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Abstract

Transformer-based text-to-image synthesis generates images
from abstractive textual conditions and achieves prompt re-
sults. Since transformer-based models predict visual tokens
step by step in testing, where the early error is hard to
be corrected and would be propagated. To alleviate this is-
sue, the common practice is drawing multi-paths from the
transformer-based models and re-ranking the multi-images
decoded from multi-paths to find the best one and filter out
others. Therefore, the computing procedure of excluding im-
ages may be inefficient. To improve the effectiveness and ef-
ficiency of decoding, we exploit a reject decoding algorithm
with tiny multi-modal models to enlarge the searching space
and exclude the useless paths as early as possible. Specifi-
cally, we build tiny multi-modal models to evaluate the sim-
ilarities between the partial paths and the caption at multi
scales. Then, we propose a reject decoding algorithm to ex-
clude some lowest quality partial paths at the inner steps.
Thus, under the same computing load as the original de-
coding, we could search across more multi-paths to improve
the decoding efficiency and synthesizing quality. The exper-
iments conducted on the MS-COCO dataset and large-scale
datasets show that the proposed reject decoding algorithm can
exclude the useless paths and enlarge the searching paths to
improve the synthesizing quality by consuming less time.

Introduction
Text-to-image synthesis is a multimodal task, in which vivid
images can be generated from the given textual descrip-
tions (Reed et al. 2016). Many models make use of the Gen-
erative Adversarial Networks (GANs) to generate the im-
ages (Reed et al. 2016; Zhang et al. 2019; Xu et al. 2018;
Zhu et al. 2019; Tao et al. 2022) and have achieved highly
promising results. However, GANs are known to have dif-
ficulty in achieving stable convergence and suffer from the
problem of mode collapse in training. Recently, many re-
searchers have employed transformers (Vaswani et al. 2017)
to achieve significant progress in generating high-quality
images (Ding et al. 2021; Ramesh et al. 2021; Wu et al.
2022b; Yu et al. 2022a).
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GroundTruth

Figure 1: The reject decoding algorithm can explore a larger
size of paths under a similar computing load and generate
better results. The green box indicates the five paths ex-
ploited in traditional decoding, and “O5” is the traditional
result. For the rejecting decoding algorithm, there are ten
paths for search and the large green circles are the active
routines. “N10” is our final result, which is better than “O5”
and outside the green box.

In text-to-image synthesis, the transformer-based methods
exploit Vector Quantized Variational AutoEncoders (VQ-
VAE) (van den Oord, Vinyals, and Kavukcuoglu 2017) to
transform the given image into a low-dimensional image
tokens. Then, the methods model the joint distribution be-
tween the image tokens and the language tokens to predict
the image tokens in testing. In testing, the transformer-based
methods sample visual tokens from the joint distribution step
by step, which would bring much noise and suffer from er-
ror propagation. The current common practice is reranking
multi-samples drawn from the transformer with a pre-trained
multi-modal model. For example, given a caption, DALL-
E (Ramesh et al. 2021) generates 512 images and re-ranks
them to search for the best image, and Parti (Yu et al. 2022a)
samples 16 images for searching. Besides, many sophisti-
cated transformer-based methods rely on large-scale models.
The parameters in DALL-E are up to 12 billion parameters,
and CogView consists of 4 billion parameters. Thus, slow
and inefficient inference may be the main bottleneck of the
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tasks applied in real life.
The inference stage includes three phases: (a) sampling

tokens of multi Nref paths (a path represents the visual to-
kens of a image for simplifying) via the large transformer
model; (b) transforming Nref paths to Nref images by using
VQ-GAN; (c) re-ranking Nref generated images to select the
best image. In phase (c), the inferior images with number of
Nref − 1 will be dropped, and the corresponding computing
load of (a) and (b) is nearly useless. Thus, to improve the
inference efficiency and synthesizing quality, we propose a
reject decoding algorithm to reduce the inefficient comput-
ing load and enlarge the searching space to improve the fi-
nal results. As shown in Figure 1, “O5” and “O10” indicate
the images generated by the original decoding via setting
Nref = 5 and Nref = 10, respectively. The reject decoding
algorithm generates the final result “N5”, which is the same
as“O10” and better than “O5”, under a similar computing
load of “O5”. In phase (a), we exploit the vision models to
guide the decoding to reject the lower-quality tokens as early
as possible, reducing the unnecessary calculation. Thus, we
can enlarge the initial searching paths as marked in large
blue circles, which would improve the decoding quality. In
Figure 1, the reject decoding algorithm outputs “N5” that is
the same image as “O10”, which has twice computing load.
Besides, since the final paths of “N5” will be smaller than
those ofO5 in phase (a), some following operations of phase
(b) and phase (c) can be eliminated, which further improves
the efficiency.

To summarize, we propose a reject decoding algorithm
to reduce the inefficient calculation and enlarge the initial
searching paths for covering a larger searching space and
improving the decoding quality, and the contributions are
threefold:

• To improve the efficiency in decoding, we propose a re-
ject decoding algorithm, where the language-vision mod-
els are employed to guide the decoding to reject the
lower-quality paths as early as possible.
• To measure the alignment between the given textual de-

scription and the full or part of image tokens, we intro-
duce tiny transformer-based multimodal language-vision
models and train them with a contrastive loss.
• We conduct extensive experiments with a base model

trained on the MS-COCO dataset and a large-scale model
trained on large-scale datasets to verify the efficiency of
the reject decoding algorithm and the effectiveness of the
multimodal vision models.

Related Work
GAN-Based Text-to-Image generation
Reed et al. (Reed et al. 2016) proposed GANs to gen-
erate plausible images from text. Then, Stacked GANs et
al. (Zhang et al. 2019; Zhang, Xie, and Yang 2018) are pro-
posed to gradually synthesize images and improve the gen-
erating quality. Attentional models (Xu et al. 2018; Zhu et al.
2019; Cheng et al. 2020) are introduced to focus on differ-
ent words when handing different parts of an image. Wu et
al. (Wu et al. 2022a) exploited the attribute pairs to improve

the controllability, and Qiao et al. (Qiao et al. 2019) pro-
posed a MirrorGAN to improve semantic consistency. Tan
et al. (Tan et al. 2021) and Yuan and Peng (Yuan and Peng
2020) proposed transferring methods to improve the associ-
ation between the given text and the synthesized image.

For object-oriented generating, Hinz et al. (Hinz, Hein-
rich, and Wermter 2019; Hinz Heinrich) proposed object-
level generators to synthesize the complex scenes. Sylvain et
al. (Sylvain et al. 2020) exploited object-centric generators
to fuse the object layout, and Li et al. (Li et al. 2019) in-
troduced two-step object-driven GANs to exploit bound-
ing boxes to improve the quality. Besides, many works (Li,
Zhang, and Malik 2019; Pavllo, Lucchi, and Hofmann 2020;
Sun and Wu 2019; Li et al. 2020) implicitly decomposed
complex scenes to fuse the layouts.

Transformer-Based Text-to-Image Synthesis
Recent works employ Vector Quantized Variational AutoEn-
coders (VQ-VAE) (van den Oord, Vinyals, and Kavukcuoglu
2017) to compress the high-resolution dense image into low-
dimensional discrete codes, and the decoder of VQ-VAE can
recover the dense image from the discrete codes. Then, the
transformer (Esser, Rombach, and Ommer 2021; Ramesh
et al. 2021; Ding et al. 2021; Huang et al. 2021b; Wu et al.
2022b) models the prior of the discrete codes and predicts
the codes in an auto-regressive manner, which greatly im-
proves the synthesizing quality. Zhang et al. (Zhang et al.
2021b) proposed the new two-stage UFC-BERT that ex-
ploited the progressive non-autoregressive generation to im-
prove the holistic consistency and support preserving oper-
ation. The UFC-BERT decoded B parallel paths similar to
the beam search. Then, it dropped some low probability to-
kens of a path and re-predicted them in each iterative step.
Zhang et al. (Zhang et al. 2021a) introduced ERNIE-ViLG
to model image-text bidirectional generation in an autore-
gressive generating manner. Kim et al. (Kim et al. 2022) pro-
posed the L-Verse with a feature-augmented variational au-
toencoder and bidirectional auto-regressive transformers for
the image-text bidirectional generating. Huang et al. (Huang
et al. 2021a) exploited a transformer to synthesize high-
quality images conditioned on multiple captions. Esser et
al. (Esser et al. 2021) proposed the ImageBART to synthe-
size images in a coarse-to-fine manner by using autoregres-
sive models and the multinomial diffusion process. Yu et
al. (Yu et al. 2022b) built the Parti to synthesize high-fidelity
photorealistic images by using large language models and
the large transformer model.

Diffuse-Based Text-to-Image Synthesis
Tang et al. (Tang et al. 2022) introduced vector quan-
tized diffusion models with classifier-free guidance sam-
pling and used a high-quality inference method. Ramesh et
al. (Ramesh et al. 2022) built a two-stage model by generat-
ing the CLIP image embedding and synthesizing the corre-
sponding images via diffusion models. Nichol et al. (Nichol
et al. 2021) proposed the GLIDE to synthesize high-quality
images via exploiting diffusion models with CLIP guidance
and classifier-free guidance. Gu et al. (Gu et al. 2022) intro-
duced the vector quantized diffusion model with the mask-
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Algorithm 1: Original Decoding in Transformer

Input: The given caption T ; The referent predicted size
Nref; The number of one image tokens L.

Output: A set of paths ĉ
1: Ĝ ← {{}1, {}2, · · · , {}Nref}
2: for j ∈ {1, ..., L} do
3: for ĝ ∈ Ĝ do
4: ĉj ← Multinomial(pΘ(ĉj |ĝ, T ))
5: ĝ ← ĝ ∪ {ĉj}
6: end for
7: end for
8: Return the set of predicted tokens Ĝ

and-replace diffusion strategy to generate the tokens condi-
tioned on a caption, then decoded the tokens into the synthe-
sized images. Saharia et al. (Saharia et al. 2022) proposed
the Imagen by exploiting large transformer language mod-
els to better understand captions and synthesize high-quality
images, which may complement to Parti and generate simi-
lar photorealistic images.

Difference to Existing Works
Transformer-based methods need to generate multi-images
in search of the best one to alleviate the error propagation
and the exposure bias. The computing load of excluding
paths may be a waste, and the reject decoding algorithm tries
to skip those paths as earlier as possible. Current works, like
UFC-BERT (Zhang et al. 2021b), would exploit beam search
decoding under some useful constraints (Susanto, Chollam-
patt, and Tan 2020) to select the k-best paths at each step.
However, for image synthesis via image tokens, a smaller
part of tokens may be more unreliable to select the k-best
candidates as in beam search decoding. Thus, we propose
the reject decoding algorithm to exclude some lowest quality
partial paths instead of selecting the k-best paths to improve
the decoding effectiveness and efficiency.

Methodology
In this section, we propose a new decoding algorithm to im-
prove decoding efficiency and synthesizing quality. First, we
present the reject decoding algorithm to eliminate the use-
less partial paths as early as possible. After that, we describe
multi-modal language vision models to measure the align-
ment between the given textual description and the partial
paths for finding the useless paths.

Given an image I and the corresponding caption T , we
define c = γ(I) as the corresponding residual quantization
discrete tokens, where γ is the encoder of the RQ-VAE (Lee
et al. 2022). Let Ĉ be predicted image tokens from cap-
tion T , the transformer model predicts the current tokens
ĉj ∈ Ĉ, j ∈ {1, ..., |Ĉ|}1, based on the previous image to-
kens ĉ1:j−1 ⊂ ĉ as follows,

ĉj = Multinomial(pΘ(ĉj |ĉ1:j−1, T )), (1)

1|Ĉ| denotes the number of tokens in Ĉ.

Algorithm 2: Reject Decoding in Transformer

Input: The given caption T; The initial predicted size
Nb;The end predicted size Ne; The reject threshold
{σ1, σ2, · · · , σK}; The size of predicted group M .

Output: A set of paths ĉ
1: Ĝ ← {{}1, {}2, · · · , {}Nb}
2: for i ∈ [1,K] do
3: for ĝ ∈ Ĝ do
4: for j ∈ [1,M) do
5: ĉj ← Multinomial(pΘ(ĉj |ĝ, T ))
6: ĝ ← ĝ ∪ {ĉj}
7: end for . predicted M tokens for each group
8: end for
9: Ŝ ← {};

10: for ĝ ∈ Ĝ do . the alignment between group and T
11: sg ←Mi(ĝ, T )

12: Ŝ ← Ŝ ∪ (ĝ, sg)
13: end for
14: Rc ← max(d|Ĝ| × σie, Ne)
15: Ĝ ← TopK(Ŝ, Rc) . reject |Ĝ| −Rc groups with

lowest scores
16: end for
17: Return the set of predicted tokens Ĝ

where Θ is the parameter of the transformer. The func-
tion Multinomial(·) samples a token from the multi-
nomial probability distribution pΘ, which can be imple-
mented as the truncation sampling (Gu et al. 2022). To im-
prove the synthesizing quality and semantic consistency, the
transformer-based model normally synthesizes multi images
and re-ranks them to select the best one. Thus, as shown in
Algorithm 1, the transformer model auto-regressively gen-
erates Nref paths, where each path consists of one image to-
kens Ĉ that can be transformed into the corresponding image
Î = φ(Ĉ) by using the decoder φ of the RQ-VAE.

Since only one ofNref images would be selected, the orig-
inal algorithm may be inefficient. Thus, to improve the de-
coding efficiency and synthesizing quality, we introduce a
reject decoding method as depicted in the following parts.

Reject Decoding in Transformer
First, we analyze the computing load of the reject decoding
compared with the original decoding and show that the reject
decoding algorithm can touch more candidates at the begin-
ning. Besides, we investigate the probability of preserving
the ground-truth to show that the rejecting elements would
unlikely contain the ground-truth. In all, we provide an al-
gorithm to configure the reject threshold automatically.

Computing Load To improve the decoding efficiency and
quality, we can evaluate the partial tokens ĝ in line 5 of Al-
gorithm 1. However, considering the computing load, we
split full L tokens into K groups (each group includes
M = L/K tokens) as shown in Algorithm 2, and evalu-
ate the partial tokens ĝ consisting of several groups, which
is similar to the situations that the sentence can be split into
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Figure 2: Diagrams of reserving count Rc and the probability of reserving ground-truth under different px of scorersMi: the
figures indicate that the ground-truth would unlikely be dropped when Rc is large.
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Figure 3: Multimodal Vision Models: they are trained with the random subset of visual tokens and the caption and contrastive
loss.

words.
In Algorithm 1, the total executing times in computing

Eq. (1) is Corg = NrefL = NrefKM , where Nref is the num-
ber of generated images corresponding to the caption T . In
Algorithm 2, the total executing times in computing Eq. (1)
is as follows,

Creject = M

K∑
i=1

Ni, (2)

where N1 = Nb, and Ni+1 = max(dNiσie, Ne). Nb, Ne
and σi are the initial size, end size of tokens, and the reject
threshold at i-th iteration, respectively. Specifically, for sim-
plicity, when σi = ξ is constant, and Ni+1 = Niσi, we can
see that

Creject = M
K∑
i=1

Nbξ
i−1 = MNb

(1− ξK)

(1− ξ)
. (3)

In order to ensure that the executing times are not increas-
ing, we want to have Creject ≤ Corg = NrefKM , then we
need to require Nb ≤ NrefK

1−ξ
1−ξK . Define fscale(K, ξ) =

K 1−ξ
1−ξK . If fscale(K, ξ) > 1, and Nb > Nref is feasible and

we can search across more candidates at the beginning. In
particualr, we can obtain the lower bound of fscale as,

fscale(K, ξ) =
K(1− ξ)
1− ξK

≥ K(1− ξ), (4)

where the last formulate is driven by 1 − ξK ≤ 1. Thus,
the scale factor fscale is proportion to K. Besides, the partial
derivative of fscale with respect to ξ is,

∂fscale(K, ξ)

∂ξ
=− K

(1− ξK)2
(1+(K − 1)ξK−Kξ(K−1))),

(5)

where the partial derivative of 1 + (K − 1)ξK −Kξ(K−1)

with respect to ξ is (K − 1)KξK−2(ξ − 1) ≤ 0, i.e., 1 +
(K− 1)ξK −Kξ(K−1) ≥ 1 + (K− 1)1K −K1(K−1) = 0.
Thus, we can obtain that

∂fscale(K, ξ)

∂ξ
≤ 0. (6)

Thus, the scale factor fscale will be a decreasing function
with respect to ξ. In Eq. (4), given ξ, and setK ≥ 1/(1−ξ),
Creject ≤ Corg, Nb ≥ Nref, our decoding method can search
across more candidates in the beginning at the same com-
puting load, which means the result would be better than the
original Algorithm 1, to alleviate the error propagation for
incremental decoding.

Preserving the best candidate by Mi Given a set of
paths Ĝ, we presume that Ĝ∗ is the ground-truth element of
Ĝ, and the scorer Mi can classify Ĝ∗ from other elements
with a probability p, i.e., Mi(Ĝ∗, T ) ≥ Mi(Ĝk, T ), k ∈
{1, ..., NĜ}, and NĜ = |Ĝ|. Thus, the probability of
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Algorithm 3: Searching Reject Threshold

Input: The referent counter Nref; the begin and end pre-
dicted sizes Nb and Ne, respectively; the number of
groups K; the preferring reject probability pr

Output: the set of using count {Ni}Ki=1

1: Ni ← Ne, ∀i ∈ {2, ...,K};
2: N1 ← Nb
3: for i ∈ {2, ...,K} do
4: Cres ← max(NrefK −

∑
j Nj , 0)

5: Ni ← min(bNi−1prc, Cres +Ni)
6: end for
7: if

∑
j Nj 6= NrefK then

8: Return {Ni}Ki=1, Fail
9: end if

10: Return {Ni}Ki=1, Successful

Mi(Ĝ∗, T ) ≥ Mi(Ĝk, T ), ∀Ĝk ∈ Ĝ is pNĜ−1. In line 15 of
Algorithm 2, we can split Ĝ into two sets Ĝ0 = TopK(Ŝ, Rc)
and Ĝ1 = Ĝ/Ĝ0, where Rc is size of preserving the paths
and function TopK(Ŝ, Rc) is to reject the |Ĝ| − Rc groups
with the lowest scores, Ŝ is score set of Ĝ. Thus, the prob-
ability of preserving the ground truth Ĝ∗ in Ĝ0 ⊂ Ĝ is PRc ,
which is defined as follows,

P{Rc=1} =pNĜ−1, (7)

P{Rc=j+1} =(1− P{Rc=j})p
NĜ−j−1 + P{Rc=j}, (8)

where the first term of Eq. (8) is the probability of P (Ĝ0
Rc

=

Ĝ∗). The probability PRc → 1 when Rc → NĜ , and
P{Rc=NĜ} = 1. For examples, in Figure 2, the plots indicate
that a larger pNĜ−1 would make PRc increasing faster and
can exclude more trailing elements. When the partial path
is short and pNĜ−1 is small, we could reject a few elements
at a slight cost. In short, the ground-truth would be unlike
in the trailing elements of sorted Ĝ, which could be dropped
with little cost.

Configure of Reject Counters In Algorithm 3, given the
reference counter Nref for Algorithm 1,we can search the re-
ject thresholds for Algorithm 2 under the same computing
loads of the transformer. Specially, given the initial and end
predicted counter Nb > Nref and Ne < Nref, we can enu-
merate pr ∈ [0, 1] and find out the smallest pr which lets
Algorithm 3 return “Successful”. Note that the reject thresh-
old can be set as Ni/Ni−1.

Multimodal Language-Vision Models
In Algorithem 2, we utilize tiny language-vision models to
filter out the low-quality partial paths. First, we exploit the
transformer-based structure to get the embeddings of a par-
tial path and the given caption in a common space. Then, we
train the tiny models with a contrastive loss.

Embedding Caption and Tokens As shown in the Fig-
ure 3, given a caption T , we exploit GPT2, noted as EGPT2,
to get the embeddings ω = EGPT2(T ) ∈ R|T |×Nω , where

Nω is the dimension of word embedding and |T | is the size
of caption T . Thus, the representation of T is calculated as
follows,

fMT(ω) = Lmean,1(LL+N(LTrans(LN+L(ω)))), (9)

whereLN+L denotes a linear layer to translate the embedding
ω into the hidden features, followed by a layer normaliza-
tion; LTrans includes several transformer blocks, consisting
of a multi-head self-attention layer, layer normalization, and
a multi-layer perceptron; LL+N indicates a layer normaliza-
tion followed by a linear layer; Lmean,1 computes the mean
across the second dimension, namely the mean of embed-
dings words.

Given residual quantization tokens C ∈ RL×4 of an im-
age, we employ the decoder φ of the RQ-VAE to get the
embedding ν = Eφ(C) ∈ RL×4×Nν , where Nν is the di-
mension of the visual embedding i.e.,

fMc(ν) = Lmean,1(LL+N(LTrans(LN+L(Lmean,1(ν)))). (10)

Training with Contrastive Loss Given the k-th caption T
and residual quantization tokens C in a batch, their embed-
dings are,

ω̂k = Norm(fMT(EGPT2(T ))), (11)
ν̂k = Norm(fMc(Eφ(C))), (12)

where the function Norm is L2-normalization, and the train-
ing loss of a batch Lcontrast is defined as,

−
∑
i

{
exp(ω̂i · ν̂i)∑
k 6=i exp(ω̂i · ν̂k)

+
exp(ω̂i · ν̂i)∑
k 6=i exp(ω̂k · ν̂i)

}
. (13)

Besides, as shown in the Figure 3, we train and evaluate
the alignment between part image tokens and the given cap-
tion. For model Mi = {fMT , fMc}, we sample a subset
of tokens C′ ⊂ C and exploit Eq. (13) to compute the con-
trastive loss of a given batch. In Algorithm 2, we choose the
group size M = 8, and the total size of tokens is 64. Thus,
we construct 8 similarity models as {Mi}8i=1.

Experiments
We conduct experiments by using the RQ-Transformer (Lee
et al. 2022) as baselines and train the RQ-Transformer on
the MS-COCO dataset (Lin et al. 2014) as the normal model
denoted by the superscript “coco”. To verify the experiments
on large-scale datasets, we exploit the large-scale pre-trained
RQ-Transformer with 3.9B parameters2 denoted by the su-
perscript “pre”, which is trained by CC-3M3, CC-12M4, and
YFCC-subset5.

Evaluating Metrics
a) Inception score (IS): IS (Salimans et al. 2016) is an au-
tomatic metric and popular to evaluate the quality, which

2github.com/kakaobrain/rq-vae-transformer
3github.com/google-research-datasets/conceptual-captions
4github.com/google-research-datasets/conceptual-12m
5github.com/openai/CLIP/blob/main/data/yfcc100m.md
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Methods IS↑ FID↓ RPcnn ↑ RPtrans ↑ Consuming Time(s)↓
DALL-E 17.90 27.50 N/A N/A N/A
CogView 18.20 27.10 N/A N/A N/A

RQ-Transformerpre
5 24.55 ± 0.51 16.5989 63.75 ± 0.90 56.10 ± 0.62 17.13

Ourpre
5 25.39 ± 0.42 14.5853 69.27 ± 0.92 67.37 ± 0.91 16.68

RQ-Transformerpre
10 24.37 ± 0.51 16.4212 66.61 ± 0.42 58.45 ± 0.65 33.54

Ourpre
10 25.64 ± 0.65 14.3066 70.91 ± 0.59 69.42 ± 0.73 29.22

RQ-Transformercoco
5 26.36 ± 0.28 8.3623 68.42 ± 0.72 69.38 ± 0.98 6.93

Ourcoco
5 27.19 ± 0.56 8.2824 71.98 ± 0.66 76.64 ± 0.99 6.76

RQ-Transformercoco
10 27.27 ± 0.43 8.2035 70.37 ± 0.63 71.09 ± 0.77 10.74

Ourcoco
10 27.98 ± 0.63 8.1090 74.45 ± 0.63 77.64 ± 0.43 10.32

Table 1: Inception Score (IS), Fréchet Inception Distance (FID), R-precision(RPcnn and RPtrans), and Consuming Time

Figure 4: Diagrams of FID, IS, RPcnn, and RPtrans for our models by exploiting different Ne under similar computing loads.

favors meaningful and diverse images. Followed the works
in (Zhang et al. 2019; Xu et al. 2018; Wu et al. 2022b; Tao
et al. 2022; Li et al. 2022), although it has some flaws (Bar-
ratt and Sharma 2018), we report the metric to compare the
quality of synthesized images.
b) Fréchet Inception Distance (FID): FID measures the
Fréchet distance between the features of 30K generated im-
ages and real images. A lower FID indicates that the model
generates higher-quality images. Thus, we report the FID to
compare those models.
c) R-precision: To measure the semantic consistency be-
tween the given caption and the synthesized image, we em-
ploy R-precision (Xu et al. 2018) to evaluate the alignment,
denoted as RPcnn. Since transformer models could extract
high-quality features, similar to works (Park et al. 2021), we
utilize the language-vision transformer, like Mi, to extract
base features to compute the R-precision, denoted asRPtrans.

Quantitative Comparison
In Table 1, the subscript “5” and “10” indicate the referent
computing load for Nref = 5 and Nref = 10 in the orig-
inal decoding, respectively. For the large-scale pre-trained
models, compared with RQ-Transformerpre

10 decoding under
Nref = 10 and trained by CC-3M, CC-12M, and YFCC-
subset, the IS of Ourpre

10 increases 1.27. the FID of Ourpre
10

largely decreases 2.11. The RPcnn and RPtrans increases by
4.30% and 10.97%, respectively. The consuming time, in-
cluding the whole process from feeding the text embed-
ding to returning the final image, of Ourpre

10 reduces by about
4.32 seconds. The consuming times are evaluated under the
same batch sizes on the same device and may be further
improved with some engineering optimization. Compared
with DALL-E (trained with CC-3M and YFCC-subset) and

CogView (trained with WudaoCorpora), the IS of Ourpre
10 in-

creases at least 17.44, and the FID decreases at least 12.79.
For the models trained with MS-COCO, compared with RQ-
Transformercoco

10 , the IS of Ourcoco
10 increases by 0.71. the FID

of Ourcoco
10 decreases 0.09. The RPcnn and RPtrans increases

4.08% and 6.55%, respectively. The consuming time of
Ourcoco

10 reduces by about 0.42 seconds. The results indicate
that the reject decoding could synthesize better images while
maintaining a similar computing load.
a) IS, FID, RPcnn, and RPtrans under Different Ne:
In Figure 4, the results demonstrate the influence of Ne with
Nb = 20: the first figure shows that the number Ni will
be dropping faster with larger Ne. With increasing Ne, the
FID will be decreasing firstly, which indicates that the re-
ranking phase is important, and it is beneficial to provide
several images for the re-ranking. However, when increas-
ing Ne further, the decoding may be hard to cover the high-
quality path, because the number of inner paths Ni is drop-
ping faster. The results indicate that the reject threshold is
important, and the Ne prefers a relatively small number.
However, IS, RPcnn, and RPtrans are better than those of the
corresponding baseline.
b) IS, FID, RPcnn, and RPtrans under Different
Language-Vision Models :
In Figure 5, we exploit the multimodal vision models, con-
sisted of 8 layers with 4 heads, under different training
epochs to evaluate the performance. In the first figure, by
using more tokens “#x”, x ∈ {8, 16, . . . , 64}, RPtrans will
increase, which shows that it is more reliable to measure
the similarity between the captions and the larger part of
tokens. Besides, the first figure shows that RPtrans will in-
crease with more training epochs. By using the vision mod-
els with higher RPtrans, the FID of our model will decrease,
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Figure 5: Diagrams of FID, IS, RPcnn and RPtrans for our models by exploiting different language-vision models.
A home with lots of wood darkly stained. A picture of a very clean living room.

A city bus moving along a road with many trees.The moon shining down on a harbor full of ships.
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Figure 6: Synthesized examples: the caption is above the corresponding image, and the prominent features are marked as bold.

and IS is on an ascending trend. By exploiting different vi-
sion models, the last figure shows that RPcnn and RPtrans
will increase with more training epochs of vision models
(with higher RPtrans), which indicates that language-vision
models could provide effective guidance to retrieve images
with higher quality and to improve semantic similarity. Fur-
thermore, when we exploit the similarity computed by the
original transformer, RPcnn = 68.06, RPtrans = 67.89,
FID = 8.63, and IS = 26.86, the scores are worse than
those with language-vision models, which shows the impor-
tance of the models.

Qualitative Comparison
In Figure 6, the results show that images of Ourpre

5 and
Ourcoco

5 are better than those of RQ-Transformerpre
5 and

RQ-Transformercoco
5 , respectively. For the referent number

Nref = 10, images of Ourpre
10 and Ourcoco

10 are also better
than those of RQ-Transformerpre

10 and RQ-Transformercoco
10 ,

respectively. And the images of Nref = 10 would be better
than those of Nref = 5. The results indicate that the reject
decoding could improve the synthesizing quality and gener-
ate realistic images. For example, given “a home with lots
of wood darkly stained”, in the left top part, the images of
Ourpre

5 and Ourpre
10 include more vivid visual details of “home

with lots of wood” than those of RQ-Transformerpre
5 and RQ-

Transformerpre
10 . Besides, Ourcoco

5 retrieves the same image of

“home” as that of RQ-Transformercoco
10 , and Ourcoco

10 gener-
ates the better image than that of Ourcoco

5 . The results show
that our reject decoding could generate high-quality images.

a) Synthesizing with Different Ne:
In Figure 7, the up two rows are for large-scale pre-trained
models. The first row shows the 10 generated images for re-
ranking. RQ-Transformerpre

5 will re-rank the first 5 images to
get the best image, and Ourpre

5 would search the sub-paths of
the total 10 generated images when Nb = 10. [1, 5]→ x de-
notes that the xth image is the best image selected from the
first 5 images as in the original decoding, and {3, 7} → x
denotes that the best image x is selected from the set {3, 7}.
In Figure 7, the quality of 10 generated images varies widely.
Thus, re-ranking is an essential phase. The original model,
RQ-Transformerpre

5 and RQ-Transformercoco
5 , can only touch

the first 5 images [1, 5], and the remaining [6, 10] is un-
reachable. However, our reject decoding can touch the full
10 paths. For example, given “large black and white panda
bear walking around in an enclosure”, RQ-Transformerpre

5

selects the 4th image from the first 5 images. When Ne = 1,
Ourpre

5 selects the 9th image, which is better than the 4th

image. When Ne = 2, Ourpre
5 generates the 9th and 3th im-

ages, {9, 3}, then the 9th image is selected in the re-ranking
phase. Thus, Figure 7 shows that the reject decoding can ex-
pand the searching space so as to increase the possibilities

2791



RQ-Transformer
pre

5

Large black and white panda bear walking around in an enclosure.

GroundTruth          [1,5]→4                  {9}→9                   {9,3}→9              {8,9,3}→9            {8,5,3,10}→8 

Ne =1 Ne =2 Ne =3 Ne =4

Our
pre
5

1                 2                 3                4                 5 6                 7                 8                9                10

Figure 7: Synthesizing examples with different Ne.

A man with a hat riding on a surf board.
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Figure 8: Synthesizing examples with different language-vision models.

of reaching the ground-truth.

b) Synthesizing with Different Language-Vision Models:

In Figure 8, an example consists of the results of large-scale
pre-trained models at the up part and the results of the mod-
els trained with the MS-COCO dataset at the low part. The
second row of an example includes images generated with
multimodal vision models under different training epochs.
Given “A man with a hat riding on a surf board”, when
Epoch=1, Ourpre

5 generates the 1th and 3th images. When
Epoch > 10, Ourpre

5 selects the 8th image as the best image,
which is the best image with the vivid visual features “A
man with a hat” and “surf board” among the 10 raw images.
When Epoch=1, Ourcoco

5 generates the 2th and 8th images.
When Epoch > 10, Ourcoco

5 selects the 10th image as the
best image, which is the best image among the 10 raw im-
ages. The results indicate that the better multimodal vision
model would yield more vivid and higher-quality images.

Limitation and Discussion
Akin to the language model in machine translation, the mul-
timodal vision models are important to guide the decoding
process to search the large selecting space. Here, we only
exploit the MS-COCO dataset to train the language-vision
models, and a large-scale dataset would be beneficial to train
the language-vision models and improve the final results.
Similar to CLIP, a sophisticated language-vision method
would improve the results. Besides, vision-only models may
also guide the decoding to yield high-quality results, which
will be a focus of future works.

Conclusion
We propose a reject decoding algorithm with tiny multi-
modal models to improve the decoding effectiveness and
efficiency, which would skip the useless paths as early as
possible and enlarge the searching space with little cost. We
exploit the transformer-based model to build the tiny multi-
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modal models. Then, we train the tiny models with the con-
trastive loss to evaluate the similarity between the textual
description and the part of tokens for rejecting. The experi-
ments show that the reject decoding could synthesize better
images under a similar computing load and improve effec-
tiveness and efficiency of decoding.
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