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Abstract
Learning with noisy label (LNL) is a classic problem that has
been extensively studied for image tasks, but much less for
video in the literature. A straightforward migration from im-
ages to videos without considering the properties of videos,
such as computational cost and redundant information, is not
a sound choice. In this paper, we propose two new strate-
gies for video analysis with noisy labels: 1) A lightweight
channel selection method dubbed as Channel Truncation for
feature-based label noise detection. This method selects the
most discriminative channels to split clean and noisy in-
stances in each category; 2) A novel contrastive strategy
dubbed as Noise Contrastive Learning, which constructs the
relationship between clean and noisy instances to regular-
ize model training. Experiments on three well-known bench-
mark datasets for video classification show that our proposed
truNcatE-split-contrAsT (NEAT) significantly outperforms
the existing baselines. By reducing the dimension to 10% of
it, our method achieves over 0.4 noise detection F1-score and
5% classification accuracy improvement on Mini-Kinetics
dataset under severe noise (symmetric-80%). Thanks to Noise
Contrastive Learning, the average classification accuracy im-
provement on Mini-Kinetics and Sth-Sth-V1 is over 1.6%.

1 Introduction
Training deep networks requires large-scale datasets with
high-quality human annotations. However, acquiring large-
scale clean-annotated data is costly and time-consuming,
forcing people to seek low-cost but imprecise alternative
labeling. Such labeling inevitably introduce noises: a large
number of instances could be annotated with incorrect la-
bels. Recent studies (Zhang et al. 2017; Arpit et al. 2017)
have shown that deep neural networks have a high capac-
ity to fit data even under randomly assigned labels, which
harms the generalization on unseen data. Therefore, how to
train a robust deep learning model in the presence of noisy
labels is challenging and is of increasing significance in the
industry. To date, the existing LNL approaches mainly focus
on image tasks. With the rapidly growing amount of video
data on the Internet, designing a noise-robust training strat-
egy for video models becomes imperative. Motivated by the
previous success of LNL methods on images, we study the
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much less explored problem of applying LNL methods in
the video domain.

Depending on whether noisy instances are detected in
training, the existing LNL methods can be roughly divided
into two types. One is to directly train a noise-robust model
in the presence of noisy labels (Patrini et al. 2017; Wang
et al. 2019; Ma et al. 2020; Lyu and Tsang 2019; Zhou
et al. 2021; Gao, Gouk, and Hospedales 2021). The other
one is to explicitly detect the potential noisy instances, and
then learns a model by simply excluding them (Huang et al.
2019), or re-using the potential noisy data by estimating the
pseudo labels of them (Zhang et al. 2018b; Li, Socher, and
Hoi 2019; Li, Xiong, and Hoi 2021; Ortego et al. 2021). This
detection strategy is widely adopted in the industry as it not
only learns a robust model, but provides a clean dataset as
well. Following this strategy, we learn video representations
from potentially-mislabeled data with two steps, Noise De-
tection and Unlabelled Data Utilization.
Noise Detection. The loss-based method (Han et al. 2018;
Zhang et al. 2018b; Huang et al. 2019; Li, Socher, and
Hoi 2019) is the common solution for noisy label detec-
tion. These methods treat instances with smaller classifica-
tion losses as clean ones during training, which easily leads
to confirmation bias (Li, Socher, and Hoi 2019). Compared
with a single loss value, video latent representations natu-
rally contains multi-channel signals, which provide adequate
clues for noise detection.

The existing feature-based noisy label detection meth-
ods (Lee et al. 2018; Han, Luo, and Wang 2019) com-
monly conduct binary clustering (clean/noisy) on the full-
dimensional features before the classification layer. How-
ever, we argue that to detect clean/noisy instances, utilizing
all channels of a feature learned from classification super-
vision is not a must. The reason is that the instance feature
learned with label supervision may perform well on differ-
entiating categories, but the extra feature dimensions for del-
icate boundary shaping are not suitable for an unsupervised
binary clustering task in label noise detection, especially un-
der the video domain. We find that the extra dimensions
are redundant and weaken the performance in noise detec-
tion and therefore in final classification. (Sec. 4.4 - Table. 3)
Designing a compact network may help reduce the redun-
dancy of feature channels for noise detection, but the lim-
ited network capacity will inevitably hurt the classification,
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as these two tasks share the same network and learned fea-
tures. Channel selection therefore becomes our first choice.

In this paper, we propose a category-wise channel se-
lection method, i.e. Channel Truncation (CT), for feature-
based label noise detection in videos. It evaluates the dis-
criminative ability of each channel of instance represen-
tations by simply collecting the temporal statistics across
frames of each instance. After sorting all channels based on
their noise-discriminative abilities, CT adaptively removes
the most confusing ones for each category during training.
Afterward, each truncated instance feature is matched with
its relevant category clean-prototype to determine whether it
is clean or not. This CT for videos can also be simplified to
detect noisy label of image data (Appendix).
Unlabelled Data Utilization. The previous LNL meth-
ods commonly process the detected noise under a semi-
supervised learning framework. A pseudo label is assigned
to each noisy instance to replace the wrongly annotated one
as a supervision signal for model training (Li, Socher, and
Hoi 2019; Li, Xiong, and Hoi 2021; Ortego et al. 2021).
One drawback of pseudo labeling is that the pseudo label
could be ambiguous and unreliable without sophisticated
post-processing and data enrichment (Zhang et al. 2018a).
This phenomenon is even severe under video domain as the
redundant information in videos may mislead the pseudo la-
beling at the early training stage. In the experiment, we ver-
ify that the naive pseudo label has negative impact to the
video classification (Sec. 3.2 - Table. 1), while the impact
on image is not that severe. Therefore, a new design of unla-
belled data utilization in videos is needed. On the other side,
little effort has been directed towards enhancing the qual-
ity of instance representation when no label is assigned to
the detected noise. Compared with guessing the actual label
of the noise, the mutual relationship among the instances is
relatively easy to estimate after the clean/noise splitting. In-
spired by contrastive learning (Oord, Li, and Vinyals 2018;
Jing and Tian 2020), we propose a Noise Contrastive Loss
(NCL) to utilize the unlabelled noise and enlarge the mar-
gins among instances from different categories. NCL pro-
vides a low-risk contrastive strategy for unlabelled noisy
queries, avoiding misguidance from wrong pseudo labels.

The framework of truNcatE-split-contrAsT (NEAT) is
shown in Fig. 1. Each video feature is first truncated for
clean/noisy instance splitting. Then, the detected clean/noisy
instances are utilized separately under the supervision of
cross entropy and noise contastive loss for model updating.
Our main contributions are summarized as follows:
• A lightweight channel selection method for feature-based

label noise detection is proposed. It discards the redun-
dant channels to increase the effectiveness and efficiency
of noisy/clean instance splitting.

• Noise Contrastive Loss is designed to construct the re-
lationship among instances by referring the estimated
clean/noisy splits, and utilizes this relationship to learn
visual representations without involving wrong labels.

• To the best of our knowledge, this is the first efficient
framework for LNL in video analysis. Extensive exper-
iments show the effectiveness of our method on several
video recognition datasets with noisy label settings.

2 Related Work
2.1 Learning with Noisy Label
LNL on images has been extensively studied in the litera-
ture. In this section, we only limit our review to the noise
detection methods and the way these methods utilize the de-
tected noisy instances.
Noise Detection. There are two main streams of noise detec-
tion methods, the loss-based one and the feature-based one.
We here mainly discuss feature-based methods. Feature-
based methods (Kim et al. 2021) detect noisy samples based
on feature similarities between samples. (Lee et al. 2018)
takes the cosine similarity between unidentified samples and
the prototypes as references to detect noise. (Wu et al. 2020)
utilizes k-nearest neighbor (k-NN) to build a neighbor graph
for each category, treating samples in the dominant sub-
component as clean ones. (Ortego et al. 2021) also uses k-
NN and voting to determine whether a sample is clean or
not. These works mainly focus on dealing with label noise
in image tasks, and so far, no work discusses how things are
different in video scenarios. Besides, they refer to the full-
dimensional feature for noise detection, which we argue is
unnecessary in this task.
Noise Utilization. The common strategy for noise utiliza-
tion is to assign a pseudo label to the detected noisy in-
stance as a supervision label. DivideMix (Li, Socher, and
Hoi 2019) estimates the pseudo label from model prediction
and applies Mixup (Zhang et al. 2018a) to enhance the reli-
ability of the pseudo label. (Ortego et al. 2021) combines
MixUp (Zhang et al. 2018a) and Supervised Contrastive
Learning (Khosla et al. 2020) to mitigate the negative impact
of noisy labels in representation learning. The label correc-
tion in this work is achieved by k-NN search. Junnan Li et.al
improve prototypical contrastive learning (PCL) (Li et al.
2020) in (Li, Xiong, and Hoi 2021) by using pseudo-labels
to compute class prototypes. This work applies a similar k-
NN-based label correction strategy as (Ortego et al. 2021).
The drawback of pseudo labeling is that the corrected label
is sometimes not reliable, and label enhancement techniques
like sharpening (Li, Socher, and Hoi 2019) are needed. Com-
pared with the pseudo labeling, instead of estimating the
unreliable pseudo labels or involving the noisy labels, our
proposed NCL utilizes the mutual relationship between the
distribution of clean and noisy instances to shape the classi-
fication boundary such that the negative impact of estimated
labels is mitigated. No complex post-processing and data en-
richment is required.

2.2 Contrastive Representation Learning
In recent years, the contrastive representation learning meth-
ods dominant the existing literature in self-supervised learn-
ing (Oord, Li, and Vinyals 2018; Jing and Tian 2020). They
optimize similarities of positive (negative) pairs to improve
the quality of representations. Techniques like data augmen-
tation (Tian et al. 2020), larger batch size (Chen et al. 2020a;
Khosla et al. 2020), network design (Chen et al. 2020b)
are always used for better representation learning. Regard-
ing the label noise scenario, the Instance Contrastive Learn-
ing (Oord, Li, and Vinyals 2018), the Supervised Contrastive
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Figure 1: The pipeline of our framework NEAT on the noisy dataset in training. There are two phases in the framework. In the
Noise Detection phase, the whole training dataset is split-ed into clean/noise clusters by considering the similarities between
each pair of dimension-reduced instance representations. In this phase the network is frozen for feature extraction only. During
Model Updating phase, the detected clean instances are fed into the network for supervised learning, while all instances are
utilized in Noise Contrastive Learning for decision boundary shaping. These two phases proceed iteratively. In the first round
of model updating, all the instances are utilized for supervised learning.

Learning (Khosla et al. 2020) and the Prototypical Con-
trastive Learning (PCL) (Li et al. 2020) are modified in (Kim
et al. 2021), (Ortego et al. 2021) and (Li, Xiong, and Hoi
2021) correspondingly and respectively to fully involve the
detected noisy instances.

3 Method
Under the video scenario, T frames are sampled from each
video as a clip. The normalized feature of a frame is de-
fined as v, which is extracted from a backbone network f(·).
Afterward, the representation of a clip from a video is de-
fined as x = G (v1, . . . , vT ), where G is a consensus func-
tion combining the set {vt}Tt=1 with normalization. Given
a representation dataset D = {xi}Mi=1 with M normalized
x ∈ Rd, the goal of a classification task is to find which cat-
egory x belongs to. The annotation of x is a, and it can be
also represented as an one-hot vector y ∈ {0, 1}K , in which
the a-th element of y is assigned as 1, and the remainings are
assigned as 0s. Here K indicates the number of category. A
classification head g(·) with Softmax operation is defined to
predict the probability of x belonging to the k-th category,
namely p(k|x) = g(x, k).

With the noisy label existing, a label a may be wrongly
assigned to a sample not belonging to the a-th category
set. To reduce the negative impact of wrongly annotated
samples in model training, our strategy is to first estimate
which samples are correctly annotated, i.e. clean samples
from Dc, and which are not, i.e. noisy samples from Du,
where D = Dc ∪ Du. The noisy samples are regarded as
unlabelled in our framework. This noise detection phase is
achieved by a detection function Dĉ = ϵ(D). In the fol-

lowing model updating phase, the labels of the estimated
clean samples are directly used in cross entropy loss for la-
bel supervision. Meanwhile, the detected noisy samples are
involved in model updating as regularization where the im-
pact of wrong labels is ignored. With the notations described
above, the model updating process under the noisy label set-
ting can be guided by the loss defined as below,

L = Ls + Lr

= −
∑

xi∈ϵ(D)

K∑
k=1

yi(k) · log g(xi, k) + Lr,
(1)

in which the loss Ls is defined by cross entropy for la-
bel supervision. The detection function ϵ(·) filters out the
noisy samples in the training set for each category by simi-
larity measure, in which a dimensionality reduction method
Channel Truncation, is proposed for the discriminative chan-
nel selection. The loss Lr is designed as a regularization
in model updating involving both estimated clean and noisy
samples. We introduce Noise Contrastive Learning in Lr to
utilize the relationships among clean and noisy instances for
decision boundary shaping. The pipeline of our framework
is shown in Fig. 1.

3.1 Channel Truncation
Generally, feature-based noise detection methods detect
noisy labels by computing the similarity between the query
x and the clean-prototype xa of category a. The higher
the similarity, the more likely the query x to be clean. As
full channels are learned to differentiate multiple categories,
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they are unnecessary for a much simpler task, i.e. differ-
entiating clean/noisy instances in each category. Truncating
inessential channels can help detect clean instances better
than utilizing all. Therefore, we propose Channel Truncation
to truncate the redundant channels and keep the discrimina-
tive ones for clean instance detection.

Our method owns a top b channel selection operation ζb(·)
with a category-level score function ψ(·). ψ(·) evaluates the
discriminative ability of each channel in a category, such as
a, by referring to the statistics of its related reference set Ωa.
This score function returns a vector with the same dimen-
sion as feature x, where each element is a score of the corre-
sponding feature channel. Selection operation ζb(·) picks b
channels with the highest scores of the input representation
and returns a dimension-reduced w concatenating these top
channels. Therefore the truncation function is defined as,

w = ζb
(
x, ψ (Ωa)

)
. (2)

Given truncated-feature w and its label a, the similarity
measure betweenw and the class clean-prototypewa is ob-
tained by a similarity function ηa (·), which is defined as
inner product, namely ηa (w) = w · wa. This similarity
indicates how close the instance w to the clean cluster of
category a. The class clean-prototype wa is defined as the
average w of the estimated clean set Dĉ. We observe that
the similarity distribution of the clean and noisy instances
gradually becomes a two-peak form during training. Thus to
detect the noisy videos, a two-component Gaussian Mixture
Model π(·) is utilized to fit the distribution of η(w). The
probability ofw being noise of the a-th category is then de-
fined as p(noise|w; a) = πa(w). Hence, the estimated clean
set is obtained by thresholding πa(w),

Dĉ = ϵ(D) = {x | x ∈ D, πa(w) < ξ}. (3)

where ξ is a threshold and we fix it as 0.5 in the experiments.
For simplicity below, we ignore the category index a. Next,
how to design a proper score function ψ(·)?
Oracle Selection Ideally, when the true splits of correctly
and wrongly annotated instances are known beforehand, we
take all the clean training data from the category a as ref-
erence set Ω, and the channel discriminative ability can be
measured by the within-/ between-cluster variance. Follow-
ing the Fisher Discriminant Analysis, for a specific category
a, the oracle score function ψo(·) is then defined as:

ψo =
(µc − µu)

2

σ2
c + σ

2
u

µc =
1

|Ω|
∑
xi∈Ω

xi, σ
2
c =

1

|Ω|
∑
xi∈Ω

(
xi − µc

)2
,

(4)

where µc ∈ Rd and σc ∈ Rd are the average values and
standard deviation of all xi in set Ω, respectively. All the op-
erations defined here in the equation are element-wise. Sim-
ilarly, µu and σu are the statistics of the unlabelled (misla-
beled) set. The higher the score, the more discriminative the
corresponding channels. As the true splits of correctly and
wrongly annotated instances are unknown in training, the
oracle score in Eq.4 cannot be used as the selection criterion
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Figure 2: The statistical relation between oracle score and
amplitudes/variance on K200 and SthV1 under symmetric-
40% noise setting at fifth epoch. Each recorded point bears
the coordinates (r, p). r is the ranking of the correspond-
ing statistics. The higher the r, the larger the amplitudes/-
variance. p is the probability of the relevant channels picked
by the top b oracle selection. The top b amplitudes/variance
area is filled with green. (b = 200)

of channels. However, this measurement can be treated as an
evaluation metric of practicable ψ(·).
Proposed Selection A video, in essence, consists of both
the scene and motion semantics (Wang and Hoai 2018; Choi
et al. 2019; Weng et al. 2020; Wang et al. 2021). The in-
formation of global scene appearance generally remains al-
most unchanged in a video, while the motion-relevant infor-
mation varies on the temporal domain. To well differenti-
ate videos, it is critical to distill both signals. We therefore
utilize the temporal average and variance to roughly search
the semantics-intense channels. As expected, we experimen-
tally discover that channels with larger temporal average and
variance of amplitudes tend to achieve higher oracle scores,
as shown in Fig. 2. Thus, we propose to estimate the channel
discriminative ability by introducing an instance-level score
function ϕ(·) and defining category-level score function ψ(·)
as a histogram counting the top b instance-level score events
of each channel in a certain category. The function ϕ(·) is
designed as temporal statistics of {vt}Tt=1 from G, which
is lightweight and suitable for the video scenario. Here we
have two versions of ϕ(·), the average pooling ϕave, and the
temporal variation ϕvar of the representation channel. They
are defined as,

ϕave(v1, . . . , vT ) =
∑

t
vt/T,

ϕvar(v1, . . . , vT ) =
∑

t
(vt − ϕave)

2/T.
(5)

We set Ω as the clean set Dĉ from the last epoch and ini-
tialize Ω as the dataset D in the first training epoch. The av-
erage responses extract the similar signal among T frames.
The variance of the amplitude distills the dissimilar signal
across the frames. Each operation here is element-wise. It
is observed that the selected channels are closely related to
the semantics, e.g scene and motion, of a video clip in the
specific category, about which we will show more visualiza-
tions in the Appendix. Moreover, a further detailed analysis
of different temporal statistics will be discussed in Sec.4.

3.2 Noise Contrastive Learning
With the estimated clean and unlabelled splits, namely
Dĉ and Dû, the motivation of Noise Contrastive Learn-
ing (NCL) is to fully utilize the estimated noisy samples
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in model updating, and further enlarge the margins among
samples from different categories.

To reach this goal, contrastive learning (Oord, Li, and
Vinyals 2018) is involved in NCL to enforce the consistency
within each clean cluster and enlarge the dissimilarity be-
tween clean and noisy clusters. We first randomly sample
two clips from a video to represent two different views of
this video. Both view clips consist of T frames following a
certain sampling strategy. In NCL, we take one clip repre-
sentation of a video as a query and set the remaining clips
from the same and other videos as keys. The selection of
positive and negative keys varies from clean query to noisy
query. For a query representation xi ∈ Dĉ from clean clus-
ter of category ai, its sets of positive and negative keys Pi

ĉ,
N i

ĉ can be defined as,

Pi
ĉ ={xj |xj ∈ Dĉ, i ̸=j, ai=aj},

N i
ĉ ={xj |xj ∈ Dû, ai=aj} ∪ {xl|xl ∈ Dĉ, ai ̸=al},

(6)

respectively. By this way, the estimated clean instances in
the same category are forced to be close to each other, and
the ones from different categories are pushed away from one
another. When the query representation xi ∈ Dû is from
unlabelled cluster, its sets of keys Pi

û and N i
û are defined as,

Pi
û ={xj |xj ∈ NN(xi)} ∪ {x̃i},

N i
û = D − Pû ∪ {xi},

(7)

in which xi and x̃i are the two views of a query video. The
positive keys of the noisy query also come from the nearest
neighbours. Specifically, we retrieve the top similar keys of
a query xi by k-NN function NN(x) which returns the B
nearest neighbors of input instance in the set D−{x}. With
the proposed positive and negative sets Pĉ, Pû, Nĉ and Nû,
we extend the InfoNCE (Oord, Li, and Vinyals 2018) loss
to two noisy contrastive losses Lc

r and Lu
r to force the clean

and noisy clusters to be apart from each other:

Lr =
1

|Dĉ|
∑

xq∈Dĉ

Lc
r(xq) +

1

|Dû|
∑

xq∈Dû

Lu
r (xq) (8)

where Lc
r = γ(Pĉ,Nĉ) and Lu

r = γ(Pû,Nû). γ(·) is de-
fined as:

γ(P ,N ) = − 1

|P|
∑

x+∈P
log

exp (zq· z+/τ)∑
xj∈P∪N

exp (zq· zj/τ)
, (9)

in which z ∈ Rd̂ is the normalized representation mapped
by projection head h(·), i.e. z = h(x), and d̂ < d. The sym-
bol “·” denotes the inner (dot) product between two vectors.
τ is the temperature scaling.

Compared with assigning pseudo labels to the estimated
unlabelled instances (Li, Socher, and Hoi 2019), the pro-
posed NCL is low risk as it does not involve the label of
the estimated noisy samples, which may severely mislead
the model updating. Even though the true labels of the noisy
samples are ignored in label supervision of the model up-
dating, the mutual exclusion between the clean and noisy
instances in each category can still well shape the decision

Noise Type Symmetric Asymmetric
Noise Ratio 20% 40% 60% 80% 10% 20% 40%

GCE(2018) 53.1 49.6 42.1 23.4 54.0 52.0 41.4
SCE(2019) 64.5 57.8 48.1 27.9 67.2 62.0 46.9
TopoFilter(2020) 61.4 55.5 37.7 14.9 65.7 63.6 55.5
Co-teaching(2018) 61.0 60.9 56.9 32.5 60.6 60.2 46.9
M-correction(2019) 66.7 62.3 54.8 40.1 65.5 62.1 52.9
CT-all 68.4 64.2 58.3 43.3 69.1 67.4 51.9
CT-var 69.2 67.1 61.1 48.4 70.0 68.0 55.9
CT-ave 69.4 66.9 61.0 48.1 69.8 68.6 58.4
CT-oracle 70.4 67.7 61.5 49.6 70.6 70.0 58.9
Clean Only 70.5 68.3 64.9 58.8 70.9 70.3 68.6

DivideMix(2019) 69.4 65.9 60.7 46.5 68.2 67.5 53.1
CT-var + PL-H 68.1 65.6 58.3 37.9 66.5 65.8 54.6
CT-var + PL-S 68.2 66.0 60.8 45.4 67.1 66.8 55.8
CT-var + PL-K 67.7 65.0 60.1 47.4 66.4 65.7 55.0
CT-var + CL 69.4 66.6 60.4 12.2 68.3 67.6 54.7
CT-var + SCL 70.3 67.6 61.4 46.9 70.2 68.1 57.0
CT-var + NCL 70.9 68.6 63.4 49.9 70.5 69.5 59.2

Table 1: Testing Accuracies (%) on Mini-Kinetics Dataset.

boundary indirectly. In each category, most of the detected
noisy instances do not share the same label as the clean ones.
Therefore when expanding the gap between clean and noisy
clusters, the decision margin between each category pair is
simultaneously enlarged. The NCL and CT nourish each
other. The model regularized by NCL provides a good rep-
resentation for CT to differentiate clean and noisy instances
better. Meanwhile, a well splitting of clean / unlabelled in-
stances by CT supplies reasonable separation of positive and
negative key sets for Noise Contrastive Learning.

4 Experiments
4.1 Settings and Datasets
Model In this section, We choose TSM-ResNet50 (Lin, Gan,
and Han 2019) with ImageNet-pretraining as our backbone
for all experiment settings. All training hyper-parameters are
adapted from the original work (Lin, Gan, and Han 2019)
and detailed in Appendix. Following previous work, we
choose τ = 0.1 for all experiments in this paper. A mem-
ory bank with the size of 16×K is added for all contrastive
learning loss to provide ample training positive-negative
pairs. All baselines in this paper are re-implemented by
open-source codes.
Datasets We conduct experiments on three large-scale video
classification datasets, Kinetics-400 (K400), Mini-kinetics
(K200), and Something-Something-V1 (SthV1).
• K400 This is a large-scale action recognition dataset with
400 categories, and it contains ∼240k videos for training,
and ∼20k (50 per category) for validation. Note that K400
is not a balanced dataset. The amount of training samples in
each category are in the range of [250, 1000].
• K200 This is a balanced subset of K400 with 200 cate-
gories. In this dataset, each category contains 400 videos for
training and 25 videos for validation.
• SthV1 Something-Something is a challenging dataset fo-
cusing on temporal reasoning. In this dataset, the scenes and
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Dataset Kinetics Something V1
Noise Type Symmetric Asymmetric Symmetric Asymmetric
Noise Ratio 40% 60% 80% 10% 20% 40% 40% 60% 80% 10% 20% 40%

TopoFilter(2020) 49.1 40.4 21.5 56.1 55.1 47.8 21.4 4.3 1.2 35.8 34.5 26.9
Co-teaching(2018) 53.9 51.4 31.3 51.4 51.4 41.7 23.6 14.5 4.5 24.0 24.6 18.5
M-correction(2019) 57.3 51.2 40.3 54.8 53.9 47.1 24.1 15.1 4.5 36.6 35.2 22.0
CT-ave 60.360.360.3 56.656.656.6 46.346.346.3 62.962.962.9 61.361.361.3 48.0 36.336.336.3 26.2 4.6 41.5 37.8 28.3
CT-var 60.1 55.8 45.7 62.8 61.0 48.448.448.4 36.2 26.726.726.7 4.84.84.8 41.641.641.6 38.738.738.7 28.728.728.7
Clean Only 61.6 58.8 54.3 70.3 68.0 61.7 40.7 36.0 24.8 44.0 43.5 40.6

CT*-var 61.1 56.7 48.6 63.6 62.5 57.8 36.8 27.0 5.8 41.7 40.2 32.8

CT-var+CL 60.0 55.3 7.6 61.7 59.5 45.2 31.8 1.6 1.1 37.8 36.2 27.1
CT-var+SCL 60.5 56.5 46.5 63.0 60.9 48.8 37.6 28.4 2.9 41.5 40.2 29.4
CT-var+NCL 61.261.261.2 57.257.257.2 46.946.946.9 63.363.363.3 61.561.561.5 49.149.149.1 38.338.338.3 30.130.130.1 5.15.15.1 41.841.841.8 40.840.840.8 30.030.030.0

Table 2: Testing Accuracies (%) on Kinetics and Something V1 Dataset.
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Figure 3: F1-Score/Precision/Recall in K200 dataset with 80% symmetric label noise.

objects in each category are various, which strongly requires
the classification model to focus on the temporal dynam-
ics among video frames. SthV1 is an unbalanced dataset
with 174 categories. It contains ∼86k videos for training and
∼12k for validation.
Noise Types There are two kinds of label noise in the exper-
iment: symmetric and asymmetric noise. Hyper-parameter ρ
controls the noise ratio.
• Symmetric Noise: Each noisy sample in the training set
is independently and uniformly assigned to a random label
other than its true label.
•Asymmetric Noise: The samples in one category can only
be assigned to a specific category other than the true label.

4.2 Label Noise Detection
We compare the Channel Truncation (CT) with multiple
well-known methods for LNL. GCE (Zhang and Sabuncu
2018) and SCE (Wang et al. 2019) are robust loss func-
tions. We also involve Clean Only baseline in the experi-
ment as reference, which is trained with the correctly anno-
tated samples. TopoFilter (Wu et al. 2020) is a feature-based
method that detects noise by an L2-norm-based clustering.
Co-teaching (Han et al. 2018) is a loss-based method with
a dual-network design. The noise ratio ρ is assumed to be
already known in Co-teaching. M-correction (Arazo et al.
2019) is also a loss-based method with beta mixture model
for clean/noisy instance separation. DivideMix(Li, Socher,
and Hoi 2019) applies Mix-up(Zhang et al. 2018a) on both
labeled and unlabeled samples to enrich the dataset. As they

are designed for images, we here re-implement video ver-
sions of them for comparison.

All methods share the same network architecture (TSM-
ResNet50), training hyper-parameters, noise settings, and
train/test splits of datasets for a fair comparison. We set b to
200 in all settings. Since each query is excepted to have 16
true positive keys in the memory bank with size 16×K, the
number of nearest keys B is set as 16. The reference set Ω is
initialized with the whole dataset D except for Asymmetric-
40%. In the setting of Asymmetric-40%, we use k-means
for binary clustering and regard the cluster with the domi-
nant instances as the initialization of Ω. Note that we choose
ϕvar as the score function for all experiment and denote
our method with ϕvar as CT-var. As an additional compar-
ison, CT-all takes all the channels for noise detection, i.e.
b = 2048. As a tight upper bound of CT, CT-oracle is im-
plemented by utilizing oracle selection for channel selection.

Table. 1 and 2 shows the best testing accuracy across
all epochs. The best results are marked as bold. On the
K200, K400, and SthV1 datasets, our method greatly out-
performs other LNL baselines under different levels of sym-
metric/asymmetric label noise.

Due to the unbalanced number of samples in different cat-
egories, under the asymmetric noise with large ρ, some cat-
egories’ number of noisy instances may be larger than that
of clean ones. The clean/noisy instances in these unbalanced
datasets are theoretically indistinguishable if extra informa-
tion is not provided. To tackle this issue, we keep a balanced
instance set, where each category contains ten samples with
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b 100 200 400 1600 2048 (all)

CT-var 60.6 61.1 60.8 59.0 58.3
CT-var+NCL 62.9 63.4 63.3 62.0 61.6

Table 3: Testing Accuracies (%) on K200 with 60% Sym-
metric Noise and Different Number of Kept Channels b.

Score Top Middle Bottom

CT-var 48.4 34.6 25.5
CT-ave 48.1 35.4 20.9

Table 4: Test accuracy (%) on K200 with 80% Symmetric
Noise. Channels with higher score benefit more to model
performance.

correct labels. By taking this small clean sets as Ω, CT*
achieves a substantial improvement in these unbalanced sit-
uations.

Fig. 3 shows the F1-score, Precision, and Recall of noise
detection during training on K200 with symmetric-80%
noise. Our method beats the baselines in almost every train-
ing epoch in F1-Score. We notice that most methods have a
similar F1-score at the very beginning, and no one has an ob-
vious advantage over others when the model is weak. It takes
about ten epochs for CT-var to warm up before noise detec-
tion ability leaps. The warm-up duration of CT-var+NCL is
much larger than that of CT-var, which may be caused by the
randomly-initialized projection head h(·). Thanks to NCL,
our method tends to discover more clean instances leading
to higher recall but a little bit lower precision than CT-var.
The improved classification accuracy shows that this Recall-
Precision trade-off is beneficial.

4.3 Regularization on Unlabelled Noisy Sample
To fully utilize the unlabelled noisy set Dû, our Noise Con-
trastive Loss (NCL) provides a low-risk regularization in
video classification scenario with noisy labels. We com-
pare NCL with two famous contrastive losses: standard
Contrastive Learning (CL) loss and Supervised Contrastive
Learning (SCL) (Khosla et al. 2020) loss. CL loss involves
all instances in training. As SCL requires the label super-
visions, instances from Dû are ignored in our SCL imple-
mentation. Training settings are shared for all methods, and
the only difference is the contrastive strategy, which rules
how positive/negative keys are selected. The results shown
in Table 1 and Table 2 indicate that NCL can stably improve
model performance. We also implement three commonly
used pseudo-label-based (PL) strategies, in which a pseudo
label is assigned to each unlabelled noisy instance. PL-
H (Zhang et al. 2021)/PL-S (Li, Socher, and Hoi 2019) gen-
erates a hard/soft label for unlabelled instances according to
model prediction. PL-K (Ortego et al. 2021) utilizes k-NN
on the reference set Ω to predict pseudo label for instances
in Dû. Here there are 64 nearest neighbors considered. We
compare NCL with PL on the K200 dataset as shown in Ta-
ble 1. As we mentioned in Sec.3.2, a pseudo label without

Score Function ϕave ϕvar

Mini-Kinetics 94.9 77.9
Something V1 45.5 50.3

Table 5: Comparison of Score Function on Different
Datasets with 40% Symmetric Noise (larger is better).

robust post-processing is less reliable when the generaliza-
tion of a model is weak. Tremendous wrong pseudo labels
will dramatically degrade the supervision quality and thus
hurt model prediction.

4.4 Ablation Studies

Parameter Sensitivity The hyper-parameter b controls how
many dimensions are kept after channel truncation. As
shown in Table 3, CT performs better when b is close to 200.
b = 2048 means no channels is truncated.
Channel Selection We select the top, middle and bottom
ranked b channels, respectively, for noise detection and eval-
uate their impacts on final classification. As shown in Ta-
ble 4, model performance dramatically drops if we only keep
b channels with low scores, which proves the significance of
channel selection.
Score Function We expect the proposed selections can keep
as many the most discriminative channels for each category
as the oracle selection does. To verify the ability of our pro-
posed selections, we quantify the similarity of channel se-
lection between the proposed selections and the oracle se-
lection by the intersection size of selected channels by these
two criteria at fifth epoch in model updating. The larger the
size of the intersection, and the better the score function of
the proposed selection. We report the evaluation in Table 5.
On the scene-based dataset K200, ψave shares the most se-
lected channels with the Oracle Selection ψo. While on the
temporal reasoning dataset SthV1, channels selected by the
ψvar is more discriminative. This observation keeps consis-
tent with their performance in testing accuracy.
Extension to Images We also extend ϕ(·) to an image ver-
sion. Details can be found in Appendix.

5 Discussion and Conclusion

In this work, we propose an efficient framework for learning
with noisy labels in video classification. This framework in-
cludes a feature-based noise detection method, the Channel
Truncation, and a regularization approach, the Noise Con-
trastive Loss. The proposed CT adaptively selects discrim-
inative channels for clean instances filtering in each model
updating round, achieving good noise detection performance
even with severe interference of noisy labels. The novel
NCL learning strategy fully utilizes the detected noisy in-
stances to assist model updating in reshaping the classifi-
cation boundaries among categories. Extensive experiments
validate the effectiveness of our framework NEAT in both
noise detection and classification under various settings.
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