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Abstract

Semantic scene completion (SSC) aims to complete a par-
tial 3D scene and predict its semantics simultaneously. Most
existing works adopt the voxel representations, thus suffer-
ing from the growth of memory and computation cost as
the voxel resolution increases. Though a few works attempt
to solve SSC from the perspective of 3D point clouds, they
have not fully exploited the correlation and complementar-
ity between the two tasks of scene completion and seman-
tic segmentation. In our work, we present CasFusionNet, a
novel cascaded network for point cloud semantic scene com-
pletion by dense feature fusion. Specifically, we design (i) a
global completion module (GCM) to produce an upsampled
and completed but coarse point set, (ii) a semantic segmen-
tation module (SSM) to predict the per-point semantic labels
of the completed points generated by GCM, and (iii) a local
refinement module (LRM) to further refine the coarse com-
pleted points and the associated labels from a local perspec-
tive. We organize the above three modules via dense feature
fusion in each level, and cascade a total of four levels, where
we also employ feature fusion between each level for suffi-
cient information usage. Both quantitative and qualitative re-
sults on our compiled two point-based datasets validate the
effectiveness and superiority of our CasFusionNet compared
to state-of-the-art methods in terms of both scene completion
and semantic segmentation. The codes and datasets are avail-
able at: https://github.com/JinfengX/CasFusionNet.

Introduction
Humans can infer the complete shapes and semantics from
only a partial observation of a 3D scene based on experience.
To enable an intelligent agent to behave like humans in 3D
physical world, semantic scene completion (SSC) is gaining
more attention with the goal of simultaneously reconstruct-
ing complete 3D scenes and predicting associate semantics
from RGB-D images of a given viewpoint. As SSC supplies
complete 3D information of scenes, it benefits diverse ap-
plications, e.g., robot navigation and grasping (Gupta et al.
2017; Varley et al. 2017; Liang, Chen, and Song 2021), au-
tomatic driving, high-quality visualization, etc.

Followed by the pioneer work SSCNet (Song et al.
2017), most of existing methods (Guo and Tong 2018; Li
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Figure 1: Given a partial point-based scene (left), our Cas-
FusionNet completes and segments the scene (right) by cas-
caded levels. Each level is composed of GCM, SSM and
LRM, which are connected by dense feature fusion.

et al. 2020b, 2021; Cai et al. 2021) utilize 3D CNN to
predict the volumetric occupancy and semantics based on
voxel representation. Yet, these voxel-based networks suffer
from tremendous computation and memory cost when the
voxel resolution is high. In contrast, point clouds, or scat-
tered collections of points in 3D, are arguably the simplest
shape representation, especially for large-scale 3D scenes
with complex structures and fine details. Thus, recent few
works (Zhang et al. 2021a; Wang et al. 2022) attempt to con-
sume only points as network input to handle SSC, where two
branches are commonly designed, one for point-based scene
completion and the other for point-based semantic segmen-
tation. Despite notable achievements, existing works tend
to ignore the high correlation and complementarity between
scene completion and semantic segmentation, so there is still
a lot of room for performance improvement.

In our work, we present CasFusionNet, a novel cascaded
network for point-based SSC that associates scene comple-
tion with semantic segmentation by dense feature fusion.
Figure 1 shows the key idea. Specifically, we design (i) a
global completion module (GCM) to produce an upsampled
and completed but maybe coarse point set from a partial 3D
scene represented by points, (ii) a semantic segmentation
module (SSM) to predict per-point semantic labels of the
completed points generated by GCM, and (iii) a local refine-
ment module (LRM) to further refine the coarse completed
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points and associated labels from a local perspective. We or-
ganize the three modules via dense feature fusion in each
level, and cascade a total of four levels, where we also em-
ploy skip connection and feature fusion between each level
for sufficient information usage.

In our network, both the geometric features extracted
from 3D points and the semantic features extracted from se-
mantic label distribution are running through all the three
designed modules in each level, which closely ties the tasks
of scene completion and segmentation. To validate the effec-
tiveness of our CasFusionNet, we prepare two point-based
datasets based on existing SSC datasets, i.e. NYUCAD (Fir-
man et al. 2016) and PCSSC-Net (Zhang et al. 2021a). Ex-
tensive quantitative and qualitative results show the superi-
ority and effectiveness of our network compared to state-of-
the-arts; see Figure 1 for an example output of our method.
Overall, our contributions are summarized as follows:
• We propose a novel cascaded network (CasFusionNet)

for point cloud semantic scene completion. It completes
the partial scene and predicts the semantics simultane-
ously in a progressive manner by dense feature fusion.

• We design three novel modules, i.e. the global comple-
tion module (GCM), the semantic segmentation module
(SSM) and the local refinement module (LRM), to com-
plete, segment, and locally refine the scene, respectively.

• We contribute two point-based datasets for SSC task, and
extensive experiments validate that our network outper-
forms previous works significantly.

Related Work
Semantic Scene Completion. With recent advances in 3D
deep learning, semantic scene completion (SSC) has been
widely explored, where both semantics and geometry are
jointly inferred from a partial 3D scene. To directly adopt
3D CNNs, most recent works encode a 3D scene as a 3D
grid, in which cells describe semantic occupancy of the
space. For example, SSCNet (Song et al. 2017) was first
proposed to tackle SSC with an end-to-end 3D convolu-
tion network, which predicts volumetric occupancy and se-
mantic labels of scenes. Later, some followers (Guo and
Tong 2018; Liu et al. 2018; Garbade et al. 2019; Li et al.
2020b) leveraged the 2D semantic priors of color images
via feature projection to improve the performance. Recent
works (Dourado et al. 2021; Dourado, Guth, and de Cam-
pos 2022; Wang, Lin, and Wan 2022) further fused com-
plex features that are extracted from depth or color images
to 2D semantic network. In addition, IMENet (Li, Ding, and
Huang 2021) proposed an iterative fusion scheme to ensure
the branches of 2D segmentation and 3D scene completion
fully benefit each other. However, the cubic growth of com-
putational and memory requirements of 3D CNN blocks the
depth of networks, which limits the task performance. To
relieve the computational cost, various efficient network de-
signs were introduced, such as spatial group convolution net-
work (Zhang et al. 2018), octree-based network (Wang, Liu,
and Tong 2020), lightweight consecutive dimensional con-
volutions (Li et al. 2019, 2020a, 2021), and efficient depth
information embedding (Chen et al. 2020).

Opposed to occupancy grids (voxels), 3D point cloud
is a convenient and memory-efficient representation, which
expresses geometry with fine details. Only a few works
have in fact explored point-based SSC. Early method SPC-
Net (Zhong and Zeng 2020) applied point encoder-decoder
architecture on “pointlized” voxels. To use both voxels and
points, SISNet (Cai et al. 2021) converted voxels into points
to recover detailed 3D shapes in scene-to-instance comple-
tion stage. A recent point-voxel aggregation strategy (Tang
et al. 2022) used point-based network as the mainstream to
improve the learning efficiency and capability of the frame-
work. Yet, these methods are still confined by the low reso-
lution and high operating cost of voxel representation.

Very recently, PCSSC-Net (Zhang et al. 2021a) tackled
SSC solely based on point clouds and directly concatenated
predicted semantic labels with the point features for better
completion. Another method (Wang et al. 2022) obtained se-
mantic labels by attaching an extra point cloud segmentation
network. However, the two existing point-based methods do
not fully exploit the connection between point completion
and segmentation. In our work, we argue that point comple-
tion and segmentation are complementary and highly corre-
lated, thus motivating us to design CasFusionNet to encour-
age the features in completion and segmentation modules to
fully communicate and merge.
Point Cloud Completion on Single Object. Though our
work focuses on semantic scene completion, we here still
briefly summarize the related works on single point cloud
completion. PCN (Yuan et al. 2018) was the pioneering work
to address shape completion by folding a small patch of 2D
grids for each point to represent the local geometry. Some
followers (Liu et al. 2020; Wen et al. 2020; Zong, Sun, and
Zhao 2021) further improved the performance based on a
similar folding-based strategy. On the other hand, coarse-
to-fine methods (Xie et al. 2020; Deng et al. 2021; Pan
et al. 2021; Zhang et al. 2021b) completed objects in an ex-
plicit and controllable way, which gradually increase den-
sity or change distribution of the point set. For instance,
RFNet (Huang et al. 2021), PMP-Net (Wen et al. 2021) and
PMP-Net++ (Wen et al. 2022) completed the points level by
level, where the recurrent neural network was utilized to re-
serve useful information of previous level. ASFM-Net (Xia
et al. 2021) and SnowflakeNet (Xiang et al. 2021) upsam-
pled and moved the points at each refinement iteration. Re-
cently, a two-path network (Zhao et al. 2021b) for pair-
wise completion was proposed to separately complete ob-
jects which bear a strong spatial relation.

Nevertheless, the above completion networks focus on
small or single objects, which can hardly directly handle a
large-scale incomplete 3D scene with occlusion and multiple
kinds of objects. Moreover, these single point cloud comple-
tion methods have no function of semantic segmentation.

Method
Overview of Network Architecture
Given a partial point cloud Pin ∈ RN×3 with N points as in-
put, which represents the incomplete 3D scene, our target is
to attain a complete 3D scene Pout ∈ RM×3 with M points
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Figure 2: Illustrating the architecture of our CasFusionNet. Given a partial point cloud Pin, our network semantically completes
it via four successive levels in a coarse-to-fine manner and outputs a complete scene Pout with the associated per-point semantic
labels Lout. Each level is composed of a global completion module (GCM), a semantic segmentation module (SSM) and a local
refinement module (LRM) to complete, segment, and refine the scene, which are closely connected by dense feature fusion.

(M≥N ), as well as the predicted per-point semantic labels
Lout ∈ RM×C , where C is the total number of semantic
classes. Figure 2 shows the overall pipeline of CasFusion-
Net, which semantically completes a scene via four succes-
sive levels in a coarse-to-fine manner. The outputs of previ-
ous level are the inputs of next level; see the green arrows for
cascading the four levels. Further, the scene completion and
semantic segmentation tasks are closely communicated and
complement each other by dense feature fusion, both within
and between levels; see the yellow arrows for features flow.
Below, we shall elaborate on the details of each level.

In level #0, we first feed Pin into an encoder to extract the
hierarchical scene-wise features F. Empirically, the encoder
is designed by using the set abstraction layer (Qi et al. 2017)
and the point transformer layer (Zhao et al. 2021a). Please
refer to our supplementary material for the detailed architec-
ture of the encoder. To realize semantic completion, a naive
following step is to decode F into a complete scene and its
associated semantic labels. However, the one-step operation
is often difficult to yield high-quality and fine-grained pre-
dictions. Hence, we propose to adopt the coarse-to-fine strat-
egy by repeating semantic completion multiple times, thus
allowing network to refine its predictions steadily. To ensure
enough repeating times (or levels), the computation con-
sumption in level #0 should not be too large, and it should
not cause a huge calculation in the subsequent levels. To this
end, in the initial level, instead of directly upsampling and
completing Pin, we downsample it using the farthest point
sampling (FPS) to obtain a sparse point cloud P0, which will
be completed by subsequent levels. The advantage of this
operation is that, P0 has fewer points than Pin, thus reduc-
ing the computation of following levels, but still preserv-
ing necessary geometrical structures. In this level, we also
predict the coarse per-point semantic labels L0 associated
with P0 by using the duplicated F via multi-layer percep-
tions (MLPs); see Figure 2 for details.

In level #1, given P0 and L0, our purpose is to obtain the
refined completed scene P1 and its semantic prediction L1.
As shown in Figure 2, this level is mainly composed of three

modules, i.e. Global Completion Module (GCM), Semantic
Segmentation Module (SSM), and Local Refinement Mod-
ule (LRM). Specifically, GCM consumes the point cloud
produced by previous level as input and generates a coarse
but completed scene by point displacements and upsampling
(e.g., P0 → PG

1 in level #1). Here, the upsampling ratio is
λ and set as 2 by default. SSM aims to predict semantic la-
bels of the completed scene (i.e. PG

1 ), which takes the hid-
den layer output HG

1 and the feature vector FG
1 produced by

GCM, as well as the L0 as inputs. We shall explain HG
1 and

FG
1 in the following subsection. To better recover a 3D scene

with fine-grained geometric details, we further design LRM
(to be detailed later), which conducts refinement locally ac-
cording to the point displacement vectors D1 generated by
GCM, and finally outputs P1 and L1.

The level #2 continues to upsample and complete P1 into
a finer result P2 and its associated labels L2. Most opera-
tions are the same as in level #1, except that we further feed
the hidden layer output HS

1 of SSM and the scene-wise fea-
tures FSE

1 extracted by shared encoder (SE) in the first level
to the second level’s GCM as well. Intuitively, HS

1 encodes
the semantic features extracted in the first level, while FSE

1
encodes the scene-wise global features embedded from the
refined completed point cloud produced by the first level’s
LRM. In this way, we can fully utilize the information of the
first level. Note that, we implement SE by using the same
structure as the encoder in level #0.

Further, level #3 repeats the above process again. As
shown in the right part of Figure 2, since the completion and
segmentation results after the third level’s GCM and SSM
are good enough, we thus remove LRM in this level and use
FPS to keep M points as the final outputs. Note that, FPS
operation is optional, which can be used only when we have
a specific requirement on the output point number.

Global Completion Module
The purpose of global completion module (GCM) is to pro-
duce a completed point cloud PG

l with the upsampling ratio
of λ in the l-th level, given the previous level’s output Pl−1.
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Figure 3: The detailed architecture of global completion
module (GCM). Given Pl−1 from previous level, GCM gen-
erates the completed scene PG

l via upsampling and displace-
ment regression. Note that, when l = 1, the inputs FSE

l−1 and
HS

l−1 are replaced by F of level #0.

Figure 3 shows the detailed architecture, which is inspired
by the snowflake point deconvolution (Xiang et al. 2021).

Specifically, when l ≥ 2, besides using Pl−1 as the in-
put in the l-th level, GCM also consumes FSE

l−1 and HS
l−1

as inputs, which encodes the scene-wise features and the
semantic features of previous level, respectively. Then, we
employ a point transformer (Zhao et al. 2021a) to fuse the
three kinds of inputs together. In this way, the obtained fea-
tures encode not only the input point features (brought by
Pl−1), but also the rich spatial and semantic information of
previous level (brought by FSE

l−1 and HS
l−1). Note that, when

l=1, there is no FSE
0 and HS

0 ; see Figure 2 as an illustration.
Hence, in the first level, besides P0, we further input F from
level #0 to GCM. Next, an upsampler (Xiang et al. 2021)
is employed to upsample the fused features with |Pl−1| ele-
ments to get features HG

l ∈ Rλ|Pl−1|×d, where | · | denotes
the number of points and d is the number of feature chan-
nels. Considering the fact that it is difficult for the network to
directly predict the absolute point coordinates with diverse
and wide distribution in 3D space, we here choose to regress
per-point displacements Dl from HG

l , which are then added
to the duplicated input points to obtain the final output PG

l .
Note that, to facilitate accurate semantic segmentation in

each level, we further employ an encoder to extract features
FG

l from PG
l . We design this encoder to be the same as the

encoder in level #0. Both HG
l and FG

l will be fed into this
level’s SSM, and Dl will be fed into this level’s LRM.

Semantic Segmentation Module
The purpose of semantic segmentation module (SSM) is to
predict the per-point semantic labels LS

l for PG
l . Recall that,

we generate PG
l in GCM by adding the displacement vectors

Dl to the duplicated Pl−1. A common case is that a point
may be moved from one object to another, while the two ob-
jects belong to different classes. In this case, if we still fol-
low the common routine to treat each point label as a scalar
value, the ground-truth semantic labels associated with some
points may produce abrupt situations that cause instability in
network training. To avoid this case, instead of encouraging
our network to predict a scalar semantic value for each point,
we propose to regress the probability of each class. Specif-
ically, LS

l = {LS
l (i) = [pi,1, · · · ,pi,c, · · · ,pi,C ]}, where

Figure 4: The detailed architecture of semantic segmentation
module (SSM). Given Ll−1 from previous level, SSM out-
puts the per-point labels for current level’s completed point
PG
l by predicting label transition probability.

LS
l (i) denotes the semantic label of the i-th point in the l-

th level, and pi,c ∈ R represents the probability of the i-th
point belonging to the c-th semantic class.

Figure 4 shows the detailed architecture of our de-
signed SSM. Given the semantic labels (probability) Ll−1

from previous level, we first extract features FL
l by using

DGCNN (Wang et al. 2019). Intuitively, FL
l encodes the

probability distribution of semantics. Next, we fuse FL
l and

the geometry features FG
l produced by GCM together via

attention-based feature fusion (Vaswani et al. 2017). The
fused features provide global scene information, which can
be used to obtain coarse per-point class probability by con-
catenating with Ll−1 and passing through MLPs. After that,
we employ deconvolution to upsample the coarse features
with ratio λ. Considering that the label prediction highly re-
lates to the point moving process during completion, we thus
inject HG

l which contains the hidden information of Dl into
a point transformer to implicitly introduce the displacement
information of this level’s GCM to SSM. Further, the trans-
former also takes the duplicated Ll−1 as an extra input to
generate the upsampled per-point class probability features
HS

l ∈ Rλ|Ll−1|×d. With HS
l in hand, traditional semantic

segmentation models directly predict per-point labels. How-
ever, this manner ignores the relationship between point dis-
placements and label changes. Thus, similar to GCM, we
regress the label transition probability ∆L ∈ Rλ|Ll−1|×C

from HS
l and obtain the per-point labels by adding ∆L to

the duplicated Ll−1. In addition, the hidden layer output HS
l

will be further fused into next level’s GCM for finer points.

Local Refinement Module
The purpose of local refinement module (LRM) is to fur-
ther refine the coarse completed points PG

l and its associ-
ated labels LS

l from a local perspective. As shown in Fig-
ure 5, LRM takes PG

l or its labels LS
l as well as the dis-

placement vectors Dl as inputs and outputs the refined points
Pl or refined labels Ll. The key idea behind LRM comes
from the assumption that a large displacement means that
its corresponding point is most likely moved to the miss-
ing area. Thus, Dl can supply inductive knowledge and help
locate large missing areas, which is also verified in our Ex-
periment section. Hence, we design LRM to predict minor
offsets again to tune the coarse completed points and their
labels in the located missing regions, thereby optimizing the
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Figure 5: The detailed architecture of local refinement mod-
ule (LRM). Given PG

l or its associated labels LS
l , LRM re-

gards the regions where points have large displacements as
missing regions, then predicts minor offsets ∆Al on these
points to refine the missing local regions again, and finally
outputs the refined results Pl or Ll.

associated local structures and labels with finer details.
Let’s take PG

l as an example to explain the local refine-
ment process, and the process of refining LS

l is the same with
shared structure. Specifically, as shown in Figure 5, we first
compute and sort the L2-norm of every displacement vector
in Dl. Then, we index PG

l corresponding to the top k biggest
displacement vectors. We here use agents Al ∈ Rk×f to de-
note the selected points from PG

l , thus f = 3. Note that,
f=C when refining labels. To get the local structure around
each reference point in Al, we employ KNN to group its n
nearest points in PG

l . Next, we follow PointNet++ (Qi et al.
2017) to translate the coordinates of points in a local region
into a local frame relative to the reference point, and further
employ MLPs to extract per-point features in each group,
which is denoted as Gl ∈ Rk×n×d. Then we employ max
pooling to obtain the local structure features FG

l . Similar to
GCM, we also regress the offsets ∆Al ∈ Rk×f for agents,
i.e. displacements of points or transition probability of la-
bels. Then Al is tuned by adding ∆Al. Finally, the refined
output Pl is obtained by concatenating the tuned Al to the
input PG

l . Naturally, the size of Pl is increased by k.

Loss Function
To fully guide network training in an end-to-end manner, we
supervise both the completion and segmentation results in
every level, i.e. from level #1 to level #3. In each level, we
uniformly downsample ground truth points and their labels
from the given ground truths in a dataset to the same number
as each level’s output, which is denoted as P l and Ll, respec-
tively. For the completion task, we employ the widely-used
Chamfer Distance (CD) to measure the difference between
the completed points Pl and the ground truth points P l:

LCD =
1

|Pl|
∑
x∈Pl

min
y∈Pl

∥x− y∥+ 1

|P l|

∑
y∈Pl

min
x∈Pl

∥y − x∥,

(1)
where x and y are the points in Pl and P l, respectively.

For the semantic segmentation task, we should note that
there is no one-to-one correspondence between Pl and P l.
Thus, we cannot directly use the traditional cross-entropy

loss as other segmentation works. However, the lucky thing
is that such one-to-one mapping has already been estab-
lished when calculating Eq. 1. We thus leverage such corre-
spondence to locate the nearest ground-truth point for each
predicted point and use their labels for semantic loss com-
putation. Further, it is common that objects in a scene have
various sizes, thus leading to different numbers of points on
different objects. For example, the point number in class
of Floor or Wall is much larger than that in class of Ta-
ble or Chair. Hence, the semantic segmentation task often
suffers from critical class imbalance. To relieve the overfit-
ting to easy examples (e.g., Floor or Wall), we employ focal
loss (Lin et al. 2017) as our semantic segmentation loss:

Lsem =
1

|Ll|
∑
l∈Ll

−(1− l)γ log(l), (2)

where l denotes the predicted labels gathered by ground-
truth labels l ∈ Ll, and γ is focusing parameter (Lin et al.
2017), which is increased during training to gradually in-
crease the importance of hard examples with fewer points.

The overall loss LSSC consists of both LCD and Lsem,
which are balanced with parameter α:

LSSC =
3∑

l=1

LCD(Pl,P l) + αLsem(Ll,Ll). (3)

Experiments and Results
Experimental Settings
Dataset preparation. As there is no public dataset for point
cloud semantic scene completion, we prepared two datasets,
namely SSC-PC and NYUCAD-PC. Specifically, SSC-PC
is compiled based on the dataset provided in (Zhang et al.
2021a). This work provides a total of 1941 scenes covering
16 object categories in the data format of RGB-D images
with associated ground-truth point clouds. However, they do
not provide camera intrinsics, so input partial point clouds
cannot be obtained directly from RGB-D images. Hence,
we generate the input point clouds from ground truth points
by approximating the visibility of point clouds (Katz, Tal,
and Basri 2007) from given views. We follow (Zhang et al.
2021a) to keep 4096 points for both network input and out-
put. Finally, we randomly split the 1941 scenes with 1543
for training and the remaining 398 for testing.

NYUCAD-PC is derived from NYUCAD dataset (Firman
et al. 2016), which contains 1449 RGB-D images with 795
training samples and 654 testing samples. The partial input
with 4096 points are generated from depth images by us-
ing camera intrinsics. The ground truths with 8192 points
are sampled from CAD mesh annotations (Guo, Zou, and
Hoiem 2015) with Poisson sampling algorithm. The object
categories in ground truths are mapped following (Handa
et al. 2016). Note that the “empty” class is excluded, thus the
number of categories is 11. Because of severe occlusion be-
tween objects and incomplete vision of scenes, NYUCAD-
PC is much more challenging than SSC-PC.
Evaluation metrics. To evaluate the scene completion per-
formance, we employ the widely-used Chamfer Distance
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Figure 6: Comparing the scene completion results of our method (e) and recent single object point completion methods (b-d).

(CD) as evaluation metric. To evaluate the semantic segmen-
tation performance, we employ the mean class IoU (mIoU)
and the mean class accuracy (mAcc) as metrics.
Implementation details. We implement our network in Py-
Torch and train it on a single Nvidia RTX 3090 GPU for
400 epochs with batch size of 4. We use Adam optimizer.
The learning rate is initialized as 0.001 and decayed every
two steps with 0.99 rate. The modulating factor γ in Eq. 2
ranges from 0 to 5 with step size of 0.5 every 30 epochs.
The balancing parameter α in Eq. 3 is 0.1. In experiments,
the number of points to be refined in LRM is 96, 64 in level
#1 and #2, respectively. The input is downsampled to 2048
in level #0. In NYUCAD-PC dataset, we cascade five levels
and set the refined point number as 32 in LRM of level #3.

Quantitative and Qualitative Comparisons
Comparing with semantic scene completion methods.
We first compared our CasFusionNet with all existing point-
based SSC networks, including PCSSC-Net (Zhang et al.
2021a) and (Wang et al. 2022). For (Wang et al. 2022),
we directly trained their released code on our prepared two
datasets. For PCSSC-Net, it demands a 12-dimension fea-
ture vector including point coordinates, RGB values, normal
vector, and differential coordinates as network input, so their
released code cannot be directly trained on our prepared
datasets with only point coordinates. However, our SSC-PC
dataset is prepared from the original paper of PCSSC-Net,

Method SSC-PC NYUCAD-PC

CD mIoU mAcc CD mIoU mAcc

PCSSC-Net 1.58 88.2 - - - -
Wang et al.2022 6.72 7.4 10.1 23.45 10.2 14.0

Ours 0.70 91.3 94.8 10.28 49.5 59.7
Ours (no FPS) 0.67 91.2 94.8 9.99 49.5 59.8

Table 1: Comparing semantic scene completion results of
our method against recent SSC methods. Ours (no FPS)
means we directly use the output of last level without FPS
for evaluation. L1 and L2 Chamfer Distance (multiplied by
103) are used in NYUCAD and SSC-PC, respectively.

that shares the same 3D scenes, but with different point sam-
pling. We thus directly used the evaluation values published
in their original paper for comparison. Strictly speaking,
such comparison is actually unfair for our method, since the
CD value calculated between our prepared input and ground
truth is much larger than that in (Zhang et al. 2021a), indi-
cating that our prepared SSC-PC is more difficult.

Table 1 shows the comparison results. Clearly, our method
(last two rows) achieves the best values across all metrics
on both datasets. Particularly, when we remove FPS in the
last level (see Figure 2) and directly use the raw output for
evaluation, the performance is further improved; see the bot-

3023



Method SSC-PC NYUCAD-PC

PoinTr (Yu et al. 2021) 11.85 14.91
SnowflakeNet (Xiang et al. 2021) 13.72 11.83
PMP-Net++ (Wen et al. 2022) 10.74 13.84

Ours 8.96 10.28
Ours (no FPS) 8.73 9.99

Table 2: Comparing scene completion results with recent
single object completion methods in terms of L1 Chamfer
Distance (multiplied by 103).

tom row. Note that, the method (Wang et al. 2022) fails to
produce a satisfying performance. We think that this is be-
cause our prepared inputs are quite incomplete and sparse,
thus preventing their proposed encoder-decoder architecture
to capture a representative feature of a scene.
Comparing with single object completion methods.
Since most point cloud completion methods focus on a
single object, we thus compared our CasFusionNet with
newly proposed single object point completion methods, i.e.
PoinTr (Yu et al. 2021), PMP-Net++ (Wen et al. 2022) and
SnowflakeNet (Xiang et al. 2021), in terms of the scene com-
pletion performance. In detail, we trained their networks on
our prepared datasets. Though our method further performs
semantic segmentation, we only compare the CD value. As
shown in Table 2, even with FPS, our method still achieves
the lowest CD values with a significant margin compared to
others, showing that directly employing single object com-
pletion methods to complete a 3D scene is not workable.

Figure 6 further shows the qualitative comparisons on two
datasets, where the top two scenes are from NYUCAD-PC
and the bottom two scenes are from SSC-PC. Clearly, re-
gardless of the segmentation results, the completion results
produced by our method (e) is the closest to the ground
truths (f) against others (b-d), especially on the local details.

Ablation Study
To evaluate the effectiveness of the major components in our
method, we conducted an ablation study by simplifying Cas-
FusionNet in the following cases.
• Model A: we remove both LRM and SSM in all levels.
• Model B: we remove only LRM in all levels.
• Model C: we remove the feature fusion between GCM

and SSM. More specifically, the features of previous
level’s GCM are fed into the next level’s GCM, and the
features of previous level’s SSM are fed into the next
level’s SSM.

• Model D: we remove levels #2 & #3, and only keep levels
#0 & #1.

We re-trained the network model separately for each case
using the same training dataset of NYUCAD-PC, and the
evaluation results are summarized in Table 3. By comparing
Model A & B vs. our full pipeline, we can see that both LRM
and SSM contribute to better performance, particularly on
the scene completion task. By comparing Model C with our
full pipeline and Model B, we can see that removing feature

Model Scene completion Semantic segmentation

CD (×10−3) mIoU mAcc

A 10.73 - -
B 10.50 49.0 59.8
C 10.61 40.3 51.9
D 11.60 41.5 52.2

Ours 10.28 49.5 59.8

Table 3: Ablation analysis of our network on NYUCAD-PC.

Figure 7: The points with large displacement values are
mostly located in missing areas; see these red points.

fusion results in poor performance on both scene completion
and semantic segmentation. Especially, the performance of
semantic segmentation in Model C has a serious setback,
thus validating the importance of our designed feature fu-
sion. By comparing Model D with our full pipeline, it shows
that our cascaded network design with multiple levels cer-
tainly improves task learning ability.

Network Analysis and Discussions
Visualization of the located missing regions. As men-
tioned in Method section, we regard the points with large
displacement values as missing regions. To validate this, we
visualize the top k points back in the partial input scene; see
Figure 7 as an illustration, where the k points are rendered in
red color. Clearly, most of the red points are located in miss-
ing areas, thus validating the rationality of our assumption.
Limitations. First, as a common drawback of existing
works, our CasFusionNet still fails to recover local details
for heavily occluded objects. Second, our network extracts
both scene-wise and point-wise features, but the object-wise
features are not fully utilized, which might be useful for bet-
ter completing objects. At last, our current network can han-
dle about 6 scenes each with 4096 points in one second. The
time performance may be further improved if we design a
lightweight feature extractor in the future.

Conclusion
In this work, we present CasFusionNet, a novel point cloud
semantic scene completion network by dense feature fusion.
By cascaded fusing the geometry and semantic information,
our network jointly completes the missing areas and predicts
the per-point semantic labels of scenes. Considering that
there is no public dataset for point-based SSC, we thus pre-
pared two datasets. Both quantitative and qualitative results
show that our network outperforms state-of-the-arts signifi-
cantly. In the future, we shall explore the possibility of uti-
lizing object-level features based on the predicted semantic
labels for precise object completion.

3024



Acknowledgments
This work is supported by the China National Natural
Science Foundation No. 62202182, No. 62276109, No.
62176101.

References
Cai, Y.; Chen, X.; Zhang, C.; Lin, K.-Y.; Wang, X.; and
Li, H. 2021. Semantic Scene Completion via Integrating
Instances and Scene in-the-Loop. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 324–
333.
Chen, X.; Lin, K.-Y.; Qian, C.; Zeng, G.; and Li, H. 2020.
3D Sketch-aware Semantic Scene Completion via Semi-
supervised Structure Prior. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 4193–4202.
Deng, X.; Hu, X.; Buris, N. E.; An, P.; and Chen, Y. 2021.
3D GRID TRANSFORMATION NETWORK FOR POINT
CLOUD COMPLETION. In 2021 IEEE International Con-
ference on Image Processing (ICIP), 3642–3646. IEEE.
Dourado, A.; De Campos, T. E.; Kim, H.; and Hilton, A.
2021. EdgeNet: Semantic Scene Completion from a Single
RGB-D Image. In Proceedings of International Conference
on Pattern Recognition, 503–510. IEEE.
Dourado, A.; Guth, F.; and de Campos, T. 2022. Data Aug-
mented 3D Semantic Scene Completion with 2D Segmenta-
tion Priors. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, 3781–3790.
Firman, M.; Mac Aodha, O.; Julier, S.; and Brostow, G. J.
2016. Structured Prediction of Unobserved Voxels From a
Single Depth Image. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 5431–5440.
Garbade, M.; Chen, Y.-T.; Sawatzky, J.; and Gall, J. 2019.
Two Stream 3D Semantic Scene Completion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 416–425.
Guo, R.; Zou, C.; and Hoiem, D. 2015. Predicting
Complete 3D Models of Indoor Scenes. arXiv preprint
arXiv:1504.02437.
Guo, Y.; and Tong, X. 2018. View-Volume Network for Se-
mantic Scene Completion from a Single Depth Image. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 726–732.
Gupta, S.; Davidson, J.; Levine, S.; Sukthankar, R.; and Ma-
lik, J. 2017. Cognitive Mapping and Planning for Visual
Navigation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2616–2625.
Handa, A.; Patraucean, V.; Badrinarayanan, V.; Stent, S.; and
Cipolla, R. 2016. Understanding Real World Indoor Scenes
With Synthetic Data. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 4077–4085.
Huang, T.; Zou, H.; Cui, J.; Yang, X.; Wang, M.; Zhao, X.;
Zhang, J.; Yuan, Y.; Xu, Y.; and Liu, Y. 2021. RFNet: Re-
current Forward Network for Dense Point Cloud Comple-
tion. In IEEE International Conference on Computer Vision
(ICCV), 12508–12517.

Katz, S.; Tal, A.; and Basri, R. 2007. Direct Visibility of
Point Sets. In ACM Transactions on Graphics (SIGGRAPH),
24–es.
Li, J.; Ding, L.; and Huang, R. 2021. IMENet: Joint 3D
Semantic Scene Completion and 2D Semantic Segmentation
through Iterative Mutual Enhancement. In Proceedings of
the International Joint Conference on Artificial Intelligence,
793–799.
Li, J.; Han, K.; Wang, P.; Liu, Y.; and Yuan, X. 2020a.
Anisotropic Convolutional Networks for 3D Semantic Scene
Completion. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3351–3359.
Li, J.; Liu, Y.; Gong, D.; Shi, Q.; Yuan, X.; Zhao, C.; and
Reid, I. 2019. RGBD Based Dimensional Decomposition
Residual Network for 3D Semantic Scene Completion. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 7693–7702.
Li, J.; Wang, P.; Han, K.; and Liu, Y. 2021. Anisotropic
Convolutional Neural Networks for RGB-D based Semantic
Scene Completion. IEEE Transactions Pattern Analysis &
Machine Intelligence.
Li, S.; Zou, C.; Li, Y.; Zhao, X.; and Gao, Y. 2020b.
Attention-based Multi-modal Fusion Network for Semantic
Scene Completion. In AAAI Conference on Artificial Intelli-
gence (AAAI), volume 34, 11402–11409.
Liang, Y.; Chen, B.; and Song, S. 2021. SSCNav:
Confidence-Aware Semantic Scene Completion for Visual
Semantic Navigation. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), 13194–13200.
IEEE.
Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P.
2017. Focal Loss for Dense Object Detection. In IEEE In-
ternational Conference on Computer Vision (ICCV), 2980–
2988.
Liu, M.; Sheng, L.; Yang, S.; Shao, J.; and Hu, S.-M. 2020.
Morphing and Sampling Network for Dense Point Cloud
Completion. In AAAI Conference on Artificial Intelligence
(AAAI), volume 34, 11596–11603.
Liu, S.; Hu, Y.; Zeng, Y.; Tang, Q.; Jin, B.; Han, Y.; and
Li, X. 2018. See and Think: Disentangling Semantic Scene
Completion. In Advances in Neural Information Processing
Systems, 261–272.
Pan, L.; Chen, X.; Cai, Z.; Zhang, J.; Zhao, H.; Yi, S.; and
Liu, Z. 2021. Variational Relational Point Completion Net-
work. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 8524–8533.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Met-
ric Space. In Advances in Neural Information Processing
Systems, volume 30.
Song, S.; Yu, F.; Zeng, A.; Chang, A. X.; Savva, M.; and
Funkhouser, T. 2017. Semantic Scene Completion from a
Single Depth Image. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 1746–1754.
Tang, J.; Chen, X.; Wang, J.; and Zeng, G. 2022. Not All
Voxels Are Equal: Semantic Scene Completion from the

3025



Point-Voxel Perspective. In AAAI Conference on Artificial
Intelligence (AAAI), volume 36, 2352–2360.

Varley, J.; DeChant, C.; Richardson, A.; Ruales, J.; and
Allen, P. 2017. Shape Completion Enabled Robotic Grasp-
ing. In 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2442–2447. IEEE.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention Is All You Need. In Advances in Neural Information
Processing Systems, volume 30.

Wang, P.-S.; Liu, Y.; and Tong, X. 2020. Deep Octree-based
CNNs with Output-Guided Skip Connections for 3D Shape
and Scene Completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, 266–267.

Wang, X.; Lin, D.; and Wan, L. 2022. FFNet: Frequency
Fusion Network for Semantic Scene Completion. In AAAI
Conference on Artificial Intelligence (AAAI), volume 36,
2550–2557.

Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic Graph CNN for Learn-
ing on Point Clouds. ACM Transactions on Graphics, 38(5):
1–12.

Wang, Y.; Tan, D. J.; Navab, N.; and Tombari, F. 2022.
Learning Local Displacements for Point Cloud Completion.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 1568–1577.

Wen, X.; Li, T.; Han, Z.; and Liu, Y.-S. 2020. Point Cloud
Completion by Skip-attention Network with Hierarchical
Folding. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 1939–1948.

Wen, X.; Xiang, P.; Han, Z.; Cao, Y.-P.; Wan, P.; Zheng, W.;
and Liu, Y.-S. 2021. PMP-Net: Point Cloud Completion by
Learning Multi-step Point Moving Paths. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
7443–7452.

Wen, X.; Xiang, P.; Han, Z.; Cao, Y.-P.; Wan, P.; Zheng,
W.; and Liu, Y.-S. 2022. PMP-Net++: Point Cloud Com-
pletion by Transformer-Enhanced Multi-step Point Moving
Paths. IEEE Transactions Pattern Analysis & Machine In-
telligence.

Xia, Y.; Xia, Y.; Li, W.; Song, R.; Cao, K.; and Stilla, U.
2021. ASFM-Net: Asymmetrical Siamese Feature Matching
Network for Point Completion. In Proceedings of the 29th
ACM International Conference on Multimedia, 1938–1947.

Xiang, P.; Wen, X.; Liu, Y.-S.; Cao, Y.-P.; Wan, P.; Zheng,
W.; and Han, Z. 2021. Snowflake Point Deconvolution
for Point Cloud Completion and Generation with Skip-
Transformer. In IEEE International Conference on Com-
puter Vision (ICCV), 5499–5509.

Xie, H.; Yao, H.; Zhou, S.; Mao, J.; Zhang, S.; and Sun, W.
2020. GRNet: Gridding Residual Network for Dense Point
Cloud Completion. In European Conference on Computer
Vision (ECCV), 365–381.

Yu, X.; Rao, Y.; Wang, Z.; Liu, Z.; Lu, J.; and Zhou, J. 2021.
PoinTr: Diverse Point Cloud Completion with Geometry-
Aware Transformers. In IEEE International Conference on
Computer Vision (ICCV), 12498–12507.
Yuan, W.; Khot, T.; Held, D.; Mertz, C.; and Hebert, M.
2018. PCN: Point Completion Network. In 2018 Interna-
tional Conference on 3D Vision (3DV), 728–737. IEEE.
Zhang, J.; Zhao, H.; Yao, A.; Chen, Y.; Zhang, L.; and Liao,
H. 2018. Efficient Semantic Scene Completion Network
with Spatial Group Convolution. In European Conference
on Computer Vision (ECCV), 733–749.
Zhang, S.; Li, S.; Hao, A.; and Qin, H. 2021a. Point Cloud
Semantic Scene Completion from RGB-D Images. In AAAI
Conference on Artificial Intelligence (AAAI), volume 35,
3385–3393.
Zhang, X.; Feng, Y.; Li, S.; Zou, C.; Wan, H.; Zhao, X.; Guo,
Y.; and Gao, Y. 2021b. View-Guided Point Cloud Comple-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 15890–15899.
Zhao, H.; Jiang, L.; Jia, J.; Torr, P. H.; and Koltun, V. 2021a.
Point Transformer. In IEEE International Conference on
Computer Vision (ICCV), 16259–16268.
Zhao, X.; Zhang, B.; Wu, J.; Hu, R.; and Komura, T. 2021b.
Relationship-based Point Cloud Completion. IEEE Trans-
actions Visualization & Computer Graphics.
Zhong, M.; and Zeng, G. 2020. Semantic Point Completion
Network for 3D Semantic Scene Completion. In 24th Euro-
pean Conference on Artificial Intelligence, 2824–2831. IOS
Press.
Zong, D.; Sun, S.; and Zhao, J. 2021. ASHF-Net: Adap-
tive Sampling and Hierarchical Folding Network for Robust
Point Cloud Completion. In AAAI Conference on Artificial
Intelligence (AAAI), volume 35, 3625–3632.

3026


