F

′ ∈ RT×L×d in which patch features are ar-
ranged in sequence. To find semantic regions, we reshape it
back to the original spatial resolution X ∈ RT×H

′
×W

′
×d

where H
′
= H/P and W

′
= W/P . For each frame t, we

aim at learning K region representations St = [si]
K
i=1 from

input frame feature via:

si = R(Xt), (3)

where X
′

t ∈ RH
′
×W

′
×d and si ∈ Rd. In this way, region

features aggregate informative pixels (i.e., small patches
from a video frame) adaptively.

Notably, R(·) can be implemented via different choices.
In this work, we instantiate this function as multiplying the
input feature map Xt by a learned spatial attention map and
pooling it to a single vector,

si = R(Xt) = Pool2D(βi(Xt) ◦Xt). (4)

Here, Pool2D and ◦ denote the spatial pooling and
Hadamard product respectively. β = [βi]

K
i=1 is imple-

mented by a 3× 3 convolution layer with K channels. After
that, for each video, sparse region features S ∈ RK×T×d

are obtained, which allows us to further model the spatio-
temporal clues in video.

Video descriptions will inevitably contain dynamic mo-
tions, such as “put sth.” and “pull sth.”, which involves the
temporal and spatial dynamic relationships between visual
entities rather than only static appearance. Therefore, we fur-
ther build spatio-temporal dependencies among the region
features, which is more efficient and flexible than modeling
among raw dense patch-features. The small number of re-
gion features allows us to directly build space-time attention
as,

zk,t =
∑
k′ ,t′

α(ϕ(sk,t),ϕ(sk′ ,t′ ))sk′ ,t′ , (5)

where ϕ(·) is linear embedding, α(a, b) computes the at-
tention weights between input via dot product followed by
a softmax (Bertasius, Wang, and Torresani 2021). Z ∈
RK×T×d is the video feature output from RegionLearner
plugged on the top of the video encoder.

Objective Function
Following (Bain et al. 2021), in each training batch, paired
video-text samples are treated as positives and others are
negatives. Formally, we minimise the sum of video-to-text
loss (Lv2t) and text-to-video loss (Lt2v) as follows:

Lv2t = − 1

N

N∑
i=1

log
exp(x⊤

i yj/τ)∑N
j exp(x⊤

i yj/τ)
, (6)

Lt2v = − 1

N

N∑
i=1

log
exp(y⊤

i xj/τ)∑N
j exp(y⊤

i xj/τ)
, (7)

where xi ∈ Rd̂ and yi ∈ Rd̂ are normalized video and text
features, respectively. Here, we linear project the [CLS] to-
ken of the last layer of video and text encoder into a common
dimension as video and text features, respectively. N is the
batch-size, and temperature variable τ is used to scale logits.

Experiments
Following the recent work (Bain et al. 2021), we pre-
train our model on an affordably large-scale video-text
benchmark (WebVid-2M (Bain et al. 2021)) and an image-
text benchmark (Google Conceptual Captions (Sharma
et al. 2018)). In this work, we evaluate the effectiveness
of our pre-trained model on two downstream tasks with
nine benchmarks as follows. i) Text-to-Video Retrieval:
MSR-VTT (Xu et al. 2016), DiDeMo (Anne Hendricks
et al. 2017), LSMDC (Rohrbach et al. 2015, 2017), and
MSVD (Chen and Dolan 2011); ii) Video Question Answer-
ing: MSRVTT Multiple Choice (Yu, Kim, and Kim 2018),
MSRVTT-QA (Xu et al. 2017), and MSVD-QA (Xu et al.
2017).

Comparisons with State-of-the-art
Text-to-Video Retrieval MSR-VTT. Our approach ex-
ceeds the best no-pretrained method, Support Set (Patrick
et al. 2021), by 8.9%. In addition, we are superior to
all previous methods pre-trained on HowTo100M (Miech
et al. 2019) that is an order of magnitude larger than We-
bVid2M (Bain et al. 2021) + CC3M (Sharma et al. 2018).
Though some of these methods adopt expert features in-
cluding object (Zhu and Yang 2020), sound (Gabeur et al.
2020; Rouditchenko et al. 2020) and speech (Gabeur et al.
2020) information. Compared with the most related work,
Frozen (Bain et al. 2021), our RegionLearner brings signif-
icant improvements in text-to-video retrieval. We also pro-
vide the results of the zero-shot setting which requires mod-
els not to fine-tune on the downstream benchmark. Our ap-
proach boosts Frozen by 3.5 on R@1 in Text-Video retrieval
and achieves state-of-the-art results against other methods.
Beyond that, our approach outperforms OA-Trans which
uses explicit object boxes and features extracted from Faster
RCNN, in terms of R@1 and R@5 for text-video retrieval.
This shows that the learned objects are as good or better than
the detected ones, yet there are significant cost savings
DiDeMo. As expected, our approach outperforms all ex-

isting results on this benchmark. Compared with the most
related work (Frozen (Bain et al. 2021)), our approach gains
a boost of 1.5% on R@1, which is not very significant. Be-
cause this benchmark is collected for Moments Localiza-
tion (Anne Hendricks et al. 2017), the provided text caption
describes only part of the video. Our RegionLearner will be
disturbed by many irrelevant frames, which may be an inter-
esting problem for future research.
LSMDC. We also report the text-to-video retrieval result

on LSMDC in Table 2b. Our approach surpassed all existing
methods reported on this benchmark and improves the exist-
ing state-of-the-art Frozen by approximately 2.0% in terms
of R@1 and MedR.
MSVD.Despite this benchmark is relatively small, our
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Method PT dataset Text =⇒ Video Video =⇒ Text
R@1/@5/@10 MedR R@1/@5/@10 MedR

JSFusion (Yu, Kim, and Kim 2018)
−

10.2/31.2/43.2 13.0 −/− /− −
CE (Liu et al. 2019) 20.9/48.8/62.4 6.0 20.6/50.3/64.0 5.3
Support Set (Patrick et al. 2021) 27.4/56.3/67.7 3.0 26.6/55.1/67.5 3.0
HT MIL-NCE (Miech et al. 2019)

HT

14.9/40.2/52.8 9.0 −/− /− −
ActBERT (Zhu and Yang 2020) 16.3/42.8/56.9 10.0 −/− /− −
HERO (Li et al. 2020a) 16.8/43.4/57.7 − −/− /− −
UniVL (Luo et al. 2020) 21.2/49.6/63.1 6.0 −/− /− −
MMT (Gabeur et al. 2020) 26.6/57.1/69.6 4.0 27.0/57.5/69.7 3.7
Support Set (Patrick et al. 2021) 30.1/58.5/69.3 3.0 28.5/58.6/71.6 3.0
AVLnet (Rouditchenko et al. 2020) 27.1/55.6/66.6 4.0 −/− /− −
VidTranslate (Korbar et al. 2020) 14.7/− /52.8 − −/− /− −
Noise-Estimation (Amrani et al. 2021) 17.4/41.6/53.6 8.0 −/− /− −
HIT (Liu et al. 2021) 30.7/60.9/73.2 2.6 32.1/62.7/74.1 3.0
DECEMBERT (Tang, Lei, and Bansal 2021) 17.5/44.3/58.6 9.0 −/− /− −
ClipBERT (Lei et al. 2021) COCO, VG 22.0/46.8/59.9 6.0 −/− /− −
Frozen (Bain et al. 2021) CC, WV 31.0/59.5/70.5 3.0 −/− /− −
OA-Trans (Wang et al. 2022) CC, WV 35.8/63.4/76.5 3.0 −/− /− −
Ours CC, WV 36.3/63.9/72.5 3.0 35.3/63.5/73.2 3.0

Zero-shot
HT MIL-NCE (Miech et al. 2019) HT 7.5/21.2/29.6 38.0 −/− /− −
Support Set (Patrick et al. 2021) HT 12.7/27.5/36.2 24.0 8.7/23.0/31.1 31.0
Frozen (Bain et al. 2021) CC, WV 18.7/39.5/51.6 10.0 −/− /− −
Ours CC, WV 22.2/43.3/52.9 8.0 15.3/32.4/42.1 17.0

Table 1: Comparisons with state-of-the-art results on MSR-VTT 1K-A for text-to-video and video-to-text retrieval. COCO,
VG, WV2M, CC3M, HT are the abbreviations of COCO Caption (Chen et al. 2015), Visual Genome (Krishna et al. 2017),
WebVid2M (Bain et al. 2021), Google Conceptual Captions (Sharma et al. 2018), and HowTo100M (Miech et al. 2019),
respectively.

method is still effective and achieves new state-of-the-art
results, as shown in Table 2c. In particular, compared with
the existing best result from Frozen, our approach improves
R@1 by 10.3%. It suggests that our method is still effec-
tive on the small-scale downstream dataset, which is very
important for pre-training methods to be employed to deal
with various real-world tasks.
Video Question Answering We also evaluate our approach
on video question answering tasks and reported the re-
sults in Table 3. RegionLearner surpasses the prior state-of-
the-art VideoCLIP with a performance gain of +1.4%. On
MSRVTT-QA and MSVD-QA, our method achieves the ac-
curacy of 38.6% and 39.3%. It’s worth noting that DualVGR
uses 16 frames twice as many as we use.

Ablation Study
In this section, we study the effectiveness of each component
of the proposed approach and the effect of different param-
eters used in model architecture. All the following experi-
ments are pre-trained on WebVid-2M (Bain et al. 2021) and
fine-tuned on the MSR-VTT (Xu et al. 2016) and the results
of the 1K-A test set are reported.
Effectiveness of Each Component. To demonstrate the
effectiveness of the component of the proposed Region-
Learner, we gradually drop each step used in the module
and report the results in Table 4a. In general, each compo-

nent brings improvements. Among them, the improvement
of “visual quantization” (step 1) and “Aggregation in differ-
ent regions” (step 2) is the most obvious, up to 2+%. But the
gain of “Interaction between aggregated regions” (step 3) is
relatively limited, which may be due to the limited spatial-
temporal semantics in pre-training data. Through observa-
tion, we find that temporal clues contained in the pre-trained
dataset (WebVid2M (Bain et al. 2021)) are extremely weak,
and it presents almost static visual information.
Different Strategies for Mining Regions. In this work, we
compare different strategies used to mine regions with com-
plete semantics in RegionLearner, such as Random Sam-
pling, Empirically Selection, Naive Attention, and the pro-
posed Region Mask. i), Random Sampling: samples part of
patch features from the feature map X randomly; Empiri-
cally Selection: selects some high-frequent cluster represen-
tations from the map via a threshold of 0.8; Naive Attention:
performs a simple attention mechanism directly on the fea-
ture map X . As reported in Table 4b, all these three methods
bring limited improvements or even become worse, but the
proposed region mask improves the base method by 2% on
R@1. The baseline only quantizes the raw pixels into dis-
crete representations.
Effect of the Number of Regions To determine how many
regions the model needs to learn, we set the range of K from
20 to 26, and the results are shown in Figure 4a. We can see
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Method Text =⇒ Video
R@1/@5/@10 MedR

S2VT 11.9/33.6/− 13.0
FSE 13.9/36.0/− 11.0
CE (Liu et al. 2019) 16.1/44.1/− 8.3
ClipBERT (Lei et al. 2021) 20.4/44.5/56.7 7.0
Frozen (Bain et al. 2021) 31.0/59.8/72.4 3.0
Ours 32.5/60.8/72.3 3.0

(a) DiDeMo.

Method Text =⇒ Video
R@1/@5/@10 MedR

JSFusion 9.1/21.2/34.1 36.0
MEE 9.3/25.1/33.4 27.0
CE (Liu et al. 2019) 11.2/26.9/34.8 25.3
MMT (Gabeur et al. 2020) 12.9/29.2/38.8 19.3
Frozen (Bain et al. 2021) 15.0/30.8/39.8 20.0
Ours 17.1/32.5/41.5 18.0

(b) LSMDC

Method Text =⇒ Video
R@1/@5/@10 MedR

VSE 12.3/30.1/42.3 14.0
VSE++ (Faghri et al. 2017) 15.4/39.6/53.0 9.0
Multi. Cues 20.3/47.8/61.1 6.0
CE (Liu et al. 2019) 19.8/49.0/63.8 6.0
Support Set 23.0/52.8/65.8 5.0
Support Set† 28.4/60.0/72.9 4.0
Frozen (Bain et al. 2021) 33.7/64.7/76.3 3.0
Ours 44.0/74.9/84.3 2.0

(c) MSVD

Table 2: Comparisons with state-of-the-art methods on
DiDeMo, LSMDC, and MSVD for text-to-video retrieval.
The method pre-trained on HowTo100M is marked ‘†’. Lim-
ited to the space of the table, some references are miss-
ing, such as S2VT (Venugopalan et al. 2014), FSE (Zhang,
Hu, and Sha 2018), JSFusion (Yu, Kim, and Kim 2018),
MEE (Miech, Laptev, and Sivic 2018), VSE (Kiros,
Salakhutdinov, and Zemel 2014), Multi. Cues (Mithun et al.
2018), and Support Set (Patrick et al. 2021).

that if K is too large, it may be difficult for the model to
find discriminative regions because the module tends to re-
serve the whole feature map. On the contrary, if K is too
small many fragmentary and weak semantics will be dis-
carded in large quantities, leading to poor results. Our ap-
proach achieves the best results with K = 8 regions.

Effect of the Depth of Spatio-temporal Interaction. We
tried to build multiple layers of spatial-temporal dependen-
cies on top of the region features and found that too many
layers are not good, as shown in Figure 4b. Probably because
the highly abstract regional features are sufficient, and too
much spatio-temporal attention will cause the deep model to
over-fit on the pre-training dataset. Thus, we use only single-
layer attention.

Method MSRVTT MSVD
MC QA QA

JSFusion 83.4 − −
ActBERT (Zhu and Yang 2020) 85.7 − −
VideoCLIP (Xu et al. 2021) 92.1 − −
SSML (Amrani et al. 2021) − 35.0 35.1
HCRN (Le et al. 2020) − 35.6 36.1
DualVGR − 35.5 39.0
ClipBERT (Lei et al. 2021) 88.2 37.4 −
Ours 93.5 38.6 39.3

Table 3: Comparisons with state-of-the-art methods on video
question answering. Limited to the space of the table, some
references are missing, such as JSFusion (Yu, Kim, and Kim
2018) and DualVGR (Wang, Bao, and Xu 2021).

Method Text =⇒ Video
R@1/@5/@10 MedR

RegionLearner 34.3/60.2/72.0 3.0
w/o step 3 33.5/60.4/72.5 3.0
w/o step 2, 3 31.5/60.2/70.9 3.0
w/o step 1,2,3 29.4/56.9/69.0 4.0

(a)

Method Text =⇒ Video
R@1/@5/@10 MedR

Baseline 31.5/60.2/70.9 3.0
+ Random Sampling 31.2/60.3/72.2 3.0
+ Empirically Selection 32.8/59.7/72.4 3.0
+ Naive Attention 32.8/59.6/69.8 4.0
+ Region Mask 33.5/60.4/72.5 3.0

(b)

Table 4: (a): Effect of each component of RegionLearner.
(step 1-3 represents visual quantization, aggregation in dif-
ferent regions and interaction between aggregated regions,
respectively.) (b) Effect of different strategies for Aggrega-
tion.

Visualization
We also provide some qualitative results in Figure 3 to show
the regions learned via the proposed RegionLearner from the
pretraining dataset, WebVid-2M (Bain et al. 2021). The sec-
ond column of each group is the indices map generated by
visual quantization, and it represents similar visual patches
with the same index. It is worth noting that the different
colors in this map only represent different index values. As
we can see, visual quantization is adept at assigning those
patches belonging to a large area (such as the backgrounds)
into one cluster. However, it seems cannot focus on specific
small visual entities in the foregrounds, which are usually
associated with local semantics in the text descriptions. Af-
ter mining semantic regions, we can achieve several learned
region masks, and here only select two masks for illustration
in the last two columns of each group. Bright yellow pixels
indicate that the corresponding visual information is more
important and the possible regions are annotated by color-
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Customized ford f-150 raptor svt driving off-road in a
desert ohv state park. video taken in ocotillo wells.

Kid playing with virtual reality glasses. Smiling male call center operator doing his job.

Slow motion of young male athlete swimming freestyle in
a pool, full hd shot.

Front view of a caucasian couple spending time together
on vacation at the seaside, with a man carrying a
woman on his back on a sunny day in slow motion.

Raw 
frames

Cluster 
indices Region masks Raw 

frames
Cluster 
indices Region masks

Majestic mountain main entrance in sabah malaysia
borneo. slow moving drone view with green and blue
mountain at background.

Figure 3: Visualization of the regions learned via the proposed RegionLearner. Each group has a raw frame, the corresponding
textual description, a learned map of cluster indices, and two selected learned region masks. We annotate the visual entities in
colorful boxes for better understanding. The resolution of these learned maps is 14× 14. (Best viewed in color.)

1 2 4 8 16 32 64
Number of Region

31.5

32.0

32.5

33.0

33.5

R@
1

(a)

1 2 4 6 8
Depth of Interaction

32.5

33.0

33.5

34.0

(b)

Figure 4: Effect of the number of regions and the depth
of spatio-temporal interaction. R@1 performances on the
MSR-VTT 1K-A test set are reported.

ful boxes. As we can see, these region masks not only can
capture the visual entities in the foregrounds but also reserve
discriminative background information for alignment.

Conclusion
To conclude, this work proposes a simple yet effective Re-
gionLearner to mine semantic features from visual object-
s/entities from pixels for better video-language alignment
without any explicit supervision. It first quantizes raw pix-
els into discrete latent embeddings and then aggregates
them into several regions with complete semantics via learn-
able masks, followed by the spatio-temporal dependencies

modeling among these regions. The experimental results of
four downstream benchmarks and some visualization results
prove the effectiveness and interpretability of our method.
We hope that RegionLearner can inspire future work for
learning video-text representations in a more fine-grained
way.
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