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Abstract

Automatic polyp segmentation from colonoscopy images is
an essential prerequisite for the development of computer-
assisted therapy. However, the complex semantic information
and the blurred edges of polyps make segmentation extremely
difficult. In this paper, we propose a novel semi-supervised
polyp segmentation framework using affinity contrastive
learning (ACL-Net), which is implemented between student
and teacher networks to consistently refine the pseudo-labels
for semi-supervised polyp segmentation. By aligning the
affinity maps between the two branches, a better polyp region
activation can be obtained to fully exploit the appearance-
level context encoded in the feature maps, thereby improv-
ing the capability of capturing not only global localization
and shape context, but also the local textural and boundary
details. By utilizing the rich inter-image affinity context and
establishing a global affinity context based on the memory
bank, a cross-image affinity aggregation (CAA) module is
also implemented to further refine the affinity aggregation
between the two branches. By continuously and adaptively
refining pseudo-labels with optimized affinity, we can im-
prove the semi-supervised polyp segmentation based on the
mutually reinforced knowledge interaction among contrastive
learning and consistency learning iterations. Extensive exper-
iments on five benchmark datasets, including Kvasir-SEG,
CVC-ClinicDB, CVC-300, ColonDB and ETIS, demonstrate
the effectiveness and superiority of our method. Codes are
available at https://github.com/xiewende/ACL-Net.

Introduction
Colorectal cancer (CRC) is a common malignant tumor in
the gastrointestinal tract and has become the third most com-
mon cancer in the world (Silva et al. 2014). Fortunately,
CRC can be effectively prevented if polyps are removed
in time. With the development of technology, automated
segmentation of polyp plays a key role in the computer-
aided diagnosis of CRC. Colonoscopy is an essential polyp
detection method that can help doctors locate and remove
polyps. However, precisely segmentation of polyps from
colonoscopy videos is still a challenging task. First, the
characteristics of polyps are highly variable, including var-
ious scales, locations, colors and textures (Figure 1(a)-(d)).
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Figure 1: Challenges in semi-supervised polyp segmenta-
tion. (a)-(d) denote various scales, colors and textures of
polyps. (c)-(f) illustrate the low contrast between polyps and
surrounding tissues.

Second, the low contrast between the polyp and the back-
ground mucosa produces a blurred boundary (Figure 1 (e)-
(f)), which may reduce the discrimination of object features
and thus increase the possibility of incorrect segmentation.

Recently, supervised deep learning methods achieved re-
markable success in polyp segmentation (Zhou et al. 2018;
Fan et al. 2020; Kim, Lee, and Kim 2021; Wei et al. 2021).
However, as the pixel-wise labeling process is particularly
expensive and time consuming, the segmentation accuracy is
still cannot guaranteed without enough high quality labelled
datasets. To tackle this limitation, semi-supervised semantic
segmentation methods are proposed to reduce the reliance
on labels (Ke et al. 2020; Ouali, Hudelot, and Tami 2020).

Current state-of-the-art (SOTA) semi-supervised learning
is mainly based on consistency regularization (Miyato et al.
2018; Mittal, Tatarchenko, and Brox 2019; Ouali, Hudelot,
and Tami 2020; Liu et al. 2022; Seibold et al. 2022; Zhang
et al. 2022) and contrastive learning (Zhao et al. 2022; Lai
et al. 2021; Kwon and Kwak 2022; Wang et al. 2022b). Al-
though these techniques can substantially improve the per-
formance of semi-supervised semantic segmentation, they
share a common drawback: weak learning ability at the ini-
tialization may carry bias due to less reliable pseudo-labels
generated from the relatively poorer predictions of unlabeled
images. Several existent methods are proposed to combine
both contrastive learning and consistency learning, but they
are usually optimized in different directions without knowl-
edge transfer during the training process. However, differ-
ent optimized directions may lead to a counterproductive ef-
fect. More recently, medical semi-supervised segmentation
methods (Wu et al. 2021; Seibold et al. 2022) also simply
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employed thresholding operations for different predictions
to obtain pseudo-labels, which still cannot robustly identify
low-contrast boundaries in polyps. Moreover, polyp semi-
supervised segmentation (Wu et al. 2021) also adopted an
adversarial learning strategy to obtain pseudo-labels, but the
adversarial learning is also difficult to train and unstable.
Different from the above methods, we propose an affinity
contrastive learning (ACL) implemented between the stu-
dent and teacher networks to consistently refine the pseudo-
labels, which can provide a more reliable supervisory signal
for unlabeled images during training.

In this paper, we propose a novel semi-supervised polyp
segmentation framework based on affinity contrastive learn-
ing (ACL-Net), which is implemented between the student
and teacher networks to consistently refine the pseudo-labels
for semi-supervised polyp segmentation. By aligning the
affinity maps between the two branches, we can obtain a bet-
ter polyp region activation to fully exploit the appearance-
level context encoded in the feature maps, thereby improv-
ing the capability of capturing not only global localization
and shape context, but also the local textural and bound-
ary details. To further refine the affinity aggregation be-
tween the two branches, we also implement a cross-image
affinity aggregation (CAA) module to utilize the rich inter-
image affinity context and establish a global affinity con-
text based on the memory bank. Relying on the continuously
and adaptively refining pseudo-labels based on the mutually
reinforced knowledge interaction among contrastive learn-
ing and consistency learning iterations, we can finally im-
prove the semi-supervised polyp segmentation with the op-
timized affinity maps. Extensive experiments on five polyp
datasets, including Kvasir-SEG (Jha et al. 2020), CVC-
ClinicDB (Bernal et al. 2015), CVC-300 (Vázquez et al.
2017), ColonDB (Bernal, Sánchez, and Vilarino 2012) and
ETIS (Silva et al. 2014), have demonstrated the effectiveness
and superiority of our proposed method. Our contributions
are summarized as follows:
• We propose a novel semi-supervised polyp segmentation

framework via affinity contrastive learning (ACL-Net),
which can align the affinity maps generated in the stu-
dent and teacher networks to more accurately capture the
global appearance-level contexts.

• We propose a cross-image affinity aggregation (CAA) to
enhance the knowledge transfer ability between contrast-
ing learning and consistency learning iterations, thereby
achieving a better refinement of pseudo labels.

• We demonstrate the effectiveness and advantages of our
ACL-Net on five challenging polyp datasets, outperform-
ing other competitors under different labelled conditions.

Related Work
Polyp Segmentation
Polyp detection and segmentation are effective techniques
for computer-aided diagnosis, which can effectively prevent
colorectal cancer. With the development of deep learning,
automatic polyp segmentation based on convolutional neu-
ral networks (CNNs) has made extensively progressed in re-
cent years (Zhou et al. 2018; Fan et al. 2020; Huang et al.

2021; Kim, Lee, and Kim 2021; Wei et al. 2021). However,
most of them are based on fully supervised training strate-
gies, which generally require large amounts of labeled data,
and annotating the image is often labor-intensive and time-
consuming. Therefore, semi-supervised polyp segmentation
is a more promising approach to achieve satisfactory perfor-
mance from limited labeling images.

Semi-supervised Semantic Segmentation
Previous semi-supervised methods (Hu et al. 2021a; Liu
et al. 2022) were mainly based on pseudo-labels optimiza-
tion and contrastive learning. Several methods (Lai et al.
2021; Kwon and Kwak 2022; Wang et al. 2022b) also
demonstrated the superiority of employing both contrastive
learning and self-training in the respective optimization
at semi-supervised, without knowledge communication be-
tween them. However, semi-supervised methods for natural
images usually still cannot model the overall appearance-
level information of complex semantic information and low
contrast of object regions in medical images. Differently,
we propose a novel semi-supervised segmentation frame-
work that combines both affinity contrasting learning and
self-training learning to enhance the capability in capturing
appearance-level context for semi-supervised segmentation.

Semi-supervised Medical Segmentation
RPG (Seibold et al. 2022) and BoostMIS (Zhang et al. 2022)
proposed to define the pseudo-labels based on simply thresh-
olding operations, which is still unreliable particularly for
the polyp segmentation task with complex cases. CAFD (Wu
et al. 2021) adopted two segmentation networks and dis-
criminators to obtain higher confidence pseudo-labels, but
the training of adversarial learning is still difficult and unsta-
ble. Different from the above approaches, we propose to uti-
lize affinity contrastive learning to consistently learn high-
quality appearance-level context to refine pseudo-labels,
which also provide a better bridge for knowledge transfer
between contrastive learning and consistency learning.

Method
Overview
The framework of our proposed ACL-Net is as illustrated
in Figure 2, which is implemented under a famous mean-
teacher architecture (Tarvainen and Valpola 2017a) for
semi-supervised image segmentation. To fully exploit the
appearance-level context maps, we propose an affinity con-
trastive learning (ACL) between the student and teacher
networks to consistently refine the pseudo-labels for semi-
supervised polyp segmentation. By aligning the affinity
maps between the student and teacher networks, we can ob-
tain a better polyp region activation to improve the capability
of capturing not only global localization and shape context,
but also the local textural and boundary details. Considering
the rich inter-image affinity context among the unlabeled im-
ages, we also implement a cross-image affinity aggregation
(CAA) module to further enhance the affinity aggregation
between the student and teacher networks by establishing a
global affinity context based on the memory bank. Finally,
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Figure 2: Overview of our proposed ACL-Net, where an affinity contrastive learning (ACL) mechanism is implemented between
the student and teacher networks to consistently refine the pseudo-labels for semi-supervised polyp segmentation.

we can achieve a better semi-supervised polyp segmentation
by continuously and adaptively refining the pseudo-labels
based on the optimized affinity map.

Affinity Contrastive Learning
As shown in Figure 3, unlike existing fully supervised seg-
mentation methods (Wang et al. 2022a; Ru et al. 2022), we
propose an affinity contrastive learning (ACL) between stu-
dent and teacher networks to consistently refine the pseudo-
labels and enhance the semi-supervised polyp segmentation.

Given the feature maps Fs and Ft, which are extracted
from the encoder of student network and teacher net-
work respectively, we first apply the non-local self-attention
block (Wang et al. 2018) on both Fs and Ft to the gen-
erate the affinity maps Affs and Afft. Considering that
self-attention mechanism is essentially a directed graphical
model (Veličković et al. 2017), the affinity matrix should be
a symmetric structure. Therefore, we can obtain the affin-
ity map by simply applying a 1× 1 convolution layer to the
feature map and its transpose, which can be denoted as:

Affi = Conv
(
NonLocal (Fi) + NonLocal (Fi)

T
)
, (1)

where i ∈ (s, t) represents the student and teacher network
respectively. T represents the matrix transpose operation.
Conv is a 1× 1 convolutional layer.

Since affinity reflects the correlations between a pixel
point on the feature map and its neighbors, affinity maps
Affs and Afft can capture more appearance-level context,
including not only global localization and shape context,
but also the local textural and boundary details. We next
apply an element-wise summation between Affs and Afft
to interact the appearance-level context of the different net-
works and enhance the reliability of the activation regions,
described as Affm = Affs ⊕Afft. Considering the relatively
low contrast between polyps and their surrounding areas, it

is a great challenge to segment the boundary areas accu-
rately. In this regard, we can obtain the reliable foreground,
background and uncertainty regions by simply filtering the
affinity interaction map Affm based on two threshold values
βl and βh, where 0 < βl < βh. The filtered affinity interac-
tion map Affm̂ can be written as:

Affi,j
m̂ =

 1, ifmax
(
Affi,j,:

m

)
≥ βh,

0, ifmax
(
Affi,j,:

m

)
≤ βl,

argmax
(
Affi,j,:

m

)
, otherwise,

(2)

where 0 and 1 denote the background and foreground, re-
spectively. The argmax (·) denotes to extract the semantic
weight with the maximum uncertain regions.

So far, we can get affinity query Affq = Affm̂ ⊗Affs

and affinity key Affk = Affm̂ ⊗Afft respectively, where ⊗
is matrix multiplication. Before calculating the contrastive
loss, we need to calculate the foreground and background
probabilities in the affinity interaction matrix, which can be
obtained by filtering the uncertain regions, written as:

ỹAffj = argmax (Affj) , (3)

where j ∈ (q, k) denotes affinity query and key respectively.
To align the affinity maps between the student and teacher

networks, we need a contrastive loss Ltra to drive the pos-
itive pairs closer and push away the negative pairs. Mean-
while, we also adopt a memory bank M to store the fea-
tures. Based on the standard form of contrastive loss defined
in InfoNCE (Oord, Li, and Vinyals 2018), we can formulate
the contrastive loss function for a query feature as:

Ltra = − log
sim (q, k+) /τ

sim (q, k+) /τ +
∑

k∈M
Iq,k− sim (q, k−) /τ

, (4)

sim(q, k) = exp ((q · k) / (∥q∥2∥k∥2)) , (5)

Iq,k− = 1
{
ỹAffq ̸= ỹAffk

}
, (6)
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Figure 3: Illustration of Affinity Contrastive Learning (ACL) and Cross-Image Affinity Aggregation (CAA) modules.

where q is the anchor point from Affq . k+ is a single pos-
itive, while the k− includes all the negative samples. Note
that the anchor q always locates in Affq , where its positive
k+ is on the same location in Affk. Negative samples k−
are obtained by filtering the features vectors in the mem-
ory bank according to the binary mask indicator Equation 6.
Here τ indicates a temperature hyper-parameter. Moreover,
we further implement a non-parameter and dynamic mem-
ory bank M (He et al. 2020; Wu et al. 2018; Xiao et al.
2017), which not only increase the negative samples to im-
prove the contrastive learning optimization, but also provide
a cross-image affinity to identify the global affinity context.

Cross-Image Affinity Aggregation
Considering that there has rich inter-image affinity context
among the unlabeled images, we further propose a cross-
image affinity aggregation (CAA) module to optimize the
affinity between student and teacher networks. As shown in
Figure 3, we first cluster the memory bank vectors into fea-
tures H using the k-means, where k is experimentally set to
10 in our CAA module. In this regard, we can greatly reduce
the dimension of the memory bank to achieve a much faster
learning and inference speed. Then we can obtain an affin-
ity matrix S bettwen the student affinity map Affs and the
cross-image affinity context H , written as:

S = Softmax (Affs ⊗H) , (7)

where Softmax denotes the normalization of each row for
the input and ⊗ is matrix multiplication. Each element in S
reflects the normalized similarity between each row in Affs

and each column in H . Based on this affinity matrix S, we
can further obtain a better cross-image affinity aggregation
by the contextual summarization written as:

AffCAA = Concat (Afft,Reshape (S ⊗H)) , (8)

where Concat (·) denotes the concatenation operation. Ob-
viously, AffCAA not only encodes intra-image local affin-
ity context from both student and teacher networks, but also

captures inter-image affinity context from other unlabeled
images, thus achieving a better affinity aggregation.

Pseudo-Label Refinement
Considering that the initial pseudo-labels is still coarse and
unreliable, we propose to adaptively refine the pseudo-labels
with high- and low-level affinity. Inspired by (Ru et al.
2022), given the input unlabeled image xu and the predic-
tions ŷ of teacher network, for the pixel at position (i, j) and
(u, v), the channel and spatial pairwise terms can be defined
as:

κ
ij,uv
cha = −

(
|Iij − Iuv|
w1σ

ij
cha

)2

, κ
ij,uv
spa = −

(
|Pij − Puv|

w2σ
ij
spa

)2

, (9)

where Iij and Pij are the channel information and the spatial
location of pixel (i, j), respectively. σ denotes the standard
deviation and w(1,2) control the smoothness. Then, the affin-
ity kernel can be constructed by the summation of κcha and
κspa, which are normalized with a softmax, written as:

κ
ij,uv

=
exp

(
κij,uv
cha

)
∑

(x,y) exp
(
κij,xy
cha

) + w3

exp
(
κij,uv
spa

)
∑

(x,y) exp
(
κij,xy
spa

) , (10)

where (x, y) is sampled from the neighbor set of H (i, j).
Inspired by the previous work (Araslanov and Roth 2020),
we define H (i, j) as the 8-way neighbors with multiple di-
lation rates (1, 2, 4, 8, 12, and 24). Next, we can adaptively
refine the initial pseudo-labels ŷ from the teacher network
according to low-level affinity kernel k and high-level affin-
ity AffCAA with multiple iterations, written as:
ŷ
i,j
t = α1

∑
(u,v)∈H(i,j)

k
ij,uv

ŷ
u,v
t−1 + α2

∑
(u,v)∈AffCAA(i,j)

Aff
ij,uv
CAA ŷ

u,v
t−1

(11)

where t is a hyper-parameter to update iteration. α1 and α2

control weights of different affinities to refine pseudo-labels.
To provide the refined pseudo-labels for unlabeled images

in the student network training, we can formulate the consis-
tency loss as:

Lcon =
1

|Nu|

Nu∑
i=1

ℓce (y
u
i , ŷ

u
i ) + ℓdice (y

u
i , ŷ

u
i ) , (12)
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where Nu is the number of unlabeled images. yui is the pre-
diction of the student network for i-th unlabeled image and
ŷui represents the pseudo-labels optimized by Equation 11 in
the teacher network for the i-th unlabeled image.

Loss Functions
For the supervised branch, we exploited the labeled data to
guide the network by minimizing the standard cross-entropy
loss and dice loss (Soomro et al. 2018) in the student model
with Equation 14. For the unsupervised branch, we first pro-
cessed the images based on a weak-strong augmentation
pair (Hu et al. 2021b), where several weak augmentations
(image flipping, cropping and scaling) are applied to the
input images of the teacher model, and strong augmenta-
tions (Chen et al. 2021; Ke et al. 2020) are also applied to
the input images of the student model to improve the over-
all generalization. The contrastive loss Ltra in Equation 4
and the consistency loss Lcon in Equation 12 can collabo-
ratively drive the network to extract information from unla-
beled images. The student model is optimized by minimiz-
ing the overall loss, which can be formulated as:

Ltotal = Lseg + λtraLtra + λconLcon, (13)

where λtra and λcon are weights of corresponding loss com-
ponents. Noted that the teacher model’s weights are ex-
ponential moving average (EMA) updated by the student
model’s weights. The supervised loss Lseg is defined as:

Lseg =
1

|Nl|

Nl∑
i=1

ℓce
(
pli, y

l
i

)
+ ℓdice

(
pli, y

l
i

)
, (14)

where Nl is the number of labeled images. pli represents the
segmentation result of the student network for i-th labeled
image, while the yli represents the corresponding label.

Experiments
Datasets and Evaluation Metrics
We evaluated our method on five famous public polyp
datasets, including Kvasir-SEG (Jha et al. 2020), CVC-
ClinicDB (Bernal et al. 2015), CVC-300 (Vázquez et al.
2017), ColonDB (Bernal, Sánchez, and Vilarino 2012) and
ETIS (Silva et al. 2014). Similar to the previous meth-
ods (Fan et al. 2020), a total of 1450 images, including 900
from Kvasir-SEG and 550 from CVC-ClinicDB, are divided
into different labeled partition protocols (1/2, 1/4, 1/8) as our
semi-supervised training datasets, and all above five datasets
will be used in the inference phase.

In our experiments, we applied two widely-used metrics
to evaluate the segmentation models, including mean dice
(Dice (%)) and mean intersection over union (IoU (%)).

Implementation Details
Our proposed method is implemented with the PyTorch
framework on a single NVDIA GeForce RTX 3090TI.
ResNet-50 (He et al. 2016) pre-trained on ImageNet (Deng
et al. 2009) and Transformer (Liu et al. 2021) are used as
the backbone respectively, while DeepLabv3 (Chen et al.

Figure 4: Visual comparisons of segmentation results ex-
tracted in ablation studies. (a) Input image. (b) Ground truth.
(c) SupOnly. (d) With affinity contrastive learning. (e) and
(f) are with low-level and high-level affinity refinement but
without affinity aggregation, respectively. (g) Ours. Red,
green and yellow regions represent the ground truth, predic-
tion and their overlapping region respectively.

Method TR AC AG LA HA Dice IoU

SupOnly 80.63 71.44

I ✓ 81.29 73.67
II ✓ ✓ 83.92 75.86
III ✓ ✓ ✓ 84.47 76.48
IV ✓ ✓ ✓ 84.86 77.13
IV ✓ ✓ ✓ 85.26 77.93
V ✓ ✓ ✓ ✓ 85.89 78.51

Table 1: Ablation studies of different components. TR:
Threshold Refinement. AC: Affinity Contrast. AG: Affin-
ity Aggregation. LA: Low-level Affinity Refinement. HA:
High-level Affinity Refinement.

2018) is selected as the segmentation head. The initial learn-
ing rate is set to 0.001, while the batch size is set to 8. We
used a stochastic gradient descent (SGD) optimizer for train-
ing with a weight decay of 0.0001. We unified all images
resolution to 384 × 384. To capture a priori knowledge of
labeled images, we also performed 10 epochs of prewarm
training before feeding the unlabeled images into the net-
works. We then adopt poly scheduling to schedule the learn-
ing rate, which is multiplied

(
1− iter

total iter

)0.9
. For the hy-

perparameter settings, both the loss function weights λcon

and λtra are experimentally set to 0.5. The weight of EMA
is set to 0.999. We set the background scores βl = 0.45 and
βh = 0.75 in Equation 2. The temperature parameter τ is
0.5 in Equation 4. In Equation 9 and Equation 10, we set the
weight factors (w1, w2, w3) as (0.2, 0.2, 0.5) respectively.
The weights (α1,α2) in Equation 11 are set to (0.3, 0.7).

Ablation Studies
We performed extensive visual and statistical ablation ex-
periments to verify the contribution of each component,
as shown in Figure 4 and Table 1. The ablation experi-
ments are conducted in the Kvasir-SEG by training the semi-
supervised networks with different components on the 1/4
labeled images. We adopted ResNet-50 and Deeplabv3 as
the backbone segmentation networks, and train the model
only using labeled data, which is named as SupOnly method.

Ablation of Affinity Contrastive Learning. We opti-
mized the affinity maps in student and teacher networks
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Method
Kvasir-SEG CVC-ClinicDB

1/2 1/4 1/8 1/2 1/4 1/8
Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

SupOnly 82.21 74.19 80.63 71.44 79.54 69.31 80.26 72.48 78.42 70.88 77.05 68.71

MT 83.14 75.02 78.85 69.06 79.46 68.47 81.91 73.93 79.07 69.33 78.34 68.24
CAC 84.28 78.24 81.01 75.04 81.07 72.82 83.08 75.53 82.71 74.32 79.18 72.88
AEL 84.89 74.90 80.31 71.82 81.48 73.96 82.19 73.25 8042 71.88 80.87 72.47

CAFD 83.24 75.88 81.61 74.53 80.05 71.16 84.23 76.06 80.94 72.21 79.86 73.18
ELN 85.49 76.47 82.33 73.38 81.92 72.41 84.94 76.29 82.84 74.33 81.07 74.93

PSMT 85.17 77.58 83.18 75.33 82.31 72.82 84.51 77.58 81.52 73.96 80.71 74.24
U2PL 86.56 78.61 84.47 76.80 82.86 73.31 85.87 77.79 83.27 77.18 81.17 75.81

Ours(R) 88.12 81.74 85.89 78.51 83.79 75.81 87.25 81.64 84.82 78.67 83.16 76.92
Ours(T) 86.89 80.94 85.09 77.83 82.66 75.26 87.72 82.14 84.53 78.74 82.36 76.21

Table 2: Quantitative comparisons with different state-of-the-art methods on Kvasir-SEG and CVC-ClinicDB datasets.

Figure 5: Visual comparisons with different state-of-the-art methods on the five public polyp datasets. The SupOnly method is
trained on 1/4 labeled data only, while the other methods are trained on 1/4 labeled data and 3/4 unlabeled data. The images in
the first to fifth rows are typically selected from Kvasir-SEG, CVC-ClinicDB, CVC-300, ColonDB and ETIS respectively. Red,
green and yellow regions represent the ground truth, prediction and their overlapping region respectively.

by contrastive loss, to enhance the capability in captur-
ing the rich appearance-level context. As shown in Ta-
ble 1, by equipping with affinity contrastive learning mod-
ule, Method II outperforms Method I in both Dice and IoU.
Unlike Method I which only used thresholding to obtain
the pseudo-labels, we can effectively extract invariant trans-
ferable appearance-level knowledge from labeled images to
unlabelld images based on the affinity contrastive learning
mechanism. Figure 6 also visually demonstrates the advan-
tages of our affinity contrastive learning in feature space,
where the T-SNE visualization shows a clear division be-
tween the background and the target regions.

Ablation of Cross-Image Affinity Aggregation. The
comparison between Method III and Method V clearly
demonstrates the effectiveness of cross-image affinity aggre-
gation module. By fully exploiting the rich inter-image affin-
ity context among the unlabeled images, we can further op-

timize the affinity aggregation between student and teacher
networks, thereby improving the accuracy performance.

Ablation of Pseudo-Label Refinement. The compar-
isons among Method II, IV and V also can further verify the
effectiveness of our pseudo-label refinement. By optimiz-
ing the initial pseudo-labels based on the strong supervised
signal of affinity, we can obtain much better pseudo-labels
with higher confidence to guide the semi-supervised learn-
ing via the consistency loss. With the pseudo-Label refine-
ment module, we can obtain an improvement in Dice from
83.92% (Method II) to 85.89% (Method V).

Comparison with State-of-the-art Methods
We compared our approach with seven state-of-the-art meth-
ods: MT (Tarvainen and Valpola 2017b), CAC (Lai et al.
2021), AEL (Hu et al. 2021a), ELN (Kwon and Kwak
2022), PSMT (Liu et al. 2022), U2PL (Wang et al. 2022b),
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Figure 6: T-SNE visualization of features. (a) Backbone. (b)
Affinity contrastive learning. The blue and yellow nodes rep-
resent background regions and target regions respectively.

Method CVC-300 ColonDB ETIS
Dice IoU Dice IoU Dice IoU

SupOnly 79.09 69.47 58.86 48.97 49.21 41.55

MT 78.63 69.01 59.87 48.58 50.19 42.09
CAC 85.18 77.21 66.61 60.74 57.24 50.51
AEL 83.49 74.84 63.46 56.55 55.08 48.16

CAFD 82.21 74.08 61.78 53.94 54.26 48.19
ELN 83.86 75.22 62.34 55.73 55.93 47.77

PSMT 82.51 74.98 64.72 57.25 54.66 47.84
U2PL 84.36 76.06 65.05 57.12 56.27 48.85

Ours(R) 86.47 79.54 68.71 62.65 58.89 52.44
Ours(T) 86.65 80.44 67.38 62.09 56.37 50.58

Table 3: Generalization capability comparisons with differ-
ent state-of-the-art methods. We first trained different net-
works by dividing the entire training image (1450) from
Kvasir and CVC-ClinicDB into 1/4 labeled images (362)
and 3/4 unlabeled images (1088). Statistical results are col-
lected by directly applying the trained networks on CVC-
300, ColonDB, and ETIS datasets.

and CAFD (Wu et al. 2021). We implemented all competi-
tors through the same baseline segmentation network with
ResNet-50 as the backbone as well as the same experimen-
tal environment and data augmentations to ensure fairness of
the comparison. We define our method trained with ResNet-
50 backbone as Our(R), while with Transformer as Our(T).

Learning Ability. Table 2 shows the advantages of our
method in learning ability, where our approach is com-
pared with other semi-supervised semantic segmentation ap-
proaches on the two visible datasets: Kvasir-SEG and CVC-
ClinicDB datasets. We can clearly see that our method gen-
erally outperforms other competitors in different labeled
partitions. Compared to the latest polyp semi-supervised
method (CAFD), we obtain improvements of +4.28% in
Dice and +4.01% in IoU using 1/4 labeled data.

Generalization Capability. We also conducted experi-
ments to demonstrate the excellent generalization capabil-
ity of our method on the three unseen datasets including
CVC-300, ColonDB, and ETIS. As shown in Table 3, our
approach also obtains a significant improvement over the
other competitors, achieving 58.89% Dice and 52.44% IoU
on the most challenging ETIS dataset. Relying on our novel
affinity contrastive learning (ACL) mechanism implemented

Figure 7: Visual comparisons of generated affinity maps. (a)
Input image. (b) Ground truth. (c) Initial affinity map from
student network. (d) Initial affinity map from teacher net-
work. (e) Optimized affinity map with affinity contrast learn-
ing and cross-image aggregation. (f) Prediction.

Figure 8: Failure cases. Yellow and red contours denote our
segmented polyps and the ground truth, respectively.

between student and teacher networks, we can consistently
refine the pseudo-labels for semi-supervised polyp segmen-
tation to obtain a better generalization capability.

Qualitative Results. In addition, we also performed a
visual comparison among the SupOnly method, the seven
SOTA methods, and our ACL-Net. As shown in Figure 5, we
can also observe that our ACL-Net generally outperforms its
competitors, especially for the challenging polyp cases with
complex structures and small objects. Figure 7 further shows
the optimization process of affinity map, demonstrating its
excellent capability in extracting appearance-level context.

Limitations
Our method still has some limitations. Our method still
may fail when the image contains multiple extremely small
polyps (Figure 8 (a)-(b)), as well as when the color contrast
between polyps and the background is extremely low (Fig-
ure 8 (c)-(d)).

Conclusion
In this work, we present a novel semi-supervised polyp seg-
mentation framework via affinity contrastive learning (ACL-
Net), which is implemented between the student and teacher
networks to consistently refine the pseudo-labels. Specifi-
cally, we align the affinity maps between the two branches
to obtain a better polyp region activation and fully exploit the
appearance-level context. We also implement a cross-image
affinity aggregation (CAA) module to utilize the rich inter-
image affinity context and establish a global affinity context,
thereby achieving a better semi-supervised polyp segmenta-
tion. Extensive experiments on five famous datasets demon-
strate its effectiveness and superiorities.
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