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Abstract
Video Paragraph Captioning aims to generate a multi-sentence
description of an untrimmed video with multiple temporal
event locations in a coherent storytelling. Following the human
perception process, where the scene is effectively understood
by decomposing it into visual (e.g. human, animal) and non-
visual components (e.g. action, relations) under the mutual
influence of vision and language, we first propose a visual-
linguistic (VL) feature. In the proposed VL feature, the scene
is modeled by three modalities including (i) a global visual
environment; (ii) local visual main agents; (iii) linguistic scene
elements. We then introduce an autoregressive Transformer-
in-Transformer (TinT) to simultaneously capture the semantic
coherence of intra- and inter-event contents within a video.
Finally, we present a new VL contrastive loss function to
guarantee the learnt embedding features are consistent with the
captions semantics. Comprehensive experiments and extensive
ablation studies on the ActivityNet Captions and YouCookII
datasets show that the proposed Visual-Linguistic Transformer-
in-Transform (VLTinT) outperforms previous state-of-the-art
methods in terms of accuracy and diversity. The source code is
made publicly available at: https://github.com/UARK-AICV/
VLTinT.

Introduction
Video captioning is the task of automatically generating a
caption for a video. An important branch of video captioning
is dense video captioning (DVC) (Krishna et al. 2017), which
requires generating a list of temporal event proposals and the
associated sentence description of each event to form a coher-
ent paragraph description of a video. As a simplified version
of DVC, video paragraph captioning (VPC) (Park et al. 2019)
focuses on generating better paragraph captions given a set
of event segments in a video, which eases the requirement of
event proposal generation. In general, a VPC model consists
of two main components: an encoder to represent each event
segment as a feature; and a decoder to generate captions
while maintaining the consistency within each event and the
coherence among all sentences of the generated paragraph.

Videos contain rich semantic knowledge of multiple modal-
ities, e.g., vision, text, speech, and non-speech audio. Under-
standing a video involves multiple factors such as a single
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Figure 1: A high-level comparison between our VLTinT and
recent SOTA VPC methods. In the encoder, both Transformer-
XL (Dai et al. 2019) and MART (Lei et al. 2020) encode
visual features by applying 3D CNN-based backbone network
whereas our VLTinT encodes visual-linguistic feature by (i)
global visual environment, (ii) local visual main agents, (iii)
linguistic scene elements, and a fusion mechanism. In the
decoder, Transformer-XL uses recurrence to address context
fragmentation, MART uses a highly summarized memory to
remember history information whereas we propose to utilize
a transformer to model the contextual dependencies at both
intra- and inter-levels.

human actor, group of human actors, non-human actor, and
phenomenon (Vo et al. 2021b; Vo-Ho et al. 2021; Hutchinson
and Gadepally 2021; Vo et al. 2023). Examples of non-human
actors and phenomena performing action include dog chasing,
car running, and cloud floating. The existing VPC approaches
(Zhou et al. 2018; Dai et al. 2019; Lei et al. 2020) employ
CNN-based networks as a black-box to encode the video
feature, which could overlook the contributions of various
modalities in the semantic contents of a video. We observe
that human perception involves the interaction of vision and
language and propose VL Encoder to resolve this above
challenge. Our VL Encoder is based on two observations:
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language influences the basic perceptual process, affecting
performance on tasks that might seem to be wholly percep-
tual in nature (Lupyan et al. 2020); and video content is
effectively understood by the combination of agents/actors
and the surrounding environment (Vo-Ho et al. 2021; Vo et al.
2021b,a, 2022, 2023).

Our VL Encoder consists of four modalities: (i) global vi-
sual environment representing the overall surrounding scene,
(ii) local visual main agents representing the human agents
committing events, and (iii) linguistic scene elements caption-
ing descriptive details of both visual and non-visual elements,
and (iv) a fusion module modeling the interaction of those fea-
tures and combine them into a unified representation. Besides,
to only focus on the main agents who actually contribute to
the event as well as the most relevant scene elements of the
event, we make use of a Hybrid Attention Mechanism (HAM)
following (Vo et al. 2021a, 2022, 2023).

In VPC, each event is described by one sentence, and they
all should logically follow each other. Thus, two kinds of
dependencies have to be modeled in VPC, i.e., intra- and
inter-event dependencies. In the early days of development,
RNN-based models were applied to build the caption gen-
erator to model intra-event coherency (Xiong, Dai, and Lin
2018; Park et al. 2019). Recently, Transformer-based models
have proven to be more effective in generating captions (Dai
et al. 2019; Lei et al. 2020; Ging et al. 2020; Yamazaki et al.
2022). However, in (Zhou et al. 2018), each event is decoded
independently and inter-event coherency is not taken into
account. This limitation is later addressed as a context frag-
mentation (Dai et al. 2019) and RNN-based memory (Lei
et al. 2020; Ging et al. 2020; Yamazaki et al. 2022). How-
ever, none of the existing work leverages the success of the
transformer in modeling inter-event coherence. To pose this
challenge, we propose a novel Transformer-in-Transformer
architecture (TinT Decoder). To the best of our knowledge,
TinT Decoder is the first fully transformer network for VPC,
which simultaneously models both intra- and inter-event in
an end-to-end framework. The network comparison between
our VLTinT and the existing SOTA VPC approaches is in
Fig. 1. Furthermore, most prior VPC work makes use of max-
imum likelihood estimation (MLE) loss to train the model.
However, MLE loss does not guarantee that the learnt event
embedding features intimately represent the groundtruth cap-
tions. Thus, we introduce a novel VL contrastive loss, to
maintain the learning of both visual and linguistic seman-
tics during training without adding additional computational
costs. The VL Encoder along with TinT Decoder comprises
a novel method, termed Visual-Linguistic Transformer-in-
Transformer (VLTinT). The main contributions of this paper
are summarized as follows:
• A novel VL Encoder, which represents the video content

by separately modeling (i) global visual feature, (ii) local
visual main agents, and (iii) linguistic scene elements; and
their interactions.

• A novel TinT Decoder to simultaneously model intra-
and inter-event dependencies in an end-to-end fashion
producing a coherent paragraph.

• A novel VL contrastive loss function to better align both
visual and linguistic information.

Related Works

Dense Video Captioning

In general, video captioning can be divided into either single
sentence (Pasunuru and Bansal 2017; Wang et al. 2019) for
short videos or multiple sentences (Wang et al. 2021b) for
long and untrimmed videos. DVC belongs to the second cate-
gory and it has emerged as a multitask problem that combines
event localization and event captioning to generate an infor-
mative caption for such videos. DVC can be implemented by
visual feature only (Krishna et al. 2017; Li et al. 2018; Zhou
et al. 2018; Mun et al. 2019; Deng et al. 2021) or multimodal
features such as audio (Rahman, Xu, and Sigal 2019), speech
(Shi et al. 2019; Iashin and Rahtu 2020), and both (Iashin and
Rahtu 2020). Our VPC method shares a common setup with
DVC with the multimodal feature. Our feature is encoded
using both vision and language modalities to better extract
contextual scene representation.

Video Paragraph Captioning

(Zhou et al. 2018) first introduced the transformer to the
VPC task known as Vanilla Transformer, where each event
is decoded individually without knowing the coherence be-
tween sentences. To address this limitation, (Lei et al. 2020)
modified the Transformer-XL (Dai et al. 2019) and proposed
MART. MART decodes the caption to learn word-level de-
pendencies by a transformer while modeling the paragraph
coherence based on GRU (Chung et al. 2014). Different from
the existing VPC methods which utilize pre-trained backbone
networks to extract feature, (Yamazaki et al. 2022) inherits
the merits of both vision and language models and proposed
VLCap. However, all previous works are RNN-based and lim-
ited in capturing long-range dependencies as well as suffers
from the problem of gradient vanishing (Pascanu, Mikolov,
and Bengio 2013). In this work, we leverage a transformer to
simultaneously model the long-range dependencies between
words (i.e., intra-event) and sentences (i.e., inter-event).

Transformer Models

Transformer (Vaswani et al. 2017) and Vision Transformer
(ViT) (Dosovitskiy et al. 2021) have recently attracted sig-
nificant interest in the research community. ViT applies a
pure transformer to the visual recognition task by treat-
ing the image as a composition of 16 × 16 local patches.
(Han et al. 2021) presents TNT to further divide them into
smaller 4× 4 patches. Specifically, TNT is built with a non-
autoregressive inner and outer transformer, which deal with
local sub-patches and sequence of local sub-patches, respec-
tively. NesT (Zhang et al. 2022) proposes an alternative ap-
proach to model local and global information by nesting the
canonical transformers hierarchically and connecting them
with a proposed aggregation function. To model temporal
coherency of intra- and inter-event, we propose a novel TinT.
In our TinT, the outer transformer is designed as an autore-
gressive structure to model inter-event coherency whereas
the inner transformer handles intra-event coherency.
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Figure 2: Overall network architecture of our proposed VLTinT, which contains two modules, i.e., VL Encoder and TinT
Decoder. (Left) VL Encoder: given a snippet Xi, the VL Encoder simultaneously extracts local visual features from main agents,
global visual features from the environment, and linguistic relevant scene elements; and models interaction between those three
modalities through our M2RF module. (Right) TinT Decoder: the canonical transformer encoder is extended by an autoregressive
outer transformer that can selectively access the 1st to t− 1th hidden states, which are stored in the event memory, at the tth

event captioning step.

Proposed VLTinT
Our VLTinT consists of two main modules corresponding
to VL Encoder and TinT Decoder. The VL Encoder aims to
extract VL representation of each event and the TinT Decoder
aims to generate a caption of each event while simultaneously
modeling intra- and inter-event coherency. Both modules are
trained in an end-to-end fashion by our proposed VL loss.
The over architecture is shown in Fig. 2.

Problem Setup
In VPC, we are given an untrimmed video V = {vi}|V|

i=1,
where |V| is the number of frames, and a list of its important
events E = {ei = (ebi , e

e
i )}

|E|
i=1, where |E| is the number of

events within a video and an event ei is defined by a pair of
beginning and ending timestamps (ebi , e

e
i ). Our objective is to

generate a coherent paragraph that matches the ground truth
paragraph P = {si}|E|i=1 that describes the whole video V . In
this setup, ith sentence s = {s1 . . . sN} that consists of N
words is the description of its corresponding event ei.

Visual-Linguistic (VL) Encoder
Our VL Encoder is responsible for comprehensively repre-
senting each snippet Xi of an event into a representative
feature to compose a sequence of snippet features for the
decoder. Given an event e = (eb, ee) and its corresponding
video frames Ve = {vi|eb ≤ i ≤ ee}, we follow the standard
settings from existing works (Zhou et al. 2018; Lei et al. 2020;
Song, Chen, and Jin 2021) and divide Ve into a sequence of
δ-frame snippets {Xi}Li=1. Each snippet Xi consists of δ

consecutive frames and Ve has a total of L =
⌈ |Ve|

δ

⌉
snippets.

The VL Encoder module encodes each snippet Xi to a VL
representation fV Li as shown in Fig.2 (left). Therefore, video
segment Ve is encoded into VL representation {fV Li }Li=1.

The VL Encoder first models a video with the three modali-
ties, (i) global visual environment (ii) local visual main agents
(iii) linguistic relevant scene elements, and then fuses them
into one representation based on the interactions between
them. Given a snippet Xi, it is encoded into these three modal-
ities, corresponding to fei , fai and f li , respectively. The final
feature fV Li representing the interaction is extracted by fus-
ing fei , fai and f li through our Multi-modal Representation
Fusion (M2RF) module as follows:
(i) Global Visual Environment:

This modality provides the visual semantic information
from the entire spatial scene of input snippet Xi. To obtain
such target, we adopt a backbone 3D-CNN network (Ji et al.
2013) to Xi to extract feature map Hi at the last convolutional
block of the network. Then, we obtain the global environment
visual feature fei ∈ Rdemb by processing Hi with an average
pooling operation to reduce the entire spatial dimension fol-
lowed by channel MLP. The procedure is summarized as
follows:

fei = MLPθe(Avg.Pooling(Hi)) (1)

(ii) Local Visual Main Agents:
This modality provides the visual features of the main

human agents, who actually contribute to the formation of
the event being described. Even though most of the events are
associated with agents, not all agents committing movements
are related to the main content of the event segment. Using a
similar assumption as in (Vo-Ho et al. 2021; Vo et al. 2021b),
we apply a human detector to the center frame of Xi to
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Figure 3: Illustration of relevant scene elements extraction
process where ViT/16 and Text Transformer are the pre-
trained models from CLIP (Radford et al. 2021).

obtain the bounding boxes of all human agents. Afterward,
we align each of the detected bounding boxes Bi onto the
feature map Hi, which is obtained by the previous modality,
using RoIAlign (He et al. 2017). Then, features overlapped by
each agent bounding box are averagely pooled into a single
feature vector to represent visual information of the agent
inside that box. Finally, we obtain a set of local agent visual
features F ai ∈ RNa×da , where Na and da are the number of
detected agents and agent embedding dimension, respectively.
Finally, we apply HAM (detailed later) to adaptively select
an arbitrary number of main agents from Na detected agents
and extract their mutual relationships to form a unified agent-
aware visual feature fai ∈ Rdemb as follows:

fai = HAM(MLPθa(F
a
i ), f

e
i ) (2)

(iii) Linguistic Relevant Scene Elements:
This modality provides additional contextual details of the

scene. While the two former modalities capture visual infor-
mation of spatial appearances and temporal motions, their
features may overlook some of the scene components because
of the spacial reduction in the pooling operation from the fea-
ture map Hi. Furthermore, non-visual features could hardly
be captured by a normal vision backbone model. Recent
studies (Patashnik et al. 2021; Yang, Zhang, and Zou 2022)
have shown the extreme zero-shot capability of Contrastive
Language-Image Pre-training (CLIP) where the model can
estimate the semantic similarity between a set of words and
an image. Trained on large-scale text-image pairs, CLIP can
correlate not only the visual words but also the non-visual
words to the given image. We thus leverage CLIP as a lin-
guistic feature extractor to obtain top k scene elements (i.e.,
k texts) that are highly correlated with the middle frame of
the input snippet Xi. Specifically, we construct a vocabulary
W = {w1, . . . wm} based on the groundtruth captions of our
training dataset. Each vocabulary wi ∈ W is encoded by a
transformer network fϕ into a text feature fwi . Let Wt be a
text projection matrix pre-trained by CLIP, the embedding
text vocabulary is computed as

we = Wt · fϕ(W) = Wt · fwwhere fw = {fwi }mi=1. (3)

Let Wi be an image projection matrix pre-trained by CLIP,
the center frame I of the input snippet Xi is first encoded by

a pre-trained ViT gψ to extract visual feature f I , and then
embedded by Wi as below:

Ie = Wi · gψ(I) = Wi · f I (4)

The pairwise cosine similarities between embedded Ie and
we are then computed. Top k similarity scores are chosen
as linguistic categorical concept features F li ∈ Rk×dl . This
feature is also subjected to the HAM module to select only
the most relevant representative linguistic features and merge
them into a single representation f li ∈ Rdemb as follows:

f li = HAM(MLPθl(F
l
i ), f

e
i ) (5)

The flowchart of extracting f li is illustrated in Fig.3.
(iv) Multi-modal Representation Fusion (M2RF):

This component aims to fuse features from the three modal-
ities. While concatenation or summation are the two com-
mon fusion mechanisms, they treat all modalities equally.
To better model the impact of each individual modality, we
propose M2RF as a function gγ , which takes the features fei ,
fai , and f li as its input. We extract the inter-feature relation-
ships by utilizing a self-attention (SA) layer (Vaswani et al.
2017) followed by a mean operation. The final representation
fV Li ∈ Rdemb of a given snippet Xi is defined as follows:

fV Li = gγ([f
e
i ; f

a
i ; f

l
i ]) = mean(SA([fei ; f

a
i ; f

l
i ])) (6a)

where [; ] represents the concatenation of features in a new
dimension, where self-attention is applied on the new di-
mension and reduced by the mean operation to account for
permutation invariance.

Transformer-in-Transformer (TinT) Decoder
Inspired by the recent transformer-based vision-language
models (Chen et al. 2020b; Lei et al. 2020), we adopt the
unified encoder-decoder transformer structure as a founda-
tion for the caption generator, i.e., an inner transformer. The
inner transformer’s input is described as following. In this
setup, video features FV L is formed by concatenating all
fV Li obtained by applying VL Encoder into each snippet Xi,
i.e., FV L = {fV Li }Li=1 ∈ RL×demb . Textual tokens F text is
encoded by a pre-trained text transformer gϕ from CLIP and
a MLP layer, i.e., F text = MLP (gϕ(Shifted GT text)) ∈
RN×demb , where N is the sequence length of the text tokens.
Following (Lei et al. 2020), learnable token type embeddings
F type ∈ R(L+N)×demb are introduced to inform the location
of the video and the caption representations. F type is initial-
ized as 0/1 vectors, i.e., video as 0 and text as 1. For the tth

event, an intermediate hidden states H̄ l
t ∈ R(L+N)×demb is

computed in Eq. 7b as canonical inner transformer encoder,
where H̃ l

t is the internal states after Masked Multihead Self
Attention (MSA).

H0
t = [FV L;F text] + F type ∈ R(L+N)×demb (7a)

H̄ l
t = MLP(H̃ l

t) + H̃ l
t , H̃

l
t = MSA(H l

t) +H l
t (7b)

While the inner transformer can effectively model intra-
event coherency, it cannot handle the contextual relationship
of inter-event. To address this limitation, we introduce an
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autoregressive outer transformer. The outer transformer se-
lectively utilizes the activations of the inner transformer from
the previous time steps for generating a coherent paragraph.
Specifically, we take advantage of HAM to select only the
most relevant hidden states of all previous events stored in
event memory with respect to the current one. The outer
transformer process is formulated below:

M l
t = [M l

t−1; H̄
l
t ] (8a)

Zlt = HAM(M l
t−1, H̄

l
t) (8b)

H l
t = MLP(gγ([H̄ l

t ;Z
l
t])) + H̄ l

t (8c)

For the tth event, an intermediate hidden states H̄ l
t is

stacked to the event memory M l
t ∈ Rt×(L+N)×demb , where

M l
0 = ∅ as in Eq. 8a. Eq. 8b computes the context Zlt from

the previous states of the event memory and the current in-
termediate hidden states H̄ l

t using HAM. Finally, in Eq. 8c,
the context is integrated with the intermediate hidden states
H̄ l
t using gγ , which was introduced in Eq. 6a, and the hidden

states are updated via residual connection. After the last layer,
video token positions in HN

t are ignored, and only the text
token positions are fed to a feed-forward layer followed by
softmax to predict a caption for the tth event.

Hybrid Attention Mechanism (HAM)
HAM inherits the merits of both hard attention (Patro and
Namboodiri 2018) and the self-attention (Vaswani et al. 2017)
to select a rational number of representative features out of
a set of input features and to extract mutual relationships
among the sub-set of selected features, respectively, and fuse
them into a unified representation. HAM was introduced by
(Vo et al. 2021a) and it then has been successfully applied in
to video analysis i.e. action localization (Vo et al. 2022, 2023).
Fig. 4 visualizes the workflow of HAM, which is formulated
as follows:

Hin = Fin ⊕ fref (9a)
C = softmax(||Hin||2) (9b)

M = C >
1

Nin
(9c)

fout = gγ(Fin ⊙M) (9d)

where Fin ∈ RNin×din and fref ∈ Rdin are a set of input fea-
tures and a reference feature, respectively, where Nin is the
total number of input features and din is the embedding di-
mension of input and reference features. HAM takes Fin and
fref as inputs and compute the most relevant feature fout as
its output.

Visual-Linguistic (VL) Contrastive Loss
Typically, the existing VPC methods exploit the MLE loss
to train their models. The MLE loss serves the objective of
increasing the likelihood of predicted captions to be matched
with the groundtruths. However, it is unable to address the
question of how well the learnt event embedding features
represent the groundtruth captions. To this end, we leverage
the recent advantages of contrastive learning (Wu et al. 2018;

reference featurefeatures

Hard Attention

0

Soft Attention

feature

selection


meanfeature

merging


fused feature

Figure 4: Illustration of HAM. HAM is capable of select-
ing and representing an arbitrary number of representative
features from the input features Fin with a guidance from
reference feature fref.

Chen et al. 2020a) and propose Lcon to pull all snippets of
the same event and push snippets of different events. Our VL
Loss consists of two terms corresponding to captioning loss
(Lcap.) and a contrastive contextual loss (Lcon.). While Lcap.
aims to decode captions that match with groundtruths, Lcon.
guarantees the learnt latent features are close to the semantic
information encoded in the groundtruth captions.
Captioning Loss Lcap.: Kullback–Leibler (KL) divergence
is commonly utilized to minimize the divergence between
empirical distribution p(s|Ve) and predicted distribution
pθ(s|Ve) for a video segment Ve. However, this objective
easily makes the captioning model overfit high-frequency
tokens and phrases, which results in repetitive phrases. In
order to enhance the smoothness of the predicted sentence, a
regularization term τ is introduced to the training objective
with hyper-parameter λ as:

θ∗ = argmin
θ

Es∼p(s)

[
log

(
p(s)

pθ(s)

)
+ λτ(s)

]
(10)

The second term τ imposes a token-level high-frequency
penalties as (Song, Chen, and Jin 2021). Based on the obser-
vation that the model tends to generate words that have been
generated before, we penalize the previously appeared words
in the regularization term:

τ(s) = − 1

N

N∑
i=1

∑
c∈{s|s<i}

log (1− pθ(c|s<i, E)) (11)

where c is the candidate word at n to be penalized.
Our Lcap. is defined as follows:

Lcap. = − 1

N

N∑
i=1

(log pθ(si|s<i,Ve)) + λτ(s) (12)

where θ is the model parameters, s1:N is the target ground
truth sequence.
Contrastive Contextual Loss Lcon.: We propose Lcon. to
optimize the latent feature of the input event to be highly
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Methods Venue Input B4 ↑ M ↑ C ↑ R ↑ Div2 ↑ R4 ↓
Vanilla Trans. (Zhou et al. 2018) CVPR Res200/Flow 9.75 15.64 22.16 28.90† 77.40† 7.79
AdvInf (Park et al. 2019) CVPR C3D/Object 10.04 16.60 20.97 – – 5.76
GVD (Zhou et al. 2019) CVPR Res200/Flow/Object 11.04 15.71 21.95 – – 8.76
Trans.-XL (Dai et al. 2019) ACL Res200/Flow 10.39 15.09 21.67 30.18† 75.96† 8.54
Trans.-XLRG (Lei et al. 2020) ACL Res200/Flow 10.17 14.77 20.40 – – 8.85
MART (Lei et al. 2020) ACL Res200/Flow 10.33 15.68 23.42 30.32† 75.71† 5.18
PDVC (Wang et al. 2021a) ICCV C3D/Flow 11.80 15.93 27.27 – – –
VLTinT (ours) – C3D/Ling 14.93 18.16 33.07 36.86 77.72 4.87

Table 1: Performance comparison of VLTinT with other SOTA models on ActivityNet Captions ae-val. † denotes results by us.

Methods Venue Input B4 ↑ M ↑ C ↑ R ↑ Div2 ↑ R4 ↓
Vanilla Trans. (Zhou et al. 2018) CVPR Res200/Flow 9.31 15.54 21.33 28.98† 77.29† 7.45
Trans.-XL (Dai et al. 2019) ACL Res200/Flow 10.25 14.91 21.71 30.25† 76.17† 8.79
Trans.-XLRG (Lei et al. 2020) ACL Res200/Flow 10.07 14.58 20.34 – – 9.37
MART (Lei et al. 2020) ACL Res200/Flow 9.78 15.57 22.16 30.85† 75.69† 5.44
MARTCOOT (Ging et al. 2020) NIPS COOT 10.85 15.99 28.19 – – 6.64
Memory Trans. (Song, Chen, and Jin 2021) CVPR I3D 11.74 15.64 26.55 – 83.95 2.75
VLTinT (ours) – C3D/Ling 14.50 17.97 31.13 36.56 77.72 4.75

Table 2: Performance comparison of VLTinT with other SOTA models on ActivityNet Captions ae-test. † denotes results by us.

correlated with its groundtruth description. This loss function
implicitly encourages our VLTinT to learn better represen-
tations of the events and enhance its overall performance
without extra computational cost.

Specifically, Lcon. processes the entire mini-batch of train-
ing examples B = {(Vb, sb)}|B|

b=1, where Vb is a set of
snippets within the same event and sb is its corresponding
groundtruth description sentence. On the one hand, video
snippets in Vb are processed through our proposed VLTinT
to obtain the event embeddings, which corresponds to the
video token position FN

b ∈ RL×demb of the final hidden state
HN
b . On the other hand, we process each groundtruth caption

sentence sb through the transformer gϕ of CLIP (Radford
et al. 2021) to obtain a representation feature fT

b ∈ Rdemb .
Then, Lcon. processes FN

b and fT
b as follows:

Lcon. =−
|B|∑
b1=1

|B|∑
b2=1

[1b1=b2 log(e
ρ(fN

b1 · fT
b2))

+ (1− 1b1=b2)(1− log(eρ(fN
b1 · fT

b2)))] (13a)

where fN
b = mean(FN

b ). 1b1=b2 returns 1 when samples
come from the same event, i.e., b1 = b2 and 0 when samples
come from the different events i.e., b1 ̸= b2. ρ is a learnable
temperature parameter initialized as log(1/0.07), to prevent
scaling of the dot product values and stabilize the training.
Finally, our proposed VL contrastive loss LV L is defined as:

LV L = Lcap. + Lcon. (14)

Experiments
Datasets and Metrics
We benchmark VLTinT on two popular datasets, ActivityNet
Captions (Krishna et al. 2017) and YouCookII (Zhou, Xu,
and Corso 2018). ActivityNet Captions consists of 10,009
training videos and 4,917 validation videos. We follow the
previous work (Lei et al. 2020) to split the original validation
set into two subsets: ae-val with 2,460 videos for validation
and ae-test with 2,457 videos for testing. YouCookII con-
tains 1,333 training and 457 validation videos. We report our
results on the validation sets. We evaluate the performance
on four standard metrics, i.e., BLEU@4 (B@4) (Papineni
et al. 2002), METEOR (M) (Denkowski and Lavie 2014),
CIDEr (C) (Vedantam, Zitnick, and Parikh 2015), ROUGE
(R) (Lin 2004). Whereas to benchmark the diversity of gener-
ated captions, we use two diversity metrics, including 2-gram
diversity (Div@2) (Shetty et al. 2017) and 4-gram repetition
(R@4) (Xiong, Dai, and Lin 2018).

Implementation Details
To extract visual features of the environment, we use C3D (Ji
et al. 2013) pre-trained on Kinetics-400 (Kay et al. 2017) as
the backbone network. The agent visual feature is extracted
by Faster-RCNN (Ren et al. 2015) that is pre-trained on the
COCO dataset (Lin et al. 2014). To extract the linguistic scene
element features, we employ CLIP (Radford et al. 2021) ViT-
B/16 model made publically available by OpenAI. We set
the hidden size to 768, the number of transformer layers to
3, and the number of attention heads to 12. Adam optimizer
was used to train VLTinT with an initial learning rate of 1e-4,
β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, and learning
rate warmup over the first 5 epochs. During the training, we
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Methods Venue Input B@4 ↑ M ↑ C ↑ R ↑ R@4 ↓
Vanilla Trans.(Zhou et al. 2018) CVPR Res200/Flow 4.38 11.55 38.00 – –
MART (Lei et al. 2020) ACL Res200/Flow 8.00 15.90 35.74 – 4.39
MARTCOOT (Ging et al. 2020) NIPS COOT 9.44 18.17 46.06 – 6.30
VLTinT (ours) – C3D/Ling 9.40 17.94 48.70 34.55 4.29

Table 3: Performance comparison of VLTinT with other SOTA models on YouCookII validation set.

at-test split ae-val split
Env. Agt. Ling. B@4 ↑ M ↑ C ↑ R ↑ Div@2↑ R@4 ↓ B@4 ↑ M ↑ C ↑ R ↑ Div@2 ↑ R@4 ↓√

× × 13.62 17.41 29.09 35.96 76.14 5.97 14.02 17.58 30.31 36.20 76.11 6.08
×

√
× 11.83 16.22 21.39 33.97 79.20 4.16 12.13 16.57 24.98 34.36 79.18 4.24

× ×
√

13.38 17.69 30.30 35.63 80.50 3.32 14.00 17.88 31.64 35.95 80.44 3.22√ √
× 13.77 17.52 30.05 35.93 77.78 4.69 14.12 17.78 31.15 36.12 78.02 4.56√

×
√

14.53 17.79 30.83 36.67 76.47 5.60 14.84 17.97 31.86 36.80 76.41 5.67√ √ √
14.50 17.97 31.13 36.56 77.72 4.75 14.93 18.16 33.07 36.86 77.72 4.87

Table 4: Ablation study on the contribution of each modality in VL Encoder on ActivityNet Captions dataset. Env., Agt., and
Ling. denote the global visual environment, local visual main agents, and linguistic relevant scene elements, respectively.

B@4↑ M ↑ C ↑ R ↑ R@4 ↓
M RCNN 1.35 9.09 12.29 23.06 18.52
CLIP 13.38 17.69 30.30 35.63 3.32

Table 5: Performance comparison between two cases trained
on TinT network without visual feature: (i) scene elements
extracted by Mask R-CNN (M RCNN) (ii) scene elements
extracted by CLIP.

use the label smoothing with a value of 0.1 and λ = 0.1. We
ran the experiment on a single NVIDIA RTX 3090 (24GB)
GPU.

Qualitative Analysis
Fig.5 shows comparison between VLTinT and Vanilla Trans-
former (VTrans) (Zhou et al. 2018) and MART (Lei et al.
2020). Overall, VLTinT can generate more descriptive cap-
tions with fine-grained details. In particular, we noticed that
VTrans and MART are prone to use high-frequency words
for their caption, while VLTinT can use expressive but less
frequently appearing words, e.g., ”A man” vs. ”An athletic
man” in the example. We attribute this improvement to our
VL Encoder, which incorporates relative scene elements. We
further observe a caption repetitiveness problem in VTrans
and MART, which is handled our proposed TinT Decoder.
Notably, with the same action (i.e., run down the track and
jump into a sand pit), our VLTinT can tell when the action
starts (i.e., begin) and happens (i.e., then). This is thank to the
rich spatial information of VL Encoder and strong temporal
coherency of TinT Decoder.

Quantitative Analysis
We benchmark and compare VLTinT with the prior SOTA
VPC works on both ActivityNet Captions ae-val, ae-test, and
YouCookII as in Tables. 1, 2 and 3, respectively. In those
tables, we highlight the best and the second-best scores cor-
responding each metric. Compared to the SOTA approaches

An athletic man is seen standing before a track and leads into him
running down in a pit of sand.  Several more clips are shown of the
athletes running down the track and landing into a pit.

An athletic man is seen standing ready and begins running down a
track and jumping into a pit. The man then runs down the track and
jumps into a sand pit.

A man runs down a track and jumps into a sand pit. The man runs
down the track and jumps into a sand pit.
A man is running down a track and jumping into a sand pit. He jumps
over a bar and lands in the sand.

MART:

VTrans:

VLTinT: 

GT:

Figure 5: Qualitative comparison on ActivityNet Captions ae-
test split. Red text indicates the captioning mistakes, purple
text indicates repetitive patterns, and blue text indicates some
distinct expressions.

use of inter-event B@4 ↑ M ↑ C ↑ R ↑ling. modeling

ae
-v

al × RNN 11.68 16.79 25.86 33.97
Trans. 14.12 17.78 31.15 36.12

√ RNN 13.75 17.63 28.01 36.21
Trans. 14.93 18.16 33.07 36.86

ae
-t

es
t × RNN 11.10 15.72 27.67 31.75

Trans. 13.77 17.52 30.05 35.93
√ RNN 13.45 17.42 29.68 36.09

Trans. 14.50 17.97 31.13 36.56

Table 6: Comparison between RNN and Transformer to
model inter-event dependencies in TinT decoder on Activi-
tyNet Captions with C3D (env+agent) is visual feature in the
encoder. Linguistic feature (Ling.) is considered as an option.

MART (Lei et al. 2020), MART w/COOT (Ging et al. 2020),
and PDVC (Wang et al. 2021a), our VLTinT outperforms
with large margins on both accuracy and diversity metrics on
ActivityNet Captions. For example on ae-val split, accuracy
gains 3.13%/1.56%/5.80%6.54% on B@4/M/C/R metrics
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whereas diversity increases 0.32% on Div@2 and reduces
0.32% on R@4 compared to the second-best performance.
On ae-test split, accuracy gains 3.65%/1.98%/2.94%5.71%
on B@4/M/C/R metrics whereas diversity increases 0.43%
on Div@2 and reduces 0.67% on R@4 compared to the
second-best performance. On YouCookII, our performance
is the best on C, R, and R@4 metrics with considerable gaps
while it achieves compatible performance on B@4 and M
metrics.

Ablation Studies

• Contribution of each modality in VL Encoder: We exam-
ine VLTinT on ActivityNet Captions with different modality
settings as given in Table 4. The first three rows show the per-
formance on each individual modality whereas the last three
rows show the performance on different combinations. Even
though the best performance on overall is obtained by com-
bining all three modalities of both vision (environment and
agent) and language (scene elements), the performance on
only linguistic feature is promising with notable performance,
especially on diversity metrics. This should be included in
our future investigation.

• Effectiveness of linguistic relevant scene elements: We
compare the performance of VLTinT with two cases given in
Table 5: (i) scene elements extracted by Mask-RCNN trained
on COCO with 80 classes (He et al. 2017) and (ii) scene ele-
ments extracted by CLIP. The ablation study shows the effec-
tiveness of the scene elements feature extracted by CLIP over
Mask-RCNN. While scene elements consist of human/non-
human (e.g., animals, vehicles) and visual/non-visual (e.g.,
relations, activities) elements, Mask R-CNN can only cover
a small portion of them because it was trained on a small
number of visual objects/classes, resulting in poor diversity
and lower performance on scene understanding compared to
CLIP.

• Robustness of TinT Decoder: We examine the TinT
Decoder with two settings of inter-event modeling, i.e., RNN-
based similar to (Lei et al. 2020) and transformer-based
(ours). The decoder is also considered with two encoder
feature settings, i.e., with and without linguistic features
whereas C3D (env+agent) is used as visual features. The
result is shown in Table 6. Here we observe the substantial
performance gain by modeling inter-event relationships by
our autoregressive outer transformer.

• Effectiveness of VL Loss LV L: The effectiveness of VL
Loss is examined by replacing LV L with MLE loss, which
is a common loss in VPC. The performance of VLTinT on
ActivityNet Captions ae-test with two loss functions are re-
ported in Table 7.

• Computational Complexity: We compare computational
complexity vs. accuracy of our VLTinT with SOTA VPC
models on the ActivityNet ae-test split. We report trainable
params (millions), computation (GFLOPs), average inference
time (seconds) over 100 random videos, and accuracy metrics
in Table 8. In this comparison, we investigate our VLTinT
with different settings. Compared to SOTA, our model with

Loss B@4↑ M ↑ C ↑ R ↑
MLE 13.80 17.72 30.59 36.11
LV L (ours) 14.50 17.97 31.13 36.56

Table 7: Effectiveness of LV L compared to the standard MLE
loss on ActivityNet Captions ae-test.

Computational cost Accuracy
Models Params↓ Comp. ↓ Inf.↓ M↑ C↑
MART 36.25 6.32 0.025 15.57 22.16
Mem Trans 29.69 256.44 0.706 16.10 27.36
E. 36.01 17.69 0.028 17.41 29.09
E./A. 40.37 22.70 0.032 17.52 30.05
E./A./L. 43.40 40.37 0.038 17.97 31.13

Table 8: Computational cost vs. accuracy between VLTinT
(E./A./L.) with different settings and SOTA VPC models.

only env. has compatible params and inference time with
better performance, whereas our model with env. & agent. &
lang. gain big margins on accuracy while the complexities
remain plausible.

Conclusion
In this work, we have presented VLTinT, a novel model
for VPC. The proposed network consists of VL Encoder
and TinT Decoder. In VL Encoder, the video feature is ex-
tracted by three modalities, i.e., global visual environment,
local visual main agents, and linguistic relevant scene ele-
ments; and they are fused through M2RF. In TinT Decoder,
the intra-event coherency is modeled by the unified inner
transformer and inter-event coherency is modeled by the
autoregressive outer transformer. Our proposed VLTinT is
designed as an end-to-end framework and trained by our pro-
posed VL contrastive loss LV L. Comprehensive experiments
and extensive ablation studies on ActivityNet Captions and
YouCookII datasets have demonstrated the effectiveness of
VLTinT, which outperforms the existing SOTA approaches
on both accuracy (B@4, M, C, R) and diversity (Div@2,
R@4) metrics.

Future investigations might include further examining lin-
guistic feature in video understanding and exploring the VL
Encoder in other video analysis problems.
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